Circulation Research

Volume 73, Number 4 October 1993

Expedited Publication
Cardiac Force Redevelopment Kinetics

Original Contributions
Rat AT₁a Receptor Gene • Cis-Regulatory Regions of Rabbit SERCA2 Gene • MLC-2–Luciferase Gene Expression in Transgenic Mice • cAMP Effects on Renin mRNA and Secretion • Catecholamines Can Protect Ischemic Myocardium • Sympathetic α₁-Adrenergic Mechanism of Preconditioning • PAI-1 Expression in Arteries • Malondialdehyde and Glutathione Formation • Fibronectin Expression in Rat Aorta • Functional Significance of Myosin Isoform Heterogeneity • ·OH and Stunned Myocardium in Conscious Dogs • Spontaneous Oscillations in Cardiac Myofibrils • rH1 Sodium Channel Characterization • Protein Kinase C, Ca²⁺ Channels, and Renal Vasoconstriction • PKA-Activated Cl⁻ Channel and Ca²⁺–Calmodulin Complex • Oxygen Radical-Induced Cardiac Injury and Calcium Homeostasis

Brief Definitive Communication
K_{ATP} Channels and Coronary Autoregulation

Rapid Communication
I_{Ca,T} Is Expressed in Hypertrophy
This unique dedicated computer system is specifically designed for the physiologist and pharmacologist studying cardiovascular mechanics in experimental preparations. In conjunction with Triton Technology’s SYSTEM 6, it allows simultaneous acquisition and analysis of:

- **Left and Right Ventricular Pressures**
- **Sonomicrometer Segmental Length**
- **Myocardial Wall Thickness**
- **Aortic Pressure and Blood Flow**
- **Coronary Blood Flow**
- **Electrogram, and others**

The signals and data are presented in real-time on a primary monitor with scrolling, scope and history capabilities. Analysis is performed on a beat-by-beat basis and displayed in a data window on the second monitor. The secondary monitor also provides access to the powerful application software via a multi-tasking, mouse-driven user interface. The entire experiment record is then saved on optical media for permanent storage.

To learn more about how you can utilize this powerful new tool in your laboratory, please contact us.
Expeditied Publication

Ca²⁺ and Segment Length Dependence of Isometric Force Kinetics in Intact Ferret Cardiac Muscle
William O. Hancock, Donald A. Martyn, Lee L. Huntsman ... 603

Original Contributions

Molecular Structure and Transcriptional Function of the Rat Vascular AT₁,- Angiotensin Receptor Gene
Kazuhisa Takeuchi, R. Wayne Alexander, Yasuyuki Nakamura, Takeshi Tsujino, T.J. Murphy 612

Characterization of Promoter Elements of the Rabbit Cardiac Sarcoplasmic Reticulum Ca²⁺-ATPase Gene Required for Expression in Cardiac Muscle Cells
Steven A. Fisher, Peter M. Buttrick, Drew Sukovich, Muthu Periasamy .. 622

Heart-Specific Targeting of Firefly Luciferase by the Myosin Light Chain-2 Promoter and Developmental Regulation in Transgenic Mice
Wolfgang-Michael Franz, Daniel Breves, Karin Klingel, Gottfried Brem, Peter Hans Hofscheider, Reinhard Kandolf ... 629

Renin mRNA Quantification Using Polymerase Chain Reaction in Cultured Juxtaglomerular Cells: Short-term Effects of cAMP on Renin mRNA and Secretion
Roberto Della Bruna, Armin Kurtz, Pierre Corvol, Florence Pinet .. 639

Catecholamines Can Induce Adenosine Receptor-Mediated Protection of the Myocardium but Do Not Participate in Ischemic Preconditioning in the Rabbit
Jon D. Thornton, J.F. Daly, Michael V. Cohen, Xi-Ming Yang, James M. Downey 649

Preconditioning Against Myocardial Dysfunction After Ischemia and Reperfusion by an α₁-Adrenergic Mechanism
Anirban Banerjee, Cristee Locke-Winter, Kevin B. Rogers, Max B. Mitchell, Elizabeth C. Brew, Charles B. Cairns, Dennis D. Bensard, Alden H. Harken ... 656

Potentiation by Hypercholesterolemia of the Induction of Aortic Intramural Synthesis of Plasminogen Activator Inhibitor Type 1 by Endothelial Injury
Hirofumi Sawa, Burton E. Sobel, Satoshi Fujii ... 671

Malondialdehyde and Glutathione Production in Isolated Perfused Human and Rat Hearts
Maarten Janssen, Johan F. Koster, Egbert Bos, Jan Willem de Jong ... 681

Selective Induction of an Embryonic Fibronectin Isoform in the Rat Aorta In Vitro
Masayuki Hosoi, Izumi Takasaki, Anna Pavlova-Rezakova, Hideo Himeno, Aram V. Chobanian, Peter Brecher .. 689

Dynamic Interaction Between Cardiac Myosin Isoforms Modifies Velocity of Actomyosin Sliding In Vitro
Masataka Sata, Seiyo Sugihara, Hiroshi Yamashita, Shin-ichi Momomura, Takashi Serizawa 696

Direct Evidence That the Hydroxy Radical Plays a Pathogenetic Role in Myocardial “Stunning” in the Conscious Dog and Demonstration That Stunning Can Be Markedly Attenuated Without Subsequent Adverse Effects
Selim Sekili, Paul B. McCay, Xiao-Ying Li, Marcel Zughailb, Jian-Zhong Sun, Liang Tang, John I. Thornby, Roberto Bolli ... 705
CARDCARDCARDIAC OUTPUT COMPUTER
+ IBM-PC
FOR HUMANS AND RATS

'CARDIOMAX': plus IBM-PC Computer measures, prints on printer and stores on the disc for future recall: *Cardiac Output *Stroke Volume *Heart Rate *Systolic, Diastolic, Mean Blood Pressures *Blood and Injectate Temperatures *Graphic pictures of Dilution Curve, *Blood Pressure and ECG waveforms *Calculates and prints Dilution Curve's Appearance, Elevation, Mean Concentration and Mean Dilution Times.

Columbus Instruments P.O. BOX 44049 COLUMBUS, OHIO 43204-0049, USA PHONE (614) 488-6176 TELEX 246514

ANIMAL EXERCISER & VO₂/CO₂ METABOLIC COMPUTER

- Multi-lane animal exerciser for rats and mice.
- Separate airtight chambers and exercise belts for each animal. Very quiet operation.
- Adjustable tilt, speed etc.
- Programmed exercise schedule with automatic measurements of animal behavior.

"Oxymax" multi-channel metabolic computers for 1,2,4,8 and 16 animals.
- Can operate in conjunction with exercisers.
- Systems for very small and large animals available.
- Superior accuracy and ease of operation.

Please contact us for more information:
COLUMBUS INSTRUMENTS P.O. BOX 44049 COLUMBUS, OH 43204
PH: (614) 488-6176 TOLL FREE:1-800-669-5011 FAX: (614)276-0529 TLX:246514
Circulation Research
An Official Journal of the American Heart Association

Editorial Correspondence

Editorial correspondence should be addressed to Stephen F. Vatner, MD, Circulation Research Editor, Harvard Medical School, New England Regional Primate Research Center, One Pine Hill Drive, PO Box 9102, Southborough, MA 01772-9102. Telephone (508) 624-0014. Fax (508) 624-0960.

Instructions to Authors appear twice a year, in the January and July issues. Authors should consult these instructions before submitting manuscripts to Circulation Research.

Author Costs include page charges, cost of color figures, and cost of offprints, if ordered.

Business Correspondence

Business correspondence should be addressed to Scientific Publishing, American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231-4596. Telephone (214) 706-1310. Fax (214) 691-6342.

Change of Address: Please supply old and new addresses. Allow 6 weeks for changes.

Subscription Rates: In the United States, individuals may subscribe to Circulation Research at the personal use rate of $125 for members of an American Heart Association scientific council and $156 for nonmembers. Outside the United States, add $50 for postage.

Medical professionals and scientists in training may subscribe for $78 in the United States and $103 outside the United States if payment is accompanied by a letter from the department chairman verifying post held and completion date.

Prepayment is required. Make check, draft, or money order payable to the American Heart Association in US dollars drawn on a US bank, with Circulation Research on the face of the check. To charge on Visa or MasterCard, include account number, expiration date, and name as it appears on card.

Contact AHA for single copy rates and subscription rates for libraries, reading rooms, and other multiple-use institutions.

Subscription Rates in Japan: Contact Nankodo Co., Ltd., 42-6 Hongo 3-chome, Bunkyo-ku, Tokyo 113, Japan. Telephone 03 (3811) 9950. Fax 03 (3811) 5031.

Offprints: For orders of fewer than 100, offprints are available from corresponding authors. For orders of 100 or more, contact Scientific Publishing, Reprint Specialist, Telephone (214) 706-1466.

Advertising Correspondence

Advertising Production: American Heart Association, Circulation Research Advertising, 7272 Greenville Avenue, Dallas, TX 75231-4596. Telephone (214) 706-1426. Fax (214) 691-6342. Advertising forms close 45 days before the first day of publication month.

Advertisements in this issue have been reviewed to comply with the principles governing advertising in American Heart Association publications. A copy of these principles is available on request. The appearance of an advertisement in an AHA publication is neither an AHA guarantee nor endorsement of the product or the claims for the product made by the manufacturer.

Secondary Services

Indexed or Abstracted in Biological Abstracts, Chemical Abstracts, Energy Research Abstracts, Excerpta Medica, Index Medicus, International Aerospace Abstracts, Life Sciences Collection, PESTDOC, RINGDOC, and VETDOC.

Microform Edition available from University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106-1346. Telephone (313) 781-4700.

Authorization to photocopy items from this publication for personal and internal use, the personal or internal use of specific clients, or for educational use, is granted by the American Heart Association on the condition that the copier pay the appropriate fee to the Copyright Clearance Center, Inc. (CCC), 27 Congress St, Salem, MA 01970. Telephone (508) 744-3359. This consent does not extend to copying for advertising or promotional purposes, for creating new collective works, or for resale. Individuals may make single photocopies for personal, noncommercial use without obtaining permission. For all other use, permission should be sought directly from the American Heart Association. Telephone (214) 706-1309.

Circulation Research (ISSN 0009-7330) is published monthly by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231-4596.

GST Registration Number: R 130 875 941

Copyright 1993 American Heart Association
We’ve put another quality recorder into circulation.

When it comes to the full spectrum of medical research recording needs, Gould's always thinking. And responding. Consider our latest: a compact, economical alternative to traditional recorders — the TA11. Use this 4- to 16-channel recorder with existing medical research signal conditioners from Gould. Or complete the benchtop system with our 6600 Series, including the new, low-cost ECG/Biotach signal conditioner and 8-channel case.

With its integral LCD monitor, this thermal-array recorder minimizes paper waste by letting you set up and calibrate signals without running the chart. And because the monitor is real-time, it can scroll slow signals as they occur — eliminating the delay between an event and viewing that event on paper, which is inherent in thermal array recording.

Display your signals on the chart and you have the advantage of the TA11’s unique 11” wide fan-fold paper, which enables you to record 4 channels, each 50mm wide, or 6 channels, 40mm wide, plus many other pre-defined grid formats.

A push-button panel makes basic recording functions effortless. For more advanced features, the TA11 provides straightforward operation with proven touchscreen technology on the monitor.

An 8-channel TA11 is priced as low as $9,995. Add Gould's 6600 Series external bio-physical signal conditioners and rugged, low-profile case for a complete, 8-channel system under $20,000.

Gould's 6600 Series signal conditioners and 8-channel case, including the new, multipurpose ECG/Biotach signal conditioner: isolated ECG and biological rate measurement capabilities in a quick, easy-to-use module.

The TA11. Further proof that Gould does its research to continue bringing you value and performance in medical research-specific recording. Call (216) 328-7000 today for details on the TA11 and the advantages of thermal array recording, or for immediate response, photocopy and complete the FAST ACTION FAX, and send it today.

$1000 Value FREE!

Yes! □ Have a Gould Sales Representative call me to arrange a demonstration □ Rush me a free TA11 brochure □ I'm interested in the new 6600 Series ECG/Biotach Signal Conditioner □ I'm interested in Gould's convenient rent-to-own plan

(please print)

Name: ____________________________ Title: ____________________________
Company: ___
Street: ____________________________ City: __________ State: ______ Zip: ______
Telephone: ________________________
FAX or mail coupon/photocopy (you may affix business card) to: Gould Inc., Test and Measurement Group, 8333 Rockside Road, Valley View, OH 44125.

AT CR 10/93
Circulation Research
An Official Journal of the American Heart Association

Circulation Research provides a medium for bringing together basic research on the cardiovascular system from various disciplines including biology, biochemistry, biophysics, cellular biology, molecular biology, morphology, pathology, physiology, and pharmacology. The journal also accepts for publication manuscripts on clinical research that contribute to an understanding of fundamental problems.

Editor
Stephen F. Vadner

Associate Editors
Leslie A. Leinwand
Peter Libby
Bernardo Nadel-Ginard
Ketty Schwartz
Harold C. Strauss

Editorial Office
Stacia Webb, Managing Editor
Kevin B. Hughes, Jean Xian, Assistant Managing Editors
Mary Jo Fischer, Editorial Assistant

Editorial Board
R. Wayne Alexander
David G. Allen
James A. Angus
Piero Anversa
Kenneth M. Baker
William H. Barry
Paul Barton
Eberhard Basenge
Clive M. Baumgartin
Bruce Bean
Paul Bennett
Bradford C. Berk
Sanford Bishop
Roberto Bolli
L. Maximillian Buja
Ruben D. Buhrag
Peter Buttrick
Joseph M. Capasso
John Caroli
Kenneth Chien
David Clapham
Alexander Y. Clowes
William Clusin
Richard Cohen
Bertrand Croszatier
Fitz-Roy E. Curry

Peter F. Davies
Masao Endoh
Eric Feigl
Glenn I. Fishman
Mark Fishman
Ronald H. Freeman
William Gaasch
Jonas B. Galper
Detlev Ganten
Robert M. Graham
Augustus Grant
David R. Harder
David R. Hathaway
A.H. Henderson
Gerd Heusche
Thomas Hintze
Joseph R. Hume
Louis J. Ignarro
Seigo Izumo
Jose Jaffe
Craig January
Larry R. Jones
Robert S. Kass
Hartmut R. Kirchheim
Robert Kloner
Hermes A. Kontos

Evangelia Kranias
B. Lowell Langille
Malcolm Lewis
Joseph Loscalzo
Benedict R. Lucchesi
John Ludbrook
Thomas Luecher
Vijak Mahdavi
Eduardo Marban
James Marash
Tomoh Masaki
Gerhard Meissner
Kathleen G. Morgan
Eugene Morkin
Richard L. Moss
Paul Murray
Eva J. Nee
Wilmer W. Nichols
Eric Olson
Gary Owens
Ares Papapourides
Muthu Periasamy
Michael A. Reidy
Robert S. Reneman
Jeffrey Robbins
Robert D. Rosenberg

Wolfgang Schaper
Michael Schneider
Stephen M. Schwartz
Christine Siegelman
Jon Seidman
Subha Sen
Erwin Shibata
Paul Simpkin
Thomas W. Smith
Gary L. Stiles
James T. Stull
Judith Swain
Robert J. Tomanek
Richard Walsh
William B. Wieglicki
Myron L. Weisfeldt
James T. Willerson
R. Sanders Williams
Jeffrey A. Winkles
Yoshio Yazaki
Frank Yin
Guy Zimmerman
Irvign H. Zucker

Consulting Editors
Franceois M. Abboud
Robert M. Berne
Harry A. Fozzard
Brian F. Hoffman
Robert J. Lefkowitz
Matthew N. Levy
John T. Shepherd

Scientific Publishing Committee, American Heart Association

Howard E. Morgan, Chairperson
Danville, Pennsylvania
Valentin Fuster, Vice Chairperson
Boston, Massachusetts
Kathleen Case
Philadelphia, Pennsylvania

David P. Faxon
Boston, Massachusetts
Margaret Foti
Philadelphia, Pennsylvania
Lewis I. Gidez
Bethesda, Maryland

Robert M. Graham
Cleveland, Ohio

Robert M. Graham
Chicago, Illinois
Philip A. Ludbrook
St. Louis, Missouri

R. Pat McGoldrick
Des Moines, Iowa
Robert Roberts
Houston, Texas
THE LAST WORD IN TRANSDUCER RESEARCH.

It doesn't matter whose amplifiers you use... It doesn't matter what research you do... It doesn't matter what model you use... There is only ONE organization with TRANSDUCER RESEARCH The Most Experienced The Most Reliable The Most Innovative The Most Responsive

CRYSTAL BIOTECH
800-325-5977 x 100, 102

THE FIRST NAME IN HEMODYNAMIC PRODUCTS.

BIOCHEMISTRY AND MOLECULAR BIOLOGY OF NITRIC OXIDE

SYMPOSIUM

New and Emerging Mechanisms of Biosynthesis, Metabolism, and Biological Actions of Nitric Oxide in Health and Disease

July 16 - 21, 1994

UCLA Sunset Village - Los Angeles, California

Symposium Chairpersons – Louis J. Ignarro • Michael A. Marletta • Ferid Murad
Symposium Advisors – Salvador Moncada • Solomon H. Snyder • John R. Vane

Symposium Format

• Continuous Plenary Sessions - invited speakers to focus on the biochemistry and molecular biology of nitric oxide.
• Poster Presentations - submitted abstracts in all fields of basic and clinical research on nitric oxide.
• Special Plenary Session on Inhalational Therapy with Nitric Oxide.

Registration Fee $380

Application pending for continuing medical education credit

For further information please contact:
KREBS Convention Management Services • 555 DeHarro Street, Suite 200 • San Francisco, CA 94107-2348
(415) 255-1297 Fax (415) 255-8496
Transition to SI Units

At its October 1990 meeting the Scientific Publishing Committee explored the use and prevalence of Système International (SI) units for reporting measures of clinical and laboratory data. The committee since has sanctioned the use of SI units in the American Heart Association (AHA) journals.

The SI, an update of the metric system, is the outcome of a century of effort to provide a common system of measurement between nations and among the sciences. To promote its use, which can reduce the present confusion about measurements, the World Health Assembly in 1977 recommended the use of SI units in medicine.

The SI base units are the meter, kilogram, second, ampere, kelvin, candela, and mole, respectively representing length, mass, time, electric current, temperature, luminous intensity, and amount of substance. By multiplying a base unit by itself, or by combining two or more basic units by multiplication or division, many units can be formed, known as SI-derived units. Examples of derived units are the square meter, cubic meter, mole per cubic meter, pascal (Pa), and joule (J).

Exceptions to the rule for SI unit conversion as currently applied to biomedical sciences include blood pressure, oxygen pressure, and enzyme activity. Retained as presently used are temperature, the pH scale, and the use of liter for volume. Table 1 illustrates the measurements excluded from SI unit conversion.

In the AHA journals, an average article contains few items that need conversion. Often the same conversion is made over and over in a manuscript and takes little extra effort. It is our belief that, in return for a small effort, the AHA can take a large step, along with many other international and domestic journals, toward perpetuating a common system for reporting medical and scientific measurements. The SI unit is to be used in text, followed by the presently used measurement in parentheses.

The accompanying conversion table (Table 2) lists the measurements most commonly used in the AHA journals and their corresponding SI units. A review of this table may serve as an introduction to the forthcoming transition to SI units.

Table 1. Measurements Currently Not Converted to Système International (SI) Units in Biomedical Applications

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Current unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood pressure</td>
<td>mm Hg</td>
</tr>
<tr>
<td>Oxygen pressure</td>
<td>mm Hg</td>
</tr>
<tr>
<td>Enzyme activity</td>
<td>U</td>
</tr>
<tr>
<td>H⁺ concentration</td>
<td>pH</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Volume</td>
<td>L</td>
</tr>
</tbody>
</table>

Table 2. Examples of Measurement Conversions to Système International (SI) Units for American Heart Association Journals

<table>
<thead>
<tr>
<th>Current unit</th>
<th>Conversion factor</th>
<th>SI unit</th>
<th>Normal laboratory values†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M (molar)</td>
<td>1</td>
<td>mol/L</td>
<td>...</td>
</tr>
<tr>
<td>mM</td>
<td>1</td>
<td>mmol/L</td>
<td>...</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>torr</td>
<td>1</td>
<td>mm Hg</td>
<td>...</td>
</tr>
<tr>
<td>atm</td>
<td>101.325</td>
<td>kPa</td>
<td>...</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>0.01</td>
<td>No units</td>
<td>36-54</td>
</tr>
<tr>
<td>Red blood cell count</td>
<td>10⁹/mm³</td>
<td>4.0-6.0</td>
<td>4.0-6.0</td>
</tr>
<tr>
<td>White blood cell count</td>
<td>10⁶/mm³</td>
<td>5000-10 000</td>
<td>5.0-10.0</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>mg/dL</td>
<td>mmol/L</td>
<td><200</td>
</tr>
<tr>
<td>Sodium ion (Na⁺)</td>
<td>1</td>
<td>mmol/L</td>
<td>3.5-5.0</td>
</tr>
<tr>
<td>Potassium ion (K⁺)</td>
<td>1</td>
<td>mmol/L</td>
<td>3.5-5.0</td>
</tr>
<tr>
<td>Calcium ion (Ca²⁺)</td>
<td>0.5</td>
<td>mmol/L</td>
<td>2.25-2.75</td>
</tr>
<tr>
<td>Energy</td>
<td>Calories</td>
<td>J</td>
<td>...</td>
</tr>
<tr>
<td>Conductance</td>
<td>mho</td>
<td>S</td>
<td>...</td>
</tr>
</tbody>
</table>

*For a brief discussion of the development and use of SI units, see World Health Organization: The SI for the Health Professions, Geneva, Switzerland: World Health Organization, 1982. For a convenient list of commonly used laboratory measurement conversions to SI units, see "SI unit implementation—the next step" (editorial) in JAMA (1988;260:73-76).
†For illustration only; normal values may vary by laboratory.