UltraRapid Communication

Distribution and Prevalence of Hyperpolarization-Activated Cation Channel (HCN) mRNA Expression in Cardiac Tissues

Abstract—HCN cation channel mRNA expression was determined in the rabbit heart and neonatal and adult rat ventricle using RNase protection assays. In the rabbit SA node, the dominant HCN transcript is HCN4, representing >81% of the total HCN message. HCN1 is also expressed, representing >18% of the total HCN mRNA. Rabbit Purkinje fibers contained almost equal amounts of HCN1 and HCN4 transcripts with low levels of HCN2, whereas rabbit ventricle contained predominantly HCN2. The SA node contained 25 times the total HCN message of Purkinje fibers and 140 times the total HCN message of ventricle. No reports of hyperpolarization-activated current (I_f) exist in rabbit Purkinje fibers, and we could not record I_f in rabbit ventricular myocytes. To investigate the possible role of isoform switching in determining the voltage dependence of I_f, we determined the prevalence of HCN isoforms in neonatal and adult rat ventricle. We had previously determined the threshold for activation of I_f to be ≈ -70 mV in neonatal rat ventricle and -113 mV in adult rat ventricle. In both neonatal and adult ventricle, only HCN2 and HCN4 transcripts are present. The ratio of HCN2 to HCN4 is 5:1 in the neonate and 13:1 in the adult. Taken together, these results suggest that different cardiac regions express different isoforms of the HCN family. The HCN1 and HCN4 isoforms are most closely associated with a depolarized threshold for I_f activation, whereas the HCN2 isoform is associated with a more negative activation curve. The full text of this article is available at http://www.circresaha.org. (Circ Res. 1999;85:e1-e6.)

Key Words: RNase protection assay ■ mRNA distribution ■ hyperpolarization-activated current

Although the heart is an electrical syncytium, the individual myocytes that comprise the whole are not homogeneous. The heart contains pacemaker regions (sinus node, atrioventricular node, and Purkinje fibers), in which the membrane potential never attains a steady value, and quiescent regions (atrial and ventricular muscle) that sit at a constant potential during diastole. Recently, a number of cardiac ion channel genes have been cloned, and the combination of molecular and biophysical measurements has resulted in the association of specific cardiac membrane currents with their individual molecular correlates. 1–3 Although this combination of biophysical and molecular approaches has had dramatic successes, until recently, the difference observed in the different cardiac tissue types. 4,5 This difference in the voltage dependence of activation is highly correlated with pacemaker capability. The most positive activation (in SA node) is associated with the highest pacing rate, whereas the most negative activation (ventricular myocytes) normally exhibits no diastolic depolarization at all. No other ion channel has demonstrated so dramatically different voltage ranges in different tissue types. Posttranslational modification via phosphorylation and direct cAMP binding can alter this voltage dependence, but this modulation is far less than the 80-mV difference observed in the different cardiac tissue types. 6,7 Thus, the basis of this wide difference in voltage dependence remains an open question. Is it due to different isoforms of the same gene family, coassembly with β subunits, or to a yet-to-be-determined form of posttranslational modification? Recently, three sets of investigators have reported the cloning of a new family of ion channel genes, which give rise to voltage-gated channels that activate on hyperpolarization and are modulated by direct cyclic nucleotide gating. 8–10 This HCN family (also known as BCNG or HAC) contains four ventricular myocytes. 4,5 This difference in the voltage dependence of activation is highly correlated with pacemaker capability. The most positive activation (in SA node) is associated with the highest pacing rate, whereas the most negative activation (ventricular myocytes) normally exhibits no diastolic depolarization at all. No other ion channel has demonstrated so dramatically different voltage ranges in different tissue types. Posttranslational modification via phosphorylation and direct cAMP binding can alter this voltage dependence, but this modulation is far less than the 80-mV difference observed in the different cardiac tissue types. 6,7 Thus, the basis of this wide difference in voltage dependence remains an open question. Is it due to different isoforms of the same gene family, coassembly with β subunits, or to a yet-to-be-determined form of posttranslational modification? Recently, three sets of investigators have reported the cloning of a new family of ion channel genes, which give rise to voltage-gated channels that activate on hyperpolarization and are modulated by direct cyclic nucleotide gating. 8–10

© 1999 American Heart Association, Inc.

Circulation Research is available at http://www.circresaha.org
members, two of which, HCN1 and HCN2, have been expressed in a heterologous expression system. The expressed currents bear a striking resemblance to channels observed in both cardiac and nervous tissue that have been called \(I_{\text{f}} \), \(I_{\text{o}} \), or \(I_{\text{fho}} \). Thus, with this cloning breakthrough comes the opportunity to further investigate the basis of the differing voltage dependence of \(I_{\text{f}} \) in the different cardiac regions. In the present study, we provide the first evidence for differences in mRNA isofrom expression in cardiac tissues with differing activation thresholds for \(I_{\text{f}} \).

Materials and Methods

Preparation of Rabbit Sinus Node Cells

Rabbits (2 to 3 kg; Charles River Laboratories, Wilmington, Mass) were injected intravenously with a euthanasia dose of sodium pentobarbital (100 mg/kg). The hearts were quickly removed and placed in warm Tyrode solution containing heparin (4 U/mL). The ventricles were then removed from the atrium, and the remaining tissue was washed with Tyrode solution to remove the blood. The procedures to dissociate the SA node cells are similar to those described in Tromba and Cohen. The SA node was quickly isolated from the right atrium and placed in a bath perfused with Tyrode solution at 37°C. The SA node was then trimmed under the microscope to remove extraneous tissue and allowed to recover for several minutes, during which spontaneous activity returned. The strips were then cut free from the crista terminalis and rinsed for 5 minutes in a Ca\(^{2+}\)-free solution. After this period, CaCl\(_2\) (0.005 mmol/L), albumin (1 mg/mL, Sigma), collagenase (280 U/mL, Cls II, Worthington), and elastase (30 U/mL, type I, Sigma) were added to the Ca\(^{2+}\)-free solution, and the strips were shaken for 6 to 9 minutes. The tissue was subsequently transferred into a modified KB solution where the cells were separated and then stored for use.

Preparation of Rat Ventricular Myocytes

Adult rats were killed by intraperitoneal injection of pentobarbital (1.2 g/kg) and neonatal rats by decapitation, in accordance with procedures to dissociate the SA node cells are similar to those described in Tromba and Cohen. The SA node was quickly isolated from the right atrium and placed in a bath perfused with Tyrode solution at 37°C. The SA node was then trimmed under the microscope to remove extraneous tissue and allowed to recover for several minutes, during which spontaneous activity returned. The strips were then cut free from the crista terminalis and rinsed for 5 minutes in a Ca\(^{2+}\)-free solution. After this period, CaCl\(_2\) (0.005 mmol/L), albumin (1 mg/mL, Sigma), collagenase (280 U/mL, Cls II, Worthington), and elastase (30 U/mL, type I, Sigma) were added to the Ca\(^{2+}\)-free solution, and the strips were shaken for 6 to 9 minutes. The tissue was subsequently transferred into a modified KB solution where the cells were separated and then stored for use.

Electrophysiological Measurements

Experiments were carried out during superfusion of the isolated rat ventricular myocytes at 35°C to 36°C or SA node cells at 32°C. The external solution contained (mmol/L) NaCl 137.7, NaOH 2.3, MgCl\(_2\) 2.3, CaCl\(_2\) 1.0, glucose 10, HEPES 5, and dextrose 10.0 (neutralized with NaOH to pH 7.4). The internal solution contained (mmol/L) NaCl 140, KCl 5.4, CaCl\(_2\) 1.8, MgCl\(_2\) 1.0, HEPES 5, and dextrose 10.0 (neutralized with NaOH to pH 7.35); for ventricular myocytes, the external solution contained (mmol/L) NaCl 137.7, NaOH 2.3, MgCl\(_2\) 1.0, glucose 10, HEPES 5, KCl 5.4, CaCl\(_2\) 1.8, MnCl\(_2\) 2.0, CdCl\(_2\) 0.2 (or 0 for neonatal rat ventricle), 4-aminopyridine 0 (for rat ventricle) or 2 (for rat ventricle), and BaCl\(_2\) 8 (for rat ventricle) or 5 (for rabbit ventricle) (neutralized with NaOH to pH 7.4). The internal solution contained (mmol/L) K-aspartate 130, MgCl\(_2\) 2, EGTA 11, Na-HEPES 10, CaCl\(_2\) 5, Na-ATP 2, Na-GTP 0.1 (pH 7.2); for ventricular myocytes, the internal solution contained (mmol/L) NaCl 6, K-aspartate 130, MgCl\(_2\) 2, CaCl\(_2\) 5 (or 2 in neonatal rat), EGTA 11 (or 5 in neonatal rat), Na\(_2\)-ATP 2, Na-GTP 0.1, Na-cAMP 0.2, and HEPES 10 (pH 7.2). The divalent cations Mn\(^{2+}\) and Cd\(^{2+}\) were used to reduce Ca\(^{2+}\) currents, which can overlap with and obscure \(I_{\text{f}} \) tail currents; Ba\(^{2+}\) was used to block the background current K\(^{+}\) current (\(I_{\text{k}} \)), which activates and inactivates in the same voltage range as \(I_{\text{f}} \). The liquid junction potential (\(\sim -10 \) mV) between the electrode tip and cell interior was not corrected. Currents were measured in whole-cell patch-clamp mode (for ventricular myocytes) using an Axopatch-1B amplifier or in perforated patch-clamp mode (for SA node cells) using an Axopatch-1D amplifier. The perforated patch pipettes had a resistance of 4 to 6 M\(\Omega \), and the concentration of amphotericin B was 260 mg/mL. The pipettes for ventricular myocytes had a resistance of 2 to 4 M\(\Omega \) (adult and newborn culture) or 5- to 6-M\(\Omega \) (newborn acute) electrodes. Data were recorded on a videocassette recorder through a digital data recorder (VR-10, Instrutech Corp) and simultaneously acquired by CLAMPEX software (pClamp, version 5.5 or 6.0.3, Axon Instrument Inc) for later analysis by CLAMPFIT (Axon Instrument Inc). Data were calculated as mean\(\pm \)SEM.

Isolation of Partial HCN cDNA Clones From Rat and Rabbit

Because of the intrinsic specificity of the RNase protection assay, it was necessary to obtain species-specific HCN channel cDNA templates. Polymerase chain reaction (PCR) amplification was used to clone HCN channel homologues from rat and rabbit. The amplified cDNA fragments were subcloned into an appropriate vector, and DNA templates were then linearized with an appropriate restriction enzyme. All constructs were confirmed by DNA sequencing.

To generate the cDNA templates from rat, degenerate oligonucleotide primers were designed to complement conserved regions of the HCN gene family. Two sets of primers were used to obtain the four different templates. The rat HCN1 cDNA was cloned using the forward primer 5'-TGYCYATGGGGAYGGNTGY-3' directed against the amino acid sequence CHWDGF of the S5 transmembrane region and the reverse primer 5'-NACRAACATGNCRTARCA-3' directed against the amino acid sequence CYAMFV of the S6 transmembrane region. The rat HCN2, HCN3, and HCN4 cDNAs were cloned using the forward primer 5'-ATHCAYCCNTAYWSNGAYTTY-3' directed against the amino acid sequence HPYSDF of the S1 transmembrane region and the reverse primer 5'-RCANCRCRTCCCAARTGRC-3' directed against the amino acid sequence CHWDGF of the S5 transmembrane region.

Four sets of primers were used to obtain the four probes from rabbit. According to the published sequences of each of the individual HCN genes from human and mouse, these four sets of primers were designed specifically for each member, but their nucleotide sequences were still conserved across human and mouse.

The rabbit HCN1 gene was identified using the forward primer 5'-TCCAGCGTCTTCGATTATCC-3' directed against the amino acid sequence AGFWI of a region \(\sim 8 \) amino acids before the S1 transmembrane region and the reverse primer 5'-CATGGGAAATATCTTCTCCC-3' directed against the amino acid sequence EIEHFM of a region \(\sim 2 \) amino acids after the S4 transmembrane region.

The rabbit HCN2 gene was identified using the forward primer 5'-ACAAGCGACTTCAGGTCTC-3' directed against the amino acid sequence SDIFRFY of the S1 transmembrane region and the reverse primer 5'-GTCTGGCTAGCCTCGGATG-3' directed against the amino acid sequence DSEVYK of the beginning of the S4 transmembrane region.

The rabbit HCN3 gene was identified using the forward primer 5'-GTCTTTCCCGGCAACACAAGC-3' directed against the amino acid sequence VFGSHK of a region \(\sim 25 \) amino acids before the S1 transmembrane region and the reverse primer 5'-CTGGTGATATGAGGGAT-3' directed against the amino acid sequence IRYHYQ of the S4 transmembrane region.

The rabbit HCN4 gene was identified using the forward primer 5'-GGATTACCCACCCCTACAG-3' directed against the amino acid sequence WIIHPY of a region \(\sim 5 \) amino acids before the S1 transmembrane region and the reverse primer 5'-
The rat and rabbit HCN clones were amplified from brain cDNA. The rat HCN1 and HCN2 clones are 100% identical to the mouse sequence at the deduced amino acid level. The rat HCN3 is 99% and the rat HCN4 is 98% identical to the mouse sequence at the deduced amino acid level. For the rabbit cDNA clones, HCN1 is 100%, HCN2 is 94%, HCN3 is 99%, and HCN4 is 95% identical to the mouse sequence at the deduced amino acid level. All sequences have been submitted to GenBank, and the GenBank accession numbers are AF155163 through AF155170.

Results

Expression of HCN Isoforms in Rabbit Heart

The sinus node represents a very small fraction of total cardiac membrane, but its role as the primary pacemaker makes the prevalence of individual HCN isoforms in this tissue an important question. The expression of all four HCN isoforms in rabbit SA node was determined using an RNase protection assay (Figure 1). The SA node contains an abundance of HCN1 and HCN4 transcripts, a detectable level of HCN2, and almost no HCN3 transcripts. This result is surprising on four counts. First, a previous study using nonquantitative PCR suggested that HCN2 is the predominant HCN isoform expression in rabbit SA node. Second, we find the isoform thought to be most prevalent in cardiac tissue, HCN2, is only minimally present in SA node (0.6±0.1% of total HCN mRNA, n=4, SEM). Third, a heretofore-believed neural isoform, HCN1, is prominently expressed (18.2±5.7% of total HCN mRNA, n=4) in SA node. Finally, HCN4 is the most highly expressed (81.2±5.7% of total HCN mRNA, n=4) in the rabbit SA node.

We also examined HCN expression in rabbit Purkinje fibers and ventricular muscle. Similar to the sinus node, the Purkinje tissue expresses HCN1 (49.0±14.7% of total HCN mRNA, n=4) and HCN4 (40.1±17.1% of total HCN mRNA, n=4) with very low levels of HCN2 (10.9±5.8% of total HCN mRNA, n=4). The total expression of HCN isoforms in Purkinje fibers is only 3.9% of that expressed in SA node. Nevertheless, the Purkinje results are important because they argue against a potential artifact. The SA node has substantial neural innervation, and the finding of a prominent HCN1 expression might be attributed to contamination with neural cell bodies. Innervation is much less prevalent in the peripheral Purkinje fibers, and so the finding of HCN1 in Purkinje fibers lends credence to its presence in cardiac muscle. The results from ventricular muscle are also important. Figure 1 illustrates the presence of HCN2 transcripts but at very low levels. The other isoforms are almost undetectable. The expression of HCN2 transcripts in ventricular muscle is only at 0.7% of the total HCN isoform expression in SA node.

Given the extensive expression of HCN isoforms in rabbit SA node, it is not surprising that prominent If currents can be recorded from this tissue, one example of which is presented in Figure 2A. The threshold for activation in this example is −55 mV, and we recorded If currents even at −45 mV, with our average threshold value of −50±2 mV (n=8). Considering the low level of HCN isoform expression in rabbit Purkinje fibers, it is not surprising that previous studies of this tissue type have not reported the presence of an If or, indeed, substantial pacemaker activity. No previous studies have investigated If-like currents in rabbit ventricular myocytes. Given the low level of isoform expression, we would expect little or no recordable current. Figure 2B shows membrane currents recorded from a rabbit ventricular myocyte. No If is present even at −150 mV (n=8). Although it is recognized that mRNA levels do not perfectly parallel those of functional channels, the large difference in total HCN message in the three regions suggests that at least some of the regulation of If magnitude is transcriptional.
Expression of HCN Isoforms in Neonatal and Adult Rat Ventricle

Because one of our aims was to examine the role that isoform “switching” could play in determining the voltage dependence of \(I_f \) in different cardiac regions, we had to examine additional cardiac tissues that expressed \(I_f \) but with differing activation ranges. We have previously demonstrated a negative shift in the activation of \(I_f \) between 3 days and 3 months of age in myocytes from the rat ventricle. Sample data from these two preparations are illustrated in Figure 2C and 2D. The threshold voltage for the \(I_f \) data recorded from a day-old rat myocyte in culture 4 days is \(-265 \text{ mV}\) in Figure 2C and averaged \(-270 \pm 2 \text{ mV} (n = 9)\) in our previous study. \(^{15}\) The threshold voltage for the \(I_f \) data recorded from a 3-month-old rat ventricular myocyte, \(I_f \) was activated by a hyperpolarizing pulse to \(-65 \text{ mV}\) from a holding potential of \(-35 \text{ mV}\). Further hyperpolarization resulted in enhanced \(I_f \) activation. D, In an adult (3-month-old) rat ventricular myocyte, \(I_f \) was recorded by hyperpolarizing from a holding potential of \(-50 \text{ mV}\) to potentials of \(-100 \text{ to } -160 \text{ mV}\). After hyperpolarization, the cell was depolarized to \(+20 \text{ mV}\) for 200 ms to accelerate the \(I_f \) recovery process. Experiments shown in panels C and D were performed in a modified Tyrode solution that contained 5 mmol/L Ba\(^{2+}\), 2 mmol/L Mn\(^{2+}\), and 2 mmol/L 4-aminopyridine.

Figure 2. Voltage dependence of \(I_f \) activation. A, In a rabbit SA node cell, \(I_f \) was elicited by a hyperpolarizing pulse from \(-45 \text{ to } -105 \text{ mV}\) with voltage increments of 10 mV. The holding potential was \(-35 \text{ mV}\). The experiment was performed in normal Tyrode solution. B, In a rabbit ventricular myocyte, \(I_f \) was barely seen on membrane hyperpolarization down to \(-150 \text{ mV}\). The holding potential was \(-50 \text{ mV}\). The experiments were done in a modified Tyrode solution that contained 8 mmol/L Ba\(^{2+}\), 2 mmol/L Mn\(^{2+}\), and 0.2 mmol/L Cd\(^{2+}\). C, In a cell-cultured neonatal (3-day-old) rat ventricular myocyte, \(I_f \) was activated by a hyperpolarizing pulse to \(-65 \text{ mV}\) from a holding potential of \(-35 \text{ mV}\). Further hyperpolarization resulted in enhanced \(I_f \) activation. D, In an adult (3-month-old) rat ventricular myocyte, \(I_f \) was recorded by hyperpolarizing from a holding potential of \(-50 \text{ mV}\) to potentials of \(-100 \text{ to } -160 \text{ mV}\). After hyperpolarization, the cell was depolarized to \(+20 \text{ mV}\) for 200 ms to accelerate the \(I_f \) recovery process. Experiments shown in panels C and D were performed in a modified Tyrode solution that contained 5 mmol/L Ba\(^{2+}\), 2 mmol/L Mn\(^{2+}\), and 2 mmol/L 4-aminopyridine.

Expression of HCN Isoforms in Neonatal and Adult Rat Ventricle

Because one of our aims was to examine the role that isoform “switching” could play in determining the voltage dependence of \(I_f \) in different cardiac regions, we had to examine additional cardiac tissues that expressed \(I_f \) but with differing activation ranges. We have previously demonstrated a negative shift in the activation of \(I_f \) between 3 days and 3 months of age in myocytes from the rat ventricle. Sample data from these two preparations are illustrated in Figure 2C and 2D. The threshold voltage for the \(I_f \) data recorded from a day-old rat myocyte in culture 4 days is \(-265 \text{ mV}\) in Figure 2C and averaged \(-270 \pm 2 \text{ mV} (n = 9)\) in our previous study. \(^{15}\) The threshold voltage for the \(I_f \) data recorded from a 3-month-old rat ventricular myocyte is \(-110 \text{ mV}\) in Figure 2D and averaged \(-113 \pm 5 \text{ mV} (n = 12)\) in our previous study. \(^{15}\) This difference in the activation of \(I_f \) provided a unique opportunity to examine the possible role of isoform expression in determining this difference in voltage dependence.

Figure 3 presents our data on the expression of HCN isoforms in neonatal and adult rat ventricle. RNase protection assays were performed with all four HCN isoforms on both neonatal (2 to 5 days old) and adult ventricle (3 months old).

Only HCN2 and HCN4 are expressed in either tissue type. In neonatal myocytes, HCN2 represents \(82.4 \pm 2.0\%\) of total HCN mRNA (n = 4), whereas HCN4 is expressed at \(17.6 \pm 2.0\%\) of the total HCN mRNA (n = 4). In the adult rat ventricle, this percentage changes as a result of an increase in HCN2 expression. HCN2 transcripts now represent \(93.2 \pm 1.7\%\) of total HCN mRNA (n = 3), whereas HCN4 transcripts are expressed at \(6.8 \pm 1.7\%\) of the total HCN message (n = 3).

Discussion

HCN Isoform Expression in the Rabbit Heart

The SA node is the primary pacemaker of the mammalian heart. \(I_f \) activates at the most positive potentials in SA node myocytes. Our results presented above indicate an average threshold for \(I_f \) activation of \(-50 \text{ mV}\) in rabbit SA node. The RNase protection assays indicate the presence of a large amount of message for the HCN4 and HCN1 channel subunits and a small level of expression of HCN2. This result suggests that HCN4 may make the major contribution to \(I_f \) in SA node. Previous studies using Northern blot analysis and nonquantitative reverse transcriptase (RT)-PCR found only HCN2 and HCN4 in heart, with HCN2 being the most
HCN Isoform Distribution in Neonatal and Adult Rat Ventricle

Our previous studies demonstrated that the activation threshold for I_f shifts to more negative potentials between 3 days and 3 months of age. The 40-mV negative shift in activation threshold is accompanied by slower kinetics of I_f activation in the adult (see Figure 2 and Reference 15); however, detailed analysis of adult kinetics was not pursued because of the very negative voltages required. Our present results show that these differences in I_f properties are associated with an almost 3-fold increase in the ratio of HCN2 to HCN4 transcripts.

One additional finding is worth noting. Although HCN2 is the dominant isoform in both the rat and the rabbit ventricles, the level of HCN2 expression is much higher in the rat than the rabbit.

Isoform Expression and I_f Voltage Dependence

The sinus node expresses HCN4 most prominently with some HCN1 and only trace amounts of HCN2 and has the most positive voltage threshold for I_f. It is possible that HCN1 and HCN4 are associated with a positive voltage dependence of I_f. I_f in neonatal ventricle activates at voltages more negative than in sinus node and contains a 4.7-fold ratio of HCN2 to HCN4 whereas adult rat ventricle expresses more HCN2 (HCN2:HCN4=13.7) and has the most negative activation threshold for I_f. This suggests that HCN2 is the isoform associated with a negative activation threshold for I_f. The percentage of HCN1 and HCN4 in rabbit SA node is 99%, in neonatal rat ventricle the percentage is 18%, and in adult rat ventricle it is 7%. There is a clear monotonic relationship. Decreasing percentages of these isoforms are associated with a more negative I_f threshold.

The results suggest that “isoform switching” may contribute to the wide range of I_f activation thresholds observed in cardiac tissues. To assess our results, it is important to compare the properties of HCN1, HCN2, and HCN4 expressed in oocytes and cell lines with the native I_f of cardiac tissues. Santoro et al. expressed HCN1, whereas Ludwig et al. have expressed HCN2. Both of these isoforms activate at potentials midway between SA node and ventricle. In a recent review, Tibbs and Santoro report a half-activation voltage, $V_{1/2}$, for both clones of -100 mV. The most prominent difference is a much faster activation for HCN1. No published reports of HCN4 expression exist. These results raise an obvious question. What is the origin of the relationship we observe between isoform expression and I_f activation threshold? A number of possibilities must be considered. (1) HCN4 may have a relatively positive activation curve. (2) An auxiliary subunit is missing in the heterologous expression system that can change the gating of the channel. Previous results with KCNQ1 and minK demonstrate how dramatic the effects of a β subunit on gating can be. (3) Heteromultimers composed of multiple HCN isoforms may possess different
gating properties than channels composed of only one type of channel subunit. (4) The results presented above show a strong correlation, but the correlation does not imply cause and effect. That is, isoform switching is not responsible for this difference in voltage dependence. Previous studies from our laboratory as well as others have presented evidence for important modulations of channel gating by both phosphorylation and direct cAMP gating. However these posttranslational effects are smaller than the observed differences in \(I_\text{f} \) gating properties in the various cardiac regions. It is possible that this isoform switching, although not sufficient by itself to cause the large gating change, is necessary. For example, an auxiliary subunit may preferentially interact with HCN1 and/or HCN4 but not HCN2.

In conclusion, our studies present the first quantitative analysis of HCN isoform distribution and prevalence in cardiac tissues. We hypothesize that isoform switching may be at least partly responsible for the differing \(I_\text{f} \) gating properties observed in the various cardiac regions. Because of the cloning and expression of the relevant HCN isoforms, this hypothesis is now open to further investigation.

Acknowledgments

This work was supported by National Institutes of Health grants HL28958, HL20558, and NS29755 and a scientist development award from the American Heart Association (R.W.). W.S. is supported by training grant T32-DK07521. We are grateful for the excellent technical support of Joan Zuckerman and Glenn Gaudette.

References

Distribution and Prevalence of Hyperpolarization-Activated Cation Channel (HCN) mRNA Expression in Cardiac Tissues

Circ Res. 1999;85:e1-e6
doi: 10.1161/01.RES.85.1.e1

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/85/1/e1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/