Some Histochemical Observations on the Human Aortic Wall in Atherosclerosis


The presence of various phosphatases in the human aortic wall has been studied biochemically by a number of workers. In a few instances, histochemical studies have been made. In this study, enzymes dephosphorylating ATP, AMP, DPN, TPN, glucose-1 and glucose-6-phosphate were studied and comparisons between normal and atherosclerotic areas of the same and different aortae were made.

Methods

Eight human aortae were obtained within 6 hours post mortem. Taft et al. have shown that the activities of alkaline and acid phosphatases, ATPase, 5-nucleotidase, and glucose-6-phosphatase did not decrease in the rat liver up to 6 hours post mortem. There are many other supporting reports in the literature. The specimens were fixed 3 hours in 85 per cent ethanol, dehydrated in the cold and infiltrated with 56° paraffin for iy 2 hours. Sections were cut at 7/μ and incubated with the various substrates, using the standard Gomori phosphate technique. In all cases, the optimum pH was found to be between 9.0 and 9.3.

Results

The normal young aortae were found to give strong and uniform reaction over most of their length for ATPase (fig. 1) and 5-nucleotidase. However, in an aorta which contained atherosclerotic lesions, the cells in these regions showed a substantial decrease in the 2 reactions (figs. 2 and 3), especially in the intima. In 1 aorta in which atheromas had already developed, there were circumscribed areas appearing not to differ histologically from the normal, which were in fact not atheromatous but showed a considerable decrease in the reactions for 5-nucleotidase and ATPase, a decrease which was comparable with that found in the atherosclerotic areas. Is it possible that there were preatherosclerotic areas? The decrease of ATPase in such regions, and certainly in the atherosclerotic areas, may be of special interest from a biochemical point of view. Apart from these regions, we were not able to detect any histochemical difference in aortae from young or old individuals.

A study of the enzymes which released inorganic phosphate from TPN and DPN showed a distribution interesting and different from that obtained when ATP and AMP were used as substrates. In a number of aortae which appeared reasonably free from atheroma under histologic examination, there was practically no breakdown of TPN (fig. 4). On the other hand, DPN breakdown activity appeared to be intense and evenly distributed through the entire intima and media (fig. 5). In atherosclerotic aortae, there was a considerable increase in TPN dephosphorylation (fig. 6), not only in the “normal” parts of the wall but in the atherosclerotic areas as well. There was no significant difference in DPN dephosphorylation reaction from that found in “normal” aortae. With glucose-1, glucose-6-phosphates and β-glycerophosphate, no reaction was observable over a range of pH’s in either the intima or media of “normal” or atherosclerotic aortae. A good reaction, however, was obtained in each case in adventitia, a usual reaction with many phosphate esters in medium and large blood vessels of all ages.

Discussion

Kirk has shown by biochemical studies that the mean adenyl-pyrophosphatase activity of the atherosclerotic aorta is decreased with that of normal aorta. However, he has not been able to show any decrease of 5-nucleotidase activity. The technic of homogenizing the

From the Department of Anatomy, Emory University, Atlanta, Ga.

Supported by Grant H-4553 of the U.S. Public Health Service.

Mr. Maurice Sandler is a U.S. Public Health Fellow in cardiovascular studies.

Received for publication July 5, 1960.

Downloaded from http://circres.ahajournals.org/ by guest on July 9, 2017
HISTOCHEMICAL OBSERVATIONS ON AORTA

Figure 1

Figure 2
Heat stable ATPase activity in atheromatous area. Great decrease of activity in area. This is partly due to smaller number of cells, but activity in cells is greatly decreased also; pH of substrate 9.0. Incubation time, 16 hours, × 135.

Figure 3
5-Nucleotidase activity in aorta of 53-year-old male. Note great decrease in atheromatous area and in individual smooth muscle cells (arrow); pH 9.0 (found to be the optimum for this tissue in the human). Incubation time, 8 hours, × 135.

Figure 4
Portion of aorta of 47-year-old human male, showing no dephosphorylation of TPN. There were no obvious atheromas in this aorta; pH of substrate mixture 9.3. Incubation time, 16 hours, × 135.

Whole thoracic aorta may have obscured the small localized decreases which we observe by histochemical techniques.

Carr et al. have investigated the ATPase activity in the aorta of various animals. It is interesting that the activity was highest in the rat, then dog, guinea pig, rabbit and lowest in the aorta of the chicken, in that order. He has also shown a difference of activity in various vessels of the dog. However, again he used homogenates of whole vessels (aorta, carotid, brachial). The highest activity is present in the aorta. We have shown a gradient of ATPase and 5-nucleotidase activity for the cat aorta. Is there a correlation between the ATPase activity of these aortae and their susceptibility to experimentally produced atheroma?

Lupton et al. reported an increase of 5-nucleotidase activity with age which we were not able to see in our histochemical preparations. Kirk, in his studies, reported that he found a significant change in 5-nucleotidase activity with age.
When incubating with the glycolytic intermediates, glucose-1 and glucose-6-phosphate, the results demonstrate the degree of specificity for the reactions obtained with other substrates; they also help to demonstrate that they were not due to some change in the general dephosphorylating activity of the aortic wall.

It has been shown that ATP and TPNH (reduced TPN) are required for the critical reactions of cholesterol and long-chain fatty acid synthesis. The significance of the decrease of the phosphatase activity for ATP and AMP on the one hand, with an increase for TPN breakdown on the other, cannot be interpreted at present, but at least those results indicate some fundamental change in the metabolism of the aortic wall with atheroma and the possibility that these changes precede the development of this condition.

Summary

A decrease in the ATPase (heat stable) and 5-nucleotidase of atherosclerotic regions in human aortae has been demonstrated. An increase in the breakdown of TPN, as measured by phosphate release, between the normal or atherosclerotic aorta. No reactivity for glucose-1 or glucose-6-phosphate or β-glycerophosphate was found in the intima or media. The possible implications in the development of atheroma are discussed.

Acknowledgment

The authors wish to thank Mr. R. Quinton Cox for preparing the photographs and Mr. John Rieser for his technical assistance.

Summario in Interlingua

Es demonstrate un reduction del (thermo-stabile) adenosino-triphosphatase e del 5-nucleotidase de regiones atherosclerotic in aortas human. Un augmento del decomposition de nucleotido triphosphopyridinie, mesurate per le liberation de phosphato, es demonstrate pro le aorta atherosclerotic total. Nulle alteracion esseva observata in lo decomposition de nucleotido diphosphopyridinie, mesurate per le liberation de phosphato, in comparationes inter le aorta normal e le aorta atherosclerotic. Nulle reactivitate pro glucosa-1 o glucosa-6-phosphato o beta-glycerophosphato esseva constatata in le intima o in le media. Le possibile implicationes in le disvoloppamento de atheroma es discutite.

References


Some Histochemical Observations on the Human Aortic Wall in Atherosclerosis
MAURICE SANDLER and GEOFFREY H. BOURNE

Circ Res. 1960;8:1274-1277
doi: 10.1161/01.RES.8.6.1274

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/8/6/1274

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/