Estrogen and Tamoxifen Metabolites Protect Smooth Muscle Cell Membrane Phospholipids Against Peroxidation and Inhibit Cell Growth

Abstract—The goal of this study was to test the hypothesis that antioxidant estrogens, by a mechanism independent of the estrogen receptor, protect phospholipids residing in the plasma membrane of vascular smooth muscle cells from peroxidation and peroxidation-induced cell growth and migration. Peroxidation of membrane phospholipids was assessed by HPLC analysis of phospholipids extracted from rat aortic vascular smooth muscle cells prelabeled with cis-parinaric acid (a fatty acid that is susceptible to peroxidation, which quenches its fluorescent properties). Incubation of cells for 2 hours with the peroxy radical donor 2,2'-azobis-2,4-dimethylvaleronitrile (AMVN) caused peroxidation of all measured membrane phospholipids. This effect was attenuated by pretreating cells for 15 minutes with 50 to 5000 ng/mL of 2-hydroxyestradiol (strong antioxidant but weak estrogen-receptor ligand) or 4-hydroxytamoxifen (strong antioxidant and potent estrogen-receptor ligand), but not by estrone or droloxifene (both weak antioxidants but potent estrogen-receptor ligands). Moreover, pretreatment of cells for 20 hours with physiological concentrations (0.3 ng/mL) of 2-hydroxyestradiol or pharmacologically relevant concentrations of 4-hydroxytamoxifen (40 ng/mL) also decreased AMVN-induced phospholipid peroxidation. Both 2-hydroxyestradiol and 4-hydroxytamoxifen were as effective as 2,2,5,7,8-pentamethyl-6-hydrochromane (an antioxidant homolog of vitamin E) in attenuating AMVN-induced peroxidation of membrane phospholipids. Also, physiological concentrations of 2-hydroxyestradiol, but not estrone, and pharmacologically relevant concentrations of 4-hydroxytamoxifen attenuated AMVM-induced DNA synthesis, cell proliferation, and cell migration. These studies demonstrate in vascular smooth muscle cells that antioxidant estrogens via a non-estrogen receptor–dependent mechanism attenuate peroxidation of membrane phospholipids and peroxidation-induced cell growth and migration. (Circ Res. 1999;84:229-239.)

Key Words: estrogen ■ metabolism ■ antioxidant ■ cardiovascular disease ■ free radical

Although it is well established that estrogens are cardioprotective in postmenopausal women,1–5 the mechanisms of estrogen-induced reduction in the risk of coronary artery disease remain unclear. Because a complete understanding of estrogen-mediated cardioprotection may allow the development of novel agents for the prevention and treatment of coronary artery disease in both women and men, further exploration in this regard is warranted.

One explanation that has been advanced to account in part for the cardioprotective effects of estrogens is the antioxidant hypothesis. Two main lines of evidence support this hypothesis. First, estrogens or their metabolites contain 1 or more phenolic functional groups, and the phenol moiety can scavenge free radicals.6 For example, 17β-estradiol not only contains a phenolic functional group, but also is metabolized to 2-hydroxyestradiol, a catechol estrogen and potent antioxidant. Although tamoxifen, another cardioprotective estrogen-receptor ligand,7 does not contain a phenolic group, it can be metabolized to the antioxidant phenolic compound 4-hydroxytamoxifen.8 Second, estrogen and tamoxifen attenuate free radical–induced oxidation of plasma LDL,8–13 although diminished formation of oxidized LDL per se cannot explain all the cardiovascular benefits of estrogens, because restenosis after angioplasty and bypass surgery, a process that is independent of oxidized LDL, is attenuated by estrogens.14–17

It is conceivable that estrogens could also protect critical cellular structures from oxidative damage and that this may contribute to the cardioprotective effects of estrogens. In this regard, it is well established that free radicals oxidize membrane lipids and integral membrane proteins18,19 and that such oxidations can alter signal-transduction mechanisms control-
ling cell migration and proliferation.²⁰,²¹ processes critical to vascular neointimal formation. Moreover, because estrogens are lipophilic, high local concentrations of these compounds would exist in the biophase of the lipid bilayer during hormone replacement therapy. Thus, the hypothesis that estrogens may attenuate oxidation of membrane components has a strong a priori rationale. Accordingly, the main objective of the present study was to test the hypothesis that antioxidant estrogens, by a mechanism independent of the estrogen receptor, protect phospholipids residing in the plasma membrane of vascular smooth muscle cells from free radical–induced peroxidation and peroxidation-induced cell growth and migration.

Materials and Methods
cis-Parinaric acid (Z-9,E-11,E-13,Z-15-octadecatetraenoic acid) was purchased from Molecular Probes, Inc. The purity of each batch of cis-parinaric acid used was determined by UV spectrophotometry (Shimadzu UV 160U spectrophotometer) using a molar extinction at 304 nm in ethanol of 80×10⁰ (mol/L)⁻¹ cm⁻¹. 2,2'-Azobis (2,4-dimethylvaleronitrile) (AMVN) was procured from Polysciences, Inc. 2,2'-Azobis (2-amino-2,4-dimethylpropane) dihydrochloride (AAPH) was purchased from Wako Chemicals USA Inc. Fatty acid-free human serum albumin (hSA), phospholipids, 5,5',dithio-bis(2-nitrobenzoic acid), estrone, glutathione, glutathione-peroxidase, cumene hydroperoxide, 2-mercaptoethanol (y-cysteine) hydrochloride, Tween 20, sodium molybdate, malachite green base, butylated hydroxytoluene, and 3-[4,5-dimethylthiozol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) were purchased from Sigma Chemical Co. Methanol, chloroform, hexane, 2-propanol, and water were purchased from Aldrich Chemical Co. Deferoxamine mesylate was purchased from Ciba. 2,2,5,7,8-Pentamethyl-6-hydrochromane (PMC) was a generous gift from Eisai Co. 4-Hydroxytamoxifen and droloxifene were obtained from Research Biochemicals International (PMC) was a generous gift from Eisai Co. 4-Hydroxytamoxifen and droloxifene were obtained from Research Biochemicals International. 4-Hydroxytamoxifen and droloxifene were obtained from Research Biochemicals International (PMC) or cysteamine were added to the incubation medium 15 minutes prior to the addition of AMVN (500 μmol/L) in L1210 buffer at 37°C in the dark (in air for 2 hours. Appropriate amounts of phenolic compounds such as ABAPH²³ as the oxidant stress. The addition of these oxidants but potent estrogen-receptor ligands.⁶,⁸,¹¹ We anticipated that using a diverse set of estrogens with different antioxidant and estrogen-receptor ligand affinities would allow inferences regarding whether a given effect was dependent or independent of estrogen receptors. Moreover, we used PMC, a potent antioxidant, as a reference benchmark for evaluating the antioxidant potency of the estrogens tested in this study. We also investigated the selected estrogens with regard to their ability to attenuate peroxy radical–induced changes in endogenous thiols (reduced glutathione [GSH] and protein sulfhydryls) in vascular smooth muscle cells, using in this case AAPH²³ as the oxidant stress. The addition of these experiments allowed us to contrast the antioxidant effects of estrogens at 2 important targets for oxidative changes. Finally, to evaluate the physiological relevance of the antioxidant effects of estrogens, we conducted cell proliferation, [³H]thymidine incorporation, and cell migration studies to determine whether peroxyl radicals induce smooth muscle cell growth and migration and whether the selected estrogens inhibit free radical–induced DNA synthesis, cell proliferation, and cell migration.

Aortic Smooth Muscle Cell Culture
Male Sprague-Dawley rats (Charles River, Wilmington, MA) weighing 150 to 200 g were purchased from the standard rat chow ad libitum. Aortic smooth muscle cells were cultured as explants from the lower abdominal aorta that were obtained from ether-anesthetized rats after a midline abdominal incision including the diaphragm and as described previously.²⁴ Smooth muscle cell purity was characterized by immunofluorescence staining with specific anti–smooth muscle α-actin monoclonal antibodies and by morphological criteria specific for smooth muscle as described in detail previously.²⁵ Smooth muscle cells between the second and third passages were used for the cellular lipid peroxidation and thiol (GSH) oxidation studies.

Incorporation of cis-Parinaric Acid Into Smooth Muscle Cell Phospholipids
cis-Parinaric acid was incorporated into smooth muscle cells by addition of cis-parinaric acid complexed with hSA (cis-parinaric acid (500 μg, 1.8 μmol) in 25 μL of DMSO and hSA (50 mg, 760 nmol) in 1 mL of PBS (in mmol/L, 137 NaCl, 2.7 KCl, 1.5 KH₂PO₄, and 8 NaHPO₄ pH 7.4)) to the cell suspensions. Briefly, confluent monolayers of smooth muscle cell were dislodged by trypsinization, washed once with DMEM containing 10% FCS, and washed subsequently with DMEM alone. Before the experiments, the smooth muscle cells were rinsed twice with L1210 buffer containing (in mmol/L) 115 NaCl, 5 KCl, 1 MgCl₂, 5 NaH₂PO₄, 10 glucose, and 25 HEPES (pH 7.4). Cells were diluted to a density of 1.0×10⁶ cells/mL and then incubated with cis-parinaric acid-hSA complex (final concentration of 5 μg/mL cis-parinaric acid) in L1210 buffer at 37°C in the dark and under air. The smooth muscle cells were incubated for different time periods (30, 60, 120, and 180 minutes), and the time course of cis-parinaric acid incorporation into cellular phospholipids was evaluated after washing the cells twice with L1210 buffer with and without hSA (0.5 mg/mL). Trypan blue exclusion tests for cell viability were conducted in parallel by taking aliquots of smooth muscle cells treated for different time periods.

AMVN-Induced Peroxidation of Membrane Lipids
AMVN, a lipid-soluble azo–compound that is a thermally activated initiator of peroxyl radicals, was used to induce lipid peroxidation. Because of its hydrophobic character, AMVN partitions into the acyl lipid region of membranes and generates radicals²⁶ that do not escape from the hydrophobic lipid environment.²³ Moreover, oxidation of phospholipids by AMVN tends to be nonselective, so in principle it is possible to determine whether particular phospholipid classes are intrinsically more susceptible to oxidation than others. Smooth muscle cells were incubated for 2 hours with cis-parinaric acid, and cis-parinaric acid–labeled cells were subsequently incubated in the presence of AMVN (500 μmol/L) in L1210 buffer at 37°C in the dark in air for 2 hours. Appropriate amounts of phenolic compounds (4-hydroxytamoxifen, droloxifene, estrone, 2-hydroxyestradiol, or PMC) or cysteamine were added to the incubation medium 15
minutes before addition of AMVN. After incubation for 2 hours, aliquots of cell suspension were taken for both determination of cell viability and lipid analysis.

To evaluate whether long-term treatment of cells with 4-hydroxytamoxifen, estrone, 2-hydroxyestradiol, and PMC prevents AMVN-induced peroxidation of smooth muscle cells, trypsinized cells were suspended in DMEM containing 0.4% albumin and treated for 20 hours with or without 0.3 to 30 ng/mL of the above agents. Following incubation the smooth muscle cells were loaded with cis-parinaric acid (as described above) and subsequently incubated with AMVN (250 μmol/L) for 3 hours. After incubation, aliquots of cell suspension were taken for both determination of cell viability and lipid analysis.

Extraction of Cell Lipids

Total lipids were extracted by using a procedure adapted from that of Folch et al. Briefly, methanol (2 mL) containing butylated hydroxytoluene (0.1 mg) was added to the cell suspension (10^6 cells). The suspension was mixed with chloroform (4 mL) and kept for 1 hour under a nitrogen atmosphere on ice in the dark to ensure complete extraction. After addition of 0.1 mol/L NaCl (1 mL) and vortex mixing (still under a nitrogen atmosphere), the chloroform layer was separated by centrifugation (1500g, 5 minutes). The chloroform was evaporated with a stream of nitrogen, and the lipid extract was dissolved in 4:3:0.1 (vol/vol) 2-propanol–hexane–water (0.2 mL). Control experiments demonstrated that the procedure recovered >95% of cell phospholipids.

HPLC Analysis of Cell Lipids

Lipid extracts were separated with an ammonium acetate gradient using normal-phase HPLC by slight modification of the method of Geurts van Kessel et al. Briefly, a 5-μm Supelcosil LC-SCi column (4.6x250 mm) was used with the following mobile phase flowing at 1 mL/min: solvent A (2-propanol–hexane–water 57:43:1 vol/vol), solvent B (2-propanol–hexane–40 mmol/L aqueous ammonium acetate, pH 6.7), 0- to 3-minute linear gradient from 10% solvent B to 37% solvent B, 3- to 15-minute isocratic elution at 37% solvent B, 15- to 23-minute linear gradient to 100% solvent B, and 23- to 45-minute isocratic elution at 100% solvent B. A Shimadzu high-performance liquid chromatograph (model LC-600) equipped with an in-line configuration of fluorescence (model RF-551) and absorbance (model SPD-10A V) detectors was used. The effluent was monitored at 205 nm to gauge separation of lipids. Fluorescence emitted by cis-parinaric acid in eluates was monitored fluorometrically at 420-nm emission and 324-nm excitation, and the data were processed with Shimadzu EZChrom software.

Determination of Lipid Phosphorus in Lipid Extracts

Lipid phosphorus in lipid extracts was estimated spectrophotometrically at 660 nm as described by Chalvardjian and Rubnicky, with minor modifications. Aliquots of lipid extract were pipetted into test tubes, and the solvent was evaporated to dryness under a stream of nitrogen. Perchloric acid (50 μL) was then added to samples, and the mixtures were incubated for 20 minutes at 170°C to 180°C. After the tubes were cooled, 0.4 mL of distilled water was added to each tube followed by 2 mL of sodium molybdate–malachite green reagent (4.2% sodium molybdate in 5.0N hydrochloric acid/0.2% malachite green, 1:3 vol/vol). Without delay, 80 μL of 1.5% Tween 20 was added, mixed immediately to stabilize the color, and read spectrophotometrically at 660 nm.

High-Performance Thin-Layer Chromatograph Analysis of Cell Lipids

Different classes of phospholipid extracted from smooth muscle cells were separated by 2-dimensional high-performance thin-layer chromatography on silica G plates (5×5 cm, Whatman). The plates were first developed with a solvent system consisting of chloroform:methanol:28% ammonium hydroxide, (65:25:5, vol/vol). After drying, the plates were developed in the second dimension with a mixture of chloroform, acetone, methanol, glacial acetic acid, and water (50:20:10:10:5, vol/vol). The phospholipids were then visualized by exposing the plates to iodine vapor and the spots identified by comparison with migration of authentic phospholipid standards. The spots identified by iodine staining were scraped off the plates, and the silica acid was transferred to tubes. Lipid phosphorus in individual phospholipid spots of the HPLC plates were extracted and quantified spectrophotometrically with the method of Arduini et al. The identity of each phospholipid was established by comparison with the RI values measured for authentic standards.

AAPH-Induced Oxidation of Intracellular Thiols and Glutathione

AMVN-derived peroxyl radicals do not escape the lipid environment of the membrane, hence, AMVN is not a good agent with which to study the effects of peroxyl radicals on intracellular glutathione oxidation. Therefore, we used AAPH, an analog of AMVN that is a water-soluble azo-initiator. Smooth muscle cells were incubated with AAPH (20 mmol/L in L1210 buffer, pH 7.4) for 2 hours at 37°C in the absence or in the presence of different concentrations of the phenolic compounds (4-hydroxytamoxifen, droloxifene, estrone, 2-hydroxyestradiol, or PMC). The reaction was terminated by cooling the samples to 4°C. In parallel to the above vascular smooth muscle cell experiments, we also investigated the direct effects of the phenolic compounds on the oxidation of pure GSH. Briefly, glutathione (50 μmol/L) was incubated for 10 minutes in phosphate buffer (50 mmol/L), pH 7.4, both in the absence and in the presence of phenolic compound, and the levels of glutathione were assayed.

Determination of Glutathione Concentration in Smooth Muscle Cells

Glutathione concentration in smooth muscle cells was determined by estimating the difference in 5,5′-dithiobis(2-nitrobenzoic acid)-titratable thiols in the presence and in the absence of glutathione peroxidase and cumene hydroperoxide. Smooth muscle cells (5×10^6 cells) were sonicated and then incubated with glutathione peroxidase (1.94 U/μL), cumene hydroperoxide (333 μmol/L), and deferoxamine mesylate (100 μmol/L) for 30 minutes at 25°C. An aliquot of cell lysate was then added to 200 μmol/L 5,5′-dithiobis(2-nitrobenzoic acid), and the precipitated protein was separated by centrifugation for 5 minutes, 10,000g at 4°C. The absorbance of supernatant was determined spectrophotometrically at 412 nm.

Growth Studies

[3H]Thymidine incorporation, cell number, and cell migration studies were conducted to investigate the effects of agents on AMVN-induced DNA synthesis, cell proliferation, and cell migration. Smooth muscle cells were plated at a density of 4×10^4 cells/well in 24-well tissue-culture dishes and allowed to grow to subconfluence in DMEM/F12 (phenol red–free) medium containing 10% FCS (steroid free and delipidated) under standard tissue culture conditions. The cells were then growth arrested by feeding with DMEM (phenol red free) containing 0.4% albumin for 48 hours. For DNA synthesis, growth was initiated by treating growth-arrested cells for 20 hours with DMEM containing 0.5% FCS and supplemented with AMVN (1 to 100 μmol/L) and containing or lacking estrone, 2-hydroxyestradiol, 4-hydroxytamoxifen, or droloxifene. After 2 hours of incubation, the treatments were repeated with freshly prepared solutions but supplemented with [3H]thymidine (1 μCi/mL; ICN Biomedicals) for an additional 4 hours. The experiments were terminated by washing the cells twice with Dulbecco’s PBS and twice with ice-cold trichloroacetic acid (10%). The precipitate was solubilized in 500 μL of 0.3N NaOH and 0.1% SDS after incubation at 50°C for 2 hours. Aliquots from 4 wells for each treatment with 10 mL of scintillation fluid were counted in a liquid scintillation counter. For cell number experiments, smooth muscle cells were allowed to attach overnight, were growth arrested for 48 hours, were treated every 24 hours for 4 days, and on day 5 were dislodged and counted on a Coulter counter.
Cell Migration Studies
Modified Boyden chambers (Neuro Probe Inc) were used to evaluate the effects of AMVN-derived peroxyl radicals on smooth muscle cell migration as previously described. Briefly, confluent monolayers of smooth muscle cells were grown arrested by feeding with DMEM supplemented with 0.4% albumin for 48 hours. Growth-arrested smooth muscle cells were trypsinized, washed, and suspended at a concentration of 1 x 10^6 cells/mL in fresh DMEM containing 0.4% albumin and supplemented with AMVM (50 μmol/L) and containing or lacking 0.3 to 30 ng/mL estrone, 2-hydroxyestradiol, 4-hydroxytamoxifen, or PMC. Following incubation, the smooth muscle cells (50 000 cells/50 μL; 6000 cells/mm²) were layered on the top chamber, and DMEM containing the respective treatments plus 0.5% FCS was added to the lower chamber. After 6 hours of incubation, the membranes were removed, the nonmigrated cells on the top surface wiped, and the migrated cells fixed and stained in Dif Quick stain (Baxter Scientific Corp). The migrated cells on the lower surface of the membrane were counted manually at 6 different areas of the membrane.

Cell Viability Assays
Trypan blue exclusion, MTT assay, and cell adhesion studies (for cells treated in suspension) were conducted to confirm cell viability after various treatments. For the trypan blue exclusion assay, cells were stained with trypan blue, and the cells taking up the dye were counted microscopically. For the MTT assay, we used a modified colorimetric assay based on the selective ability of living cells to reduce the yellow dye, MTT, to intracellular formazan via mitochondrial enzymes, as described before. Briefly, aliquots of cells treated for different times in suspension with the various experimental agents were plated in multiwell plates, allowed to attach, and subsequently treated with MTT (5 mg/mL) under standard tissue-culture conditions. In monolayers treated with different agents, MTT was added directly to the wells after treatment. Following incubation for 4 hours, the supernatant was aspirated without disruption of the formazan precipitate, and the intracellular formazan crystals were dissolved by adding 150 μL of DMSO to each well. The absorbance was measured at 570 nm using a microplate spectrophotometer. For cell adhesion viability assays, aliquots of cells treated in suspension were plated in multiwell plates, and the dead floating cells remaining after 5 hours of incubation were counted under the microscope. In all experiments, cells grown in medium and without any treatment served as controls.

Statistics
All experiments were conducted in triplicate or quadruplicate with 3 to 5 separate cultures. Data are presented as mean±SEM, and statistical analysis was performed using ANOVA, paired Student’s t test or Fisher’s least significant difference test as appropriate. A value of P<0.05 was considered statistically significant.

Results
Incorporation of cis-Parinaric Acid Into Smooth Muscle Cell Lipids
Figure 1A shows a typical high-performance liquid chromatogram of fluorescence detected in phospholipids extracted from smooth muscle cells incubated in the presence of hSA-cis-parinaric acid complex. Four phospholipid peaks were well resolved and identified as phosphatidyethanolamine, phosphatidylserine, phosphatidylcholine, and sphingomyelin. Under the same excitation and emission limits used above, fluorescent compounds were not detected by HPLC in extracts from cells incubated with hSA in the absence of cis-parinaric acid (data not shown).

Summary of effects on cell viability and lipids:

Incorporation of cis-Parinaric Acid into Smooth Muscle Cell Lipids

Results

Incorporation of cis-Parinaric Acid into Smooth Muscle Cell Lipids

Figure 1A shows a typical high-performance liquid chromatogram of fluorescence detected in phospholipids extracted from smooth muscle cells incubated in the presence of hSA-cis-parinaric acid complex. Four phospholipid peaks were well resolved and identified as phosphatidyethanolamine, phosphatidylserine, phosphatidylcholine, and sphingomyelin. Under the same excitation and emission limits used above, fluorescent compounds were not detected by HPLC in extracts from cells incubated with hSA in the absence of cis-parinaric acid (data not shown).

Summary of effects on cell viability and lipids:

Incorporation of cis-Parinaric Acid into Smooth Muscle Cell Lipids

Figure 1A shows a typical high-performance liquid chromatogram of fluorescence detected in phospholipids extracted from smooth muscle cells incubated in the presence of hSA-cis-parinaric acid complex. Four phospholipid peaks were well resolved and identified as phosphatidyethanolamine, phosphatidylserine, phosphatidylcholine, and sphingomyelin. Under the same excitation and emission limits used above, fluorescent compounds were not detected by HPLC in extracts from cells incubated with hSA in the absence of cis-parinaric acid (data not shown).

Summary of effects on cell viability and lipids:

Incorporation of cis-Parinaric Acid into Smooth Muscle Cell Lipids

Figure 1A shows a typical high-performance liquid chromatogram of fluorescence detected in phospholipids extracted from smooth muscle cells incubated in the presence of hSA-cis-parinaric acid complex. Four phospholipid peaks were well resolved and identified as phosphatidyethanolamine, phosphatidylserine, phosphatidylcholine, and sphingomyelin. Under the same excitation and emission limits used above, fluorescent compounds were not detected by HPLC in extracts from cells incubated with hSA in the absence of cis-parinaric acid (data not shown).

Summary of effects on cell viability and lipids:

Incorporation of cis-Parinaric Acid into Smooth Muscle Cell Lipids

Figure 1A shows a typical high-performance liquid chromatogram of fluorescence detected in phospholipids extracted from smooth muscle cells incubated in the presence of hSA-cis-parinaric acid complex. Four phospholipid peaks were well resolved and identified as phosphatidyethanolamine, phosphatidylserine, phosphatidylcholine, and sphingomyelin. Under the same excitation and emission limits used above, fluorescent compounds were not detected by HPLC in extracts from cells incubated with hSA in the absence of cis-parinaric acid (data not shown).

Summary of effects on cell viability and lipids:

Incorporation of cis-Parinaric Acid into Smooth Muscle Cell Lipids

Figure 1A shows a typical high-performance liquid chromatogram of fluorescence detected in phospholipids extracted from smooth muscle cells incubated in the presence of hSA-cis-parinaric acid complex. Four phospholipid peaks were well resolved and identified as phosphatidyethanolamine, phosphatidylserine, phosphatidylcholine, and sphingomyelin. Under the same excitation and emission limits used above, fluorescent compounds were not detected by HPLC in extracts from cells incubated with hSA in the absence of cis-parinaric acid (data not shown).

Summary of effects on cell viability and lipids:

Incorporation of cis-Parinaric Acid into Smooth Muscle Cell Lipids

Figure 1A shows a typical high-performance liquid chromatogram of fluorescence detected in phospholipids extracted from smooth muscle cells incubated in the presence of hSA-cis-parinaric acid complex. Four phospholipid peaks were well resolved and identified as phosphatidyethanolamine, phosphatidylserine, phosphatidylcholine, and sphingomyelin. Under the same excitation and emission limits used above, fluorescent compounds were not detected by HPLC in extracts from cells incubated with hSA in the absence of cis-parinaric acid (data not shown).

Summary of effects on cell viability and lipids:

Incorporation of cis-Parinaric Acid into Smooth Muscle Cell Lipids

Figure 1A shows a typical high-performance liquid chromatogram of fluorescence detected in phospholipids extracted from smooth muscle cells incubated in the presence of hSA-cis-parinaric acid complex. Four phospholipid peaks were well resolved and identified as phosphatidyethanolamine, phosphatidylserine, phosphatidylcholine, and sphingomyelin. Under the same excitation and emission limits used above, fluorescent compounds were not detected by HPLC in extracts from cells incubated with hSA in the absence of cis-parinaric acid (data not shown).

Summary of effects on cell viability and lipids:

Incorporation of cis-Parinaric Acid into Smooth Muscle Cell Lipids

Figure 1A shows a typical high-performance liquid chromatogram of fluorescence detected in phospholipids extracted from smooth muscle cells incubated in the presence of hSA-cis-parinaric acid complex. Four phospholipid peaks were well resolved and identified as phosphatidyethanolamine, phosphatidylserine, phosphatidylcholine, and sphingomyelin. Under the same excitation and emission limits used above, fluorescent compounds were not detected by HPLC in extracts from cells incubated with hSA in the absence of cis-parinaric acid (data not shown).

Summary of effects on cell viability and lipids:

Incorporation of cis-Parinaric Acid into Smooth Muscle Cell Lipids

Figure 1A shows a typical high-performance liquid chromatogram of fluorescence detected in phospholipids extracted from smooth muscle cells incubated in the presence of hSA-cis-parinaric acid complex. Four phospholipid peaks were well resolved and identified as phosphatidyethanolamine, phosphatidylserine, phosphatidylcholine, and sphingomyelin. Under the same excitation and emission limits used above, fluorescent compounds were not detected by HPLC in extracts from cells incubated with hSA in the absence of cis-parinaric acid (data not shown).

Summary of effects on cell viability and lipids:

Incorporation of cis-Parinaric Acid into Smooth Muscle Cell Lipids

Figure 1A shows a typical high-performance liquid chromatogram of fluorescence detected in phospholipids extracted from smooth muscle cells incubated in the presence of hSA-cis-parinaric acid complex. Four phospholipid peaks were well resolved and identified as phosphatidyethanola...
Effect of Various Estrogens on the AMVN-Induced Oxidation of cis-Parinaric Acid–Acylated Phospholipid in Smooth Muscle Cells

2-Hydroxyestradiol, 4-hydroxytamoxifen, and PMC protected cis-parinaric acid–acylated phospholipids against AMVN-induced oxidation in a concentration-dependent manner, whereas droloxifene and estrone did not (Figures 3 and 4). The potency of PMC in protecting the various phospholipids was in the following order: phosphatidylethanolamine > phosphatidylserine > phosphatidylcholine > sphingomyelin. Concentrations of 2-hydroxyestradiol and 4-hydroxytamoxifen were incubated for 2 hours with various concentrations (0.05 to 5 μg/mL) of estrone, 2-hydroxyestradiol, or PMC in the presence and absence of AMVN (500 μmol/L), and levels of unoxidized cis-parinaric acid in various phospholipids were subsequently analyzed by HPLC of total lipid extracts of vascular smooth muscle cells. The data for the change in levels of unoxidized cis-parinaric acid are presented as percentage of control, with 100% defined as levels of unoxidized cis-parinaric acid in various fractions of cis-parinaric acid–labeled cells incubated with vehicle (buffer). Each data point represents mean±SEM of 4 or 5 separate experiments conducted in triplicate using separate cultures. *P<0.05 vs control (cells treated with buffer).

Assessed by trypan blue exclusion test, MTT assay, and cell adhesion assay (data not shown).

Figure 2. A. Time curve for incorporation of cis-parinaric acid into phospholipids of cultured smooth muscle cells. Cells (1×10⁶/mL) were incubated with 5 μg of cis-parinaric acid/0.5 mg of hSA/mL of L1210 medium for different times at 37°C in the dark. Lipids from cis-parinaric acid–loaded cells were extracted and analyzed using normal-phase HPLC with fluorescence detection of various phospholipids (abbreviations as defined in Figure 1 legend). The incorporation of cis-parinaric acid in phospholipids was differential, and the relative amounts of cis-parinaric acid incorporated (ng cis-parinaric acid/μg total lipid phosphorous) were as follows: phosphatidylcholine > phosphatidylethanolamine > phosphatidylserine > sphingomyelin. Each data point represents mean±SEM of 4 or 5 separate experiments conducted in triplicate with separate cultures. B. Line graph showing the effects of the azo-initiator of peroxyl radicals, AMVN, on cis-parinaric acid–labeled phospholipids in smooth muscle cells. HPLC analysis shows that incubation of cis-parinaric acid–loaded cells with AMVN (50 to 500 μmol/L) for 2 hours significantly decreased unoxidized cis-parinaric acid content in phospholipids (abbreviations as defined in Figure 1 legend). Values represent mean±SEM of 4 or 5 separate experiments conducted in triplicate with separate cultures. *P<0.05 vs control (cells treated with buffer).

Figure 3. Comparison of the protective effects of estrone, 2-hydroxyestradiol, and PMC on AMVN-induced oxidation of cis-parinaric acid–acylated phospholipids in smooth muscle cells. Cells labeled with cis-parinaric acid were incubated for 2 hours with various concentrations (0.05 to 5 μg/mL) of estrone, 2-hydroxyestradiol, or PMC in the presence and absence of AMVN (500 μmol/L), and levels of unoxidized cis-parinaric acid in various phospholipids were subsequently analyzed by HPLC of total lipid extracts of vascular smooth muscle cells. The data for the change in levels of unoxidized cis-parinaric acid are presented as percentage of control, with 100% defined as levels of unoxidized cis-parinaric acid in various fractions of cis-parinaric acid–labeled cells incubated with vehicle (buffer). Each data point represents mean±SEM of 4 or 5 separate experiments conducted in triplicate using separate cultures. *P<0.05 vs untreated controls or AMVN-treated cells.
concentrations of the experimental agents and AMVN as assessed by trypan blue exclusion test, MTT assay, and cell adhesion assay (data not shown).

Effect of AMVN on the Phospholipid Composition of Smooth Muscle Cells

High-performance thin-layer chromatographic analysis of total polar lipids is shown in the Table. Phosphatidylcholine and phosphatidylethanolamine represented the major fraction of the total phospholipids in smooth muscle cells and was ~50% and ~27% of the total phospholipid content, respectively. Additionally, the other prominent phospholipids in order of their abundance were as follows: phosphatidylinositol > phosphatidylserine > sphingomyelin > diphasphatidylglycerol > lyso-phosphatidylcholine > phosphatic acid. No significant differences in phospholipid distribution or content were detected in smooth muscle cells following oxidative stress imposed by incubation of the cells in the presence of AMVN (Table), with the exception of a slight increase in lyso-phosphatidylcholine, a relatively minor phospholipid.

<table>
<thead>
<tr>
<th>Phospholipids</th>
<th>Percentage of Total Polylipids</th>
<th>Percentage of Total Phospholipids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphatidylcholine</td>
<td>44.2 ± 2.6</td>
<td>44.1 ± 2.7</td>
</tr>
<tr>
<td>Phosphatidylethanolamine</td>
<td>27.3 ± 1.5</td>
<td>27.5 ± 1.6</td>
</tr>
<tr>
<td>Phosphatidylinositol</td>
<td>8.7 ± 0.5</td>
<td>8.4 ± 0.5</td>
</tr>
<tr>
<td>Phosphatidylserine</td>
<td>9.1 ± 0.7</td>
<td>8.7 ± 0.6</td>
</tr>
<tr>
<td>Sphingomyelin</td>
<td>8.1 ± 0.5</td>
<td>8.2 ± 0.6</td>
</tr>
<tr>
<td>Diphasphatidylglycerol</td>
<td>1.6 ± 0.2</td>
<td>1.6 ± 0.5</td>
</tr>
<tr>
<td>Lyso-phosphatidylcholine</td>
<td>0.5 ± 0.2</td>
<td>0.9 ± 0.3*</td>
</tr>
<tr>
<td>Phosphatic acid</td>
<td>0.5 ± 0.1</td>
<td>0.6 ± 0.3</td>
</tr>
</tbody>
</table>

Cells were incubated with or without AMVN (500 μmol/L) for 2 hours at 37°C and various phospholipids separated from the total extracts of phospholipids by high-performance thin-layer chromatography and quantified. Each value represents percentage of total phospholipids and is mean ± SEM from 5 separate experiments. *P<0.05 as compared with untreated controls.
plus intracellular thiols; data not shown). The GSH level, measured as thiol compound after pretreatment of cells with glutathione-peroxidase and cumene hydroperoxide in the presence of deferoxamine mesylate, was 23.81 ± 6.34 nmol/10⁶ cells. The intracellular glutathione content in smooth muscle cells was 75% to 85% of total thiol content in smooth muscle cells. The incubation of smooth muscle cells with AAPH (20 mmol/L) for 2 hours at 37°C resulted in a significant oxidation of the intracellular thiols and glutathione (Figure 6, top panels). In the presence of PMC, AAPH-induced oxidation of intracellular thiols was inhibited in a concentration-dependent manner, suggesting that PMC protects glutathione against oxidation. In contrast to PMC, 4-hydroxytamoxifen, droloxifene, estrone, and 2-hydroxyestradiol increased the AAPH-induced oxidation rate of thiols in smooth muscle cells. However, in the absence of AAPH, these phenolic compounds did not affect the levels of intracellular thiols and glutathione in the smooth muscle cells (data not shown). Additionally, when pure glutathione was incubated in phosphate buffer containing 100 μmol/L deferoxamine mesylate, auto-oxidation of glutathione was not observed. However, when AAPH (20 mmol/L) was added, the peroxyl radicals produced by AAPH oxidized glutathione at a rate of 1.45 nmol/min. Moreover, PMC protected glutathione from AAPH-induced oxidation in a concentration-dependent manner (Figure 7B). In contrast to the protective effects of PMC, the estrogens (4-hydroxytamoxifen, droloxifene, estrone, and 2-hydroxyestradiol) did not inhibit AAPH-induced oxidation of glutathione.

Effects of Various Estrogens on AMVN-Induced DNA Synthesis, Cell Number, and Cell Migration

Treatment with AMVN stimulated DNA synthesis in a concentration-dependent manner (P < 0.001 versus 0.5% FCS; Figure 7A). 2-Hydroxyestradiol and 4-hydroxytamoxifen inhibited AMVN-induced DNA synthesis in a concentration-dependent manner. As compared with 2-hydroxyestradiol, estrone was a very weak inhibitor of AMVN-induced DNA synthesis (Figure 7B). The lowest concentrations of estrone, 2-hydroxyestradiol, and 4-hydroxytamoxifen that inhibited AMVN-induced DNA synthesis were 0.3 ng/mL for 2-hydroxyestradiol, 30 ng/mL for estrone, and 0.4 ng/mL for 4-hydroxytamoxifen (Figure 7B). A 50% decrease in AMVN-induced DNA synthesis in smooth muscle cells was observed at ~3 ng/mL 2-hydroxyestradiol and 40 ng/mL 4-hydroxytamoxifen. In contrast to 2-hydroxyestradiol, estrone at a concentration of 300 ng/mL inhibited AMVN-induced DNA synthesis by only 10%. Similarly to the effects on DNA

Figure 6. Effect of various estrogens (estrone, 2-hydroxyestradiol, droloxifene, and 4-hydroxytamoxifen) and PMC on the AAPH-induced oxidation of intracellular thiols in smooth muscle cells (top panels) and GSH oxidate rate (50 μmol/L) in a model system (bottom panels). Top, Change of thiol content between control and 2-hour incubation of cells in L1210 buffer, pH 7.4, with 20 mmol/L AAPH at 37°C in the presence of 0.05 to 5 μg/mL of estrone, 2-hydroxyestradiol, droloxifene, 4-hydroxytamoxifen, or PMC. Each data point represents mean ± SEM of 4 or 5 separate experiments conducted in triplicate using separate cultures. Bottom, The rate of oxidation of GSH induced by AAPH (20 mmol/L) in the presence and absence of various estrogens and PMC. GSH (50 μmol/L) in phosphate buffer was incubated for 10 minutes at 37°C with AAPH (20 mmol/L) in the presence and absence of various agents. Each data point represents mean ± SEM of 4 separate experiments conducted in triplicate, *P < 0.05 vs control (cells incubated with buffer alone).

Figure 7. A, Bar graph showing the concentration-response relationship for the effects of AMVN-derived peroxyl radicals on [³H]thymidine incorporation. Each data point represents mean ± SEM from 3 experiments conducted in quadruplicate. *P < 0.05 vs control (C; vascular smooth muscle cells treated with 0.5% FCS). B, Line graph showing the concentration-response relationship for the inhibitory effects of 2-hydroxyestradiol, estrone, and 4-hydroxytamoxifen on 50 μmol/L AMVN-induced DNA synthesis. Results are expressed as percentage of control, with 100% defined as thymidine incorporation in the presence of 50 μmol/L AMVN. Each data point represents mean ± SEM from 3 experiments, each conducted in quadruplicate. *P < 0.05 vs AMVN.
Figure 8. A, Bar graph showing the effects of AMVN-derived peroxyl radical on cell number. Treatment of smooth muscle cells for 4 days with 50 μmol/L AMVN–induced cell proliferation. C indicates control. Accompanying line graph depicts the concentration–response relationship for the inhibitory effects of 2-hydroxyestradiol, estrone, and 4-hydroxytamoxifen on 50 μmol/L AMVN–induced cell proliferation. Results are expressed as percentage of control, with 100% defined as cell number on day 4 in the presence of 50 μmol/L AMVN. Each data point represents mean ± SEM from 3 experiments, each conducted in quadruplicate. *P < 0.05 vs smooth muscle cells treated with 0.5% FCS alone or 0.5% FCS plus AMVN. B, Bar graph showing the effects of AMVN (50 μmol/L) on 0.5% FCS–induced smooth muscle cell migration. Serum-induced migration was enhanced in smooth muscle cells pretreated with 50 μmol/L AMVN (mean ± SEM of 6 observations at ×200 high-power field from 3 separate experiments). C indicates control. Accompanying line graph shows the inhibitory effects of 2-hydroxyestradiol, estrone, and 4-hydroxytamoxifen on AMVN–induced migration of smooth muscle cells. Results are expressed as percentage of control, with 100% defined as number of AMVN-treated smooth muscle cells migrating in response to 0.5% FCS; numbers in 4 separate experiments were the following: 243 ± 10, 142 ± 17, 283 ± 16, and 318 ± 12. Each data point represents mean ± SEM from 4 experiments. **P < 0.01 vs smooth muscle cells treated with 0.5% FCS alone or 0.5% FCS plus AMVN.

Discussion

The present study demonstrates that aortic smooth muscle cells labeled with cis-parinaric acid provide a sensitive and quantitative method to assess the effects of drugs on lipid peroxidation. Using this technique, this study establishes that AMVN-induced peroxidation of various smooth muscle cell membrane phospholipids is not prevented by estrone, an estrogen-receptor ligand, but is completely blocked by 2-hydroxyestradiol, a major metabolite of 17β-estradiol that does not have a high affinity for the estrogen receptor.33,34 Moreover, 4-hydroxytamoxifen (a metabolite of tamoxifen with high affinity for estrogen receptors) effectively blocks peroxidation of smooth muscle cell phospholipids,8 while droloxifene, a tamoxifen analog known to be an estrogen-receptor ligand,35 does not prevent peroxidation. Both 2-hydroxyestradiol and 4-hydroxytamoxifen are as effective as PMC in protecting membrane phospholipids against peroxidation. Moreover, 2-hydroxyestradiol and 4-hydroxytamoxifen inhibit peroxyl radical–induced proliferation and migration of smooth muscle cells. In contrast to the effects on lipid peroxidation and cell growth, 2-hydroxyestradiol and 4-hydroxytamoxifen do not prevent AAPH-induced oxidation of cellular thiols/glutathione in smooth muscle cells. These studies provide the first evidence that the cardioprotective effects of estrogen and tamoxifen may in part be due to the direct antioxidant effects of their major metabolites on membrane phospholipids of smooth muscle cells.

Because our aim was to evaluate oxidative damage in cells membranes, we required a sensitive method for detecting oxidation of phospholipids. Thus, we selected the cis-parinaric acid/AMVN paradigm. In this regard, our results indicate that cis-parinaric acid covalently labels various phospholipids in smooth muscle cells in a differential and time-dependent fashion and that cis-parinaric acid fluorescence in the various phospholipids is uniformly reduced in smooth muscle cells treated with AMVN. These results indicate that smooth muscle cells can be labeled with cis-parinaric acid and that AMVN-derived peroxyl radicals cause peroxidation of a broad array of lipid components in the cell membrane. Even though cis-parinaric acid–labeled phospholipids constitute <1% of the total lipid content,36 we can detect AMVN-induced peroxidation in cis-parinaric acid–labeled smooth muscle cells, as well as protection against AMVN-induced peroxidation by PMC, a potent antioxidant. The actual content of various membrane phospholipids analyzed using conventional methods did not vary in control and AMVN-treated smooth muscle cells, indicating that decreases in unoxidized cis-parinaric acid in labeled smooth muscle cells were not due to loss of cis-parinaric acid–labeled phospholipids, but rather to the change in the oxidation state of incorporated cis-parinaric acid. Moreover, the finding that cell viability was not reduced in smooth muscle cells treated with AMVN suggests that the effects of AMVN on lipid peroxidation were not due to cell death. Together, these findings strongly suggest that cis-parinaric acid–labeled smooth muscle cells provide an excellent in vitro system to evaluate the effects of both oxidative stress-induced lipid peroxidation and the antioxidant capabilities of chemicals and new therapeutic drugs. In the present study, we found that AMVN-induced peroxidation of various membrane phospholipids and AMVN-induced cell growth are not prevented by estrone, but are completely blocked by 2-hydroxyestradiol.
This finding suggests that the cardioprotective effects of 17β-estradiol may, in part, be due to the direct antioxidant effects of its metabolite on smooth muscle cells. Differences in the antioxidant capabilities of estrone and 2-hydroxyestradiol may largely be due to the chemical nature of the molecule. Indeed, 2-hydroxyestradiol is a catechol estrogen and is a more potent antioxidant than 17β-estradiol. It is also possible that, similar to 17β-estradiol, the metabolism of estrone to 2-hydroxyestrone is necessary to induce its antioxidant effects. Indeed, a recent study has shown that 2-hydroxyestrone is several times more potent than estrone in protecting against lipid peroxidation. Moreover, as compared with 17β-estradiol, 2-hydroxyestradiol is several times more potent in inhibiting DNA synthesis in smooth muscle cells and proliferation as well as extracellular matrix synthesis in cardiac fibroblast.

Whether the cardioprotective effects of estrogens are receptor dependent is under intense debate. Recent studies suggest that the cardioprotective effects of estrogen(s) are non–receptor mediated; however, the mechanisms involved remain unclear. Our finding that 4-hydroxytamoxifen, a phenolic metabolite of tamoxifen and an estrogen-receptor ligand, is as potent as 2-hydroxyestradiol in protecting phospholipids against AMVN-induced peroxidation and our finding that estrone and droloxifene, which bind to estrogen receptors with high affinity, are ineffective in preventing peroxidation, suggest that the non–receptor-mediated cardioprotective effects of estrogens may be due to direct antioxidant effects of their metabolites on smooth muscle cells. This notion is further supported by our observation that, similarly to 2-hydroxyestradiol, 4-hydroxytamoxifen inhibited AMVN-induced growth of smooth muscle cells. Nonetheless, further experiments will be required to determine whether the observed protective effects of estrogen and tamoxifen metabolites are greater in females and whether the effects are blocked by specific estrogen receptor antagonists.

To evaluate the antioxidant potency of various estrogens, we compared their effects with PMC, a homolog of the natural membrane antioxidant, and growth inhibitor vitamin E. A very potent antioxidant. An important observation in the present study is that 2-hydroxyestradiol and 4-hydroxytamoxifen are as effective as PMC in preventing lipid peroxidation. It is well documented that 4-hydroxytamoxifen is severalfold more potent than tamoxifen in preventing LDL oxidation, iron-induced microsomal peroxidation, and cardiovascular disease. Moreover, it has been suggested that the cardioprotective effects of tamoxifen are largely mediated via generation of 4-hydroxytamoxifen. This is in agreement with our observation that low concentrations (1 nmol/L) of 4-hydroxytamoxifen inhibited AMVN-induced growth of smooth muscle cells. With regard to 2-hydroxyestradiol, no studies have been conducted to compare its potency with that of 17β-estradiol in inducing cardioprotective effects in vivo. However, numerous studies suggest that 2-hydroxyestradiol is the major metabolite of 17β-estradiol and that some biological effects of estrogens are mediated in part through their metabolites. As compared with 17β-estradiol and estrone, their 2-hydroxymetabolites (2-hydroxyestradiol and 2-hydroxyestrone) are severalfold more effective in preventing lipid peroxidation in liposomes. Hence, similarly to tamoxifen, estrogens may largely induce their cardioprotective effects via generation of the potent antioxidant metabolites. This hypothesis is further supported by our observation that low concentrations of 2-hydroxyestradiol, but not estrone, inhibited free radical–induced DNA synthesis in smooth muscle cells.

The cardioprotective effects of several drugs with antioxidant effects are thought to be mediated via modulation of the endogenous free radical scavenging system, including the glutathione reductase system. Hence, the possibility that estrone, 2-hydroxyestradiol, droloxifene, and 4-hydroxytamoxifen may also induce their cardioprotective effects by preventing peroxyl radical–induced oxidation of intracellular thiols in smooth muscle cells was also investigated. In smooth muscle cells treated with AAPH, the intracellular thiol/GSH is oxidized rapidly. In contrast to the effects on lipid peroxidation, 4-hydroxytamoxifen and 2-hydroxyestradiol did not prevent AAPH-induced oxidation of smooth muscle cell thiol/glutathione. Thus, the antioxidant effects of 2-hydroxyestradiol and 4-hydroxytamoxifen are exerted within the cell membrane, rather than in the cytoplasm.

Do estrogens prevent lipid peroxidation and free radical–induced growth in vivo? The observation that physiological concentrations (0.3 ng/mL) of 2-hydroxyestradiol inhibited free radical–induced growth and migration of smooth muscle cells suggests that 2-hydroxyestradiol may importantly contribute to the cardioprotective effects of estrogen in vivo. Moreover, the finding that pretreatment of cells for 20 hours with physiological concentrations of 2-hydroxyestradiol, but not estrone, selectively protects phosphatidylinositol and phosphatidylserine against AMVN-induced peroxidation suggests that estradiol metabolites may protect against peroxyl radical–induced growth via mechanisms linked to these phospholipids. In this regard, it is important to note that cell viability, as assessed by trypan blue exclusion, MTT assay, and a cell adhesion assay, was not reduced by prolonged treatment with AMVN, 2-hydroxyestradiol, 4-hydroxytamoxifen, or estrone. Therefore, cell death cannot account for the reduced AMVN-induced peroxidation by 2-hydroxyestradiol. Finally, it should be mentioned that plasma levels of 17β-estradiol do not reflect the true physiological levels of antioxidant estrogens in the cell membrane, since in addition to 17β-estradiol, several other estrogens and their metabolites are present in vivo, and estrogen metabolites concentrate in cell membranes.

Regarding the mechanisms mediating oxidation-induced cell growth, peroxidation of phospholipids has been shown to activate the extracellular signal–regulated protein kinases (ERK1 and ERK2), induce the expression of c-fos and c-jun oncogene proteins, increase activator protein-1 DNA binding activity, and induce nuclear factor-κB. Moreover, the acidic membrane phospholipids phosphatidylinositol and phosphatidylserine are known to selectively activate protein kinase C activity, whereas phos-
phatidylethanolamine and phosphatidylcholine do not.45 Moreover, oxidized metabolites of phosphatidylglycerol have been shown to induced cell migration. Hence, it is possible that 2-hydroxyestradiol and 4-hydroxytamoxifen prevent smooth muscle cell growth by regulating protein kinase C activity by selectively protecting peroxidation of phosphatidylglycerol and phosphatidylserine. However, further detailed studies will be required to clarify the mechanisms by which peroxidation of phospholipids enhances cell growth.

In conclusion, our findings suggest that 2-hydroxyestradiol and 4-hydroxytamoxifen may be more potent and clinically important than their parent compounds in preventing lipid peroxidation, growth of smooth muscle cells, and vaso-occlusive disorders.

Acknowledgments
This work was supported by grants from the National Institutes of Health (HL 55314, HL 35909, and GM 47124), the Swiss National Science Foundation (32-54172.98), and in part by International Neurological Science Fellowship Program F05 NS10669, administered by National Institute of Neurological Disorders and Stroke, National Institutes of Health, in collaboration with Unit of Neuroscience, Division of Mental Health and Substance Abuse, World Health Organization.

References
Estrogen and Tamoxifen Metabolites Protect Smooth Muscle Cell Membrane Phospholipids Against Peroxidation and Inhibit Cell Growth

Circ Res. 1999;84:229-239
doi: 10.1161/01.RES.84.2.229

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1999 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/84/2/229

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/