Ionic Bases for Electrophysiological Distinctions Among Epicardial, Midmyocardial, and Endocardial Myocytes From the Free Wall of the Canine Left Ventricle

Da-Wei Liu, Gary A. Gintant, and Charles Antzelevitch

Recent studies from our laboratory involving syncytial preparations have delineated electrophysiological distinctions between epicardium, endocardium, and a unique population of cells in the deep subepicardial to midmyocardial layers (M region) of the canine ventricle. In the present study, we used standard microelectrode, single microelectrode switch voltage-clamp, and whole-cell patch-clamp techniques to examine transmembrane action potentials, steady-state current–voltage relations, and the 4-aminopyridine–sensitive transient outward current (I_{out}) in myocytes enzymatically dissociated from discrete layers of the free wall of the canine left ventricle. Action potential characteristics of myocytes isolated from the epicardium, M region, and endocardium were very similar to those previously observed in syncytial preparations isolated from the respective regions of the ventricular wall. A prominent spike and dome was apparent in myocytes from epicardium and the M region but not in myocytes from endocardium. Action potential duration–rate relations were considerably more pronounced in cells isolated from the M region.

Current–voltage relations recorded from cells of epicardial, M region, and endocardial origin all displayed an N-shaped configuration with a prominent negative slope–conductance region. The magnitude of the inward rectifier K⁺ current (I_{K1}) was 392±86, 289±65, and 348±115 pA in epicardial, M region, and endocardial myocytes, respectively, when defined as steady-state current blocked by 10 mM Cs⁺. Similar levels were obtained when I_{K1} was defined as the steady-state difference current measured in the presence (6 mM) and absence of extracellular K⁺. I_{out} was significantly greater in epicardial and M region myocytes than in endocardial myocytes. At a test potential of +70 mV (holding potential, −80 mV), I_{out} amplitude was 4,203±2,370, 3,638±1,135, and 714±286 pA in epicardial, M region, and endocardial cells, respectively. No significant differences were observed in the voltage dependence of inactivation of I_{out} in the three cell types. The time course of reactivation of I_{out} was slower in cells from the M region compared with either epicardial or endocardial cells. Our data suggest that prominent heterogeneity exists in the electrophysiology of cells spanning the canine ventricular wall and that differences in the intensity of the transient outward current contribute importantly, but not exclusively, to this heterogeneity. These findings should advance our understanding of basic heart function and the ionic bases for the electrocardiographic J wave, T wave, U wave, and long QT intervals as well as improve our understanding of some of the complex factors contributing to the development of cardiac arrhythmias. (Circulation Research 1993;72:671–687)

KEY WORDS • ventricular myocardium • epicardium • endocardium • midmyocardium • M cells • electrophysiology • heterogeneity • ionic currents • transient outward currents • inward rectifier currents

Although electrophysiological heterogeneity within the mammalian ventricle has long been recognized, a systematic study of the electrophysiological and pharmacological distinctions between different regions of the heart and the ionic bases for these differences has been lacking (for review see Reference 1). Recent studies from our laboratory have delineated several electrophysiological distinctions between epicardial and endocardial tissues isolated from the canine ventricles. Chief among these was the presence of a prominent “spike and dome” action potential morphology in epicardial but not endocardial tissues. This distinction has also been described in the canine heart in vivo and in rabbit and feline ventricular myocytes studied in vitro. More recent studies have described a unique subpopulation of cells (M cells) in the deep

From the Masonic Medical Research Laboratory, Utica, N.Y. Presented as preliminary results in abstract form (PACE 1992;15[suppl II]:537).

Supported by grant HL-37396 from the National Institutes of Health and grants from the American Heart Association, New York State Affiliate, Inc., the Charles L. Keith and Clara Miller Foundation, and the Josephine Lawrence Hopkins Foundation.

D.-W.L. was awarded first prize in the Young Investigator Award Competition of the North American Society of Pacing and Electrophysiology for this work.

Address for correspondence: Dr. Charles Antzelevitch, Masonic Medical Research Laboratory, 2150 Bleecker Street, Utica, NY 13504.

Received July 16, 1992; accepted December 7, 1992.
subepicardial to midmyocardial layers (M region) of the canine ventricle. M cells were found to display electrophysiological features intermediate between those of myocardial and conducting cells and pharmacological responsiveness different from that of either epicardium or endocardium.10,11 M cell action potentials display a spike and dome morphology similar to that recorded from epicardium but a maximal rate of rise of the action potential upstroke that is considerably greater than that of either endocardium or epicardium. The hallmark of the M cell is its ability to prolong with deceleration of the stimulation rate. The rate dependence of action potential duration (APD) in the M region is much more accentuated than that of either epicardium or endocardium but more akin to that of Purkinje fibers.

The presence of a prominent transient outward current (Iₒ) in canine ventricular epicardium but not endocardium has been suggested as the basis for the prominent spike and dome morphology of the epicardial action potential, which is greatly diminished or lacking in endocardium.6 Although this hypothesis has not yet been tested in canine ventricular myocytes, recent voltage-clamp studies using myocytes isolated from the ventricular epicardium and endocardium of cat and rabbit hearts have reported regional differences in the intensity of the Iₒ consistent with the hypothesis.7,12

The present study was designed with two major goals in mind: 1) to characterize the electrophysiological features of myocytes isolated from the epicardium, M region, and endocardium of the canine left ventricular free wall and thus assess to what extent the electrophysiological distinctions observed in the syncytial preparations are maintained in myocytes enzymatically dissociated from the respective regions of the canine ventricle and 2) to examine the ionic bases for the electrophysiological distinctions among these three cell types, focusing on Iₒ and the inward rectifier K+ current (Iₖᵢ).

Materials and Methods
Isolation of Cardiac Myocytes
Isolated myocytes were prepared in a manner similar to that described by Hewett et al. Briefly, adult mongrel dogs of either sex were anesthetized with sodium pentobarbital (30 mg/kg i.v.), and their hearts were quickly removed and placed in normal Tyrode’s solution. A wedge consisting of that part of the left ventricular free wall supplied by the left anterior descending coronary artery was excised. The left anterior coronary artery was cannulated and flushed with Ca²⁺-free “Krebs’ buffer” (mM: NaCl 118.5, KCl 2.8, NaHCO₃ 14.5, KH₂PO₄ 1.2, MgSO₄ 1.2, and glucose 11.1) supplemented with 0.1% bovine serum albumin (BSA, fraction V, Sigma Chemical Co., St. Louis, Mo.) and gassed with 95% O₂-5% CO₂ for 3 minutes at a rate of 12 ml/min. Perfusion was then switched to 75 ml Ca²⁺-free Krebs’ buffer containing 75 mg BSA and 37.5 mg collagenase (CLS 2, 171 units/mg, Worthington Biochemical Corp., Freehold, N.J.) for 20–30 minutes at 37°C (95% O₂-5% CO₂, with recirculation). After perfusion, thin slices of tissue were dissected from epicardium (<2 mm from the epicardial surface), M region (2–7 mm from the epicardial surface), and endocardium (<2 mm from the endocardial surface) using fine scissors or a dermabrade (Davol Simon Der-

Electrophysiology
An aliquot of cells was placed on a poly-L-lysine-coated coverslip in a temperature-controlled superfusion bath (Medical Systems Corp., Greenvale, N.Y.) mounted on the stage of an inverted microscope (Nikon Diaphot, Nikon Instruments, Japan). Cells were allowed to adhere to the coverslip for 5 minutes and were then continuously superfused with a HEPES-buffered Tyrode’s solution at a flow rate of 2 ml/min. The typical superfusate composition was (mM) NaCl 132, KCl 6, CaCl₂ 2, MgSO₄ 1.2, HEPES 20, and glucose 11.1, pH-adjusted with NaOH to 7.35 and aerated with 100% O₂. Only relaxed quiescent cells displaying prominent cross striations were used. All experiments were performed at 35–37°C; temperature was maintained constant within 0.5°C during any given experiment.

To minimize alterations of the intracellular milieu, action potential studies were performed using standard microelectrode techniques. Transmembrane action potentials were recorded from individual myocytes by use of microelectrodes filled with 2.7 M KCl (resistance, 20–50 MΩ) and an Axoclamp-2A amplifier with an HS-2L gain ×0.1 head stage (Axon Instruments, Foster City, Calif.) in bridge mode. The bath was grounded through a KCl Ag/AgCl salt bridge. Cells were stimulated by injection of current pulses of 1–2-msec duration at basic cycle lengths ranging between 300 and 8,000 msec.

Steady-state current–voltage (I-V) relations were determined using a single microelectrode discontinuous

matome power handle No. 3293 with cutting head No. 3295). Shavings were made parallel to the surface of the left ventricular free wall midway along the apicobasal axis. Tissues from each region were placed into separate beakers, minced, incubated in fresh Krebs’ buffer containing 0.5 mg/ml collagenase, 3% BSA, and 0.3 mM CaCl₂, and agitated with 95% O₂-5% CO₂. Incubation was repeated three to five times at 15-minute intervals with fresh enzyme solution. The supernatant from each digestion was filtered (220-µm mesh) and centrifuged (200–300 rpm for 2 minutes). Cells were then stored in a HEPES-buffered Tyrode’s solution (see below) supplemented with 0.5 mM Ca²⁺ at room temperature for later use.

To more precisely identify the origin of cells, in some cases, we used the “chunk” method for cell dissociation (modified from Barrington et al14). Thin slices (0.5–1.0 mm) of epicardial, deep subepicardial (M region), and endocardial tissues (as previously defined) were shaved from the left ventricular free wall midway along the apicobasal axis by use of a dermabrade. The tissues were rinsed with normal Tyrode’s solution and cut into pieces of approximately 1×1 cm². Four to eight pieces of tissues were placed in Ca²⁺-free trituration solution (mM: NaCl 135, KCl 5, MgSO₄ 1, d-glucose 10, and HEPES 10, pH 7.4, bubbled with 100% O₂) supplemented with collagenase (0.5 mg/ml) and BSA (1%) and stirred with a magnetic bar at room temperature. The incubation solution was replaced five or six times at 30-minute intervals. After the first three digests, the supernatant was collected after each digest and centrifuged at 400 rpm. The cell pellet was then resuspended in a HEPES-buffered Tyrode’s solution (see below) containing 0.5 mM Ca²⁺.
voltage-clamp technique. Slow depolarizing ramps (approximately 8–12 mV/sec) from approximately –90 mV to 0 (or +10) mV were applied. A switching frequency of 2–8 kHz was used. The voltage signal before the sample hold unit was monitored continuously to ensure that voltage drop across the tip resistance subsided completely between current injection cycles. In another series of experiments, steady-state I-V relations were determined using the whole-cell patch-clamp technique.

Two-second hyperpolarizing and depolarizing voltage steps were applied from a holding potential of –50 mV. Tetrodotoxin (TTX, 15–30 μM), MnCl2 (2 mM), and ouabain (2–5 μM) were used throughout the course of these experiments to block the sodium, calcium, and Na+–K+ pump currents, respectively.

I_o was measured using standard whole-cell patch-clamp techniques. An Axopatch-1D amplifier with a CV-4 1/100 head stage (Axon Instruments) was used in these studies. Suction pipettes made of borosilicate glass (1.5 mm o.d. and 1.1 mm i.d., Becton, Dickinson and Co., Parsippany, N.J.) were pulled on a Flaming-Brown–type pipette puller (Sutter Instrument Co., Novato, Calif.) and fire-polished before use. Pipette tip resistances measured in Tyrode’s solution were 2–3 MΩ when filled with internal solution containing (mM) potassium aspartate 125, KCl 20, MgCl2 1, ATP (Mg salt) 5, HEPES 5, and EGTA 10. The pH of the pipette solution was adjusted to 7.3 with KOH, and the solution was passed through a sterile 0.22-μm filter (Millipore Corp., Bedford, Mass.) before use. The junction potential between the pipette solution and Tyrode’s solution was zeroed before formation of the membrane–pipette seal in normal Tyrode’s solution (15 mV; see Reference 16). This zeroing created an offset equal to the junction potential, but of opposite sign, that remained after the establishment of whole-cell recording. All voltages in the patch-clamp experiments were corrected for this offset. Once the suction pipette made a gigaseal with the cell, the pipette capacitance was neutralized. The membrane was ruptured by applying additional negative pressure. Cell capacitance and series resistance were partially compensated electronically in some experiments. Currents recorded using whole-cell patch techniques were obtained at least 10 minutes after cell break-in to allow for equilibration of the intracellular space with the pipette solution.

Data Acquisition and Analysis

An Evemark 386 computer equipped with 12-bit AD/DA converters (model 1401, Cambridge Electronic Design, Cambridge, England) was used for data acquisition and generation of pulse template and command potentials for both current and voltage-clamp modes (Vclamp software module). Currents were filtered with a four-pole Bessel filter at 5 kHz and digitized at 10 kHz.

To analyze the voltage-dependent 4-aminopyridine (4-AP)–sensitive component of the transient outward current (I_o), it is necessary to minimize other temporally superimposed currents. L-type calcium current (I_{Ca}) was blocked using 2 mM manganese in the external solution.16 T-type I_{Ca}, thought to be relatively small in canine ventricular myocytes, is also reduced by manganese.17 The calcium-activated component of I_o (I_{CaO}) was suppressed by block of I_{Ca} using external manganese and/or use of 10 mM EGTA in the pipette solution (pCa was estimated to be 10).16,18,19 In most experiments, the sodium current (I_n) was partially blocked using 15–30 μM TTX. Under these conditions, the I_o obtained was >75% suppressed with 5 mM 4-AP, suggesting that it is predominantly I_{CaO}. The amplitude of I_o was measured in this study as the difference between the outward current peak and the maintained current level approximately 150 msec after the onset of the depolarizing pulse.

Cell capacitance was calculated by integrating the area under the uncompensated capacitative transient induced by a 5-mV hyperpolarization step from approximately –40 mV and dividing this area by the voltage step. Accuracy was verified by measurement of the time constant of decay of the capacity transient, which was then divided by the series resistance. The capacitance values for myocytes from epicardium, M region, and endocardium are listed in Table 1. We also measured the maximum widths and lengths as well as surface areas by using photographs of the cells. These data are also included in Table 1. No significant differences could be discerned in the capacitance or physical dimensions of the three different cell types.

TTX (Calbiochem Corp., La Jolla, Calif., or Sigma) was prepared as a 1 mg/5 ml stock solution and added to the Tyrode’s solution as required. 4-AP, MnCl2, CsCl, and ouabain (Sigma) were prepared from stock solution just before use. The pH of the Tyrode’s solution was monitored after addition of 4-AP and, when necessary, adjusted to 7.35 using HCl.

Curves were fit using nonlinear least-squares regression techniques. Where possible, data are presented as mean±SD. Statistical analysis of the data was performed using analysis of variance coupled with Scheffe’s or Tukey’s procedure.

Results

Action Potential Characteristics

Figure 1 illustrates transmembrane activity recorded by standard microelectrode technique from epicardial (top tracings), M region (middle tracings), and endocardial (bottom tracings) myocytes stimulated at two different basic cycle lengths (BCLs). At a BCL of 300 msec, the three cell types display fairly similar APDs. The main distinguishing feature is the presence of a notch in action potentials recorded from epicardial and M region myocytes but not in action recorded from the endocardial cell. This distinction is still more striking at slower stimulation rates. At a BCL of 8,000 msec (Figure 1, right tracings), a prominent spike and dome morphology develops in epicardial and M cell responses, but action potentials recorded from the endocardial cell show little or no notch even at these very slow frequencies. Another important distinction becomes obvious at slow stimulation rates: the action potentials of the M cell prolong disproportionately. Slowing of the stimulation rate from a BCL of 300 to 8,000 msec caused a 282-msec prolongation of APD measured at 90% repolarization (APD90) in myocytes from the M region but a much more modest increase of APD90 in epicardial (85 msec) and endocardial (65 msec) myocytes. APD90 values at a BCL of 2,000 msec averaged 233±21 (n=13), 252±23 (n=11), and 402±51.
Dependence

Rate Dependence Under Steady-State Conditions

Rate-dependent changes in action potential characteristics of myocytes isolated from epicardium, M region, and endocardium of the left ventricular free wall are compared with those of syncytial tissues isolated from these regions in Figures 2 and 3. Standard micro-electrode techniques were used to record transmembrane activity from tissue preparations as well as myocytes. The BCL was varied from 300 to 5,000 or 8,000 msec, and data were collected after achievement of a steady state. Each panel in Figure 2 comprises four or five superimposed tracings representing action potentials recorded at the different BCLs. The results obtained in tissues are from a recent study by Sicouri and Antzelevitch.

A prominent rate-dependent spike and dome is apparent in the myocytes and tissues of epicardial and midmyocardial (M cell) origin but not in those of endocardial origin. A gradual shift in BCL from 300 to 8,000 msec leads to a progressive accentuation of the spike and dome configuration of the action potential in epicardial tissues and cells (Figure 2, top tracings). Phase I becomes more prominent, and the peak plateau is achieved later, usually reaching a more positive potential. Accentuation of the notch is seen to contribute to the overall prolongation of APD_{50} in epicardium. Deceleration-induced accentuation of the spike and dome morphology of the action potential is also observed in the M cell preparations. The overall contribution of the changes in phase 1 to rate dependence of APD, however, appears less important than in epicardium. In both tissues and cells from the M region, deceleration was attended by a progressive and remarkable prolongation of the action potential principally because of progressive delays in the onset of final repolarization. In contrast to the marked changes in phase 1 of epicardial and M cell activity, little or no rate-dependent changes are observed in the early phases of the endocardial action potential. Qualitatively similar results were obtained in 45 experiments involving myocytes. In all cases, the congruity between the myocyte and tissue data was exceptional. Similar behavior was observed despite the fact that the myocytes were superfused with Tyrode’s solution containing 6 mM [K^+], whereas the tissue studies were performed using Tyrode’s containing 4 mM [K^+].

The rate dependence values of APD_{50} for the cell and tissue preparations pictured in Figure 2 are graphically

Table 1. Measurements of Cell Capacitance and Physical Dimensions

<table>
<thead>
<tr>
<th>Region</th>
<th>Epicardium</th>
<th>Midmyocardium</th>
<th>Endocardium</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_m (pF)</td>
<td>Mean±SD</td>
<td>150±34</td>
<td>142±27</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td>Surface area (µm²)</td>
<td>Mean±SD</td>
<td>4,206±1,264</td>
<td>4,307±767</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>Maximum length (µm)</td>
<td>Mean±SD</td>
<td>192±28</td>
<td>189±25</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>Maximum width (µm)</td>
<td>Mean±SD</td>
<td>30±6</td>
<td>33±4</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>16</td>
<td>26</td>
</tr>
</tbody>
</table>

C_m, membrane capacitance; n, number of cells studied.
Surface area values represent two-dimensional areas of the outline of cells measured from photographs of the magnified images.
Figure 2. Comparison of the electrophysiological characteristics of myocytes (left panel) and syncytial preparations (right panel) isolated from epicardial (Epi), midmyocardial (M cell), and endocardial (Endo) regions of the canine left ventricular free wall. Each panel shows superimposed action potentials recorded at basic cycle lengths (BCLs) of 300 to 5,000 or 8,000 msec. All action potentials were recorded using standard microelectrode techniques. Tissue results are from Reference 9. Note that the extracellular potassium concentration was 6 mM for myocytes and 4 mM for tissues.

Illustrated in Figure 3. At a BCL of 300 msec, all three cell and tissue types display relatively brief action potentials of similar duration; at a BCL of 8,000 msec, the M cell response protracts nearly twice the duration seen in the endocardial or epicardial myocytes. A much steeper APD-rate relation is observed in myocytes from the M region, and once again the myocyte data are congruent with data obtained from syncytial tissue preparations (Figure 3).

The marked accentuation of the spike and dome configuration in canine ventricular epicardial and M cells with deceleration is thought to be due to a prominent contribution of a slowly reactivating I_{n} to the electrical response of these cells.\(^4\) The slow kinetics of recovery of the current are believed to be directly responsible for the slow restitution of the notch or spike and dome configuration of the action potential. These characteristics of ventricular myocytes are illustrated in Figure 4.

Restitution of Action Potential Parameters in Ventricular Myocytes

The first response in each panel of Figure 4 is the last of a train of 10 beats elicited with stimulus (S_{1}) applied at a BCL of 2,000 msec. Subsequent beats are responses to premature beats introduced at progressively longer $S_{1}-S_{2}$ intervals. Restitution of action potential parameters is thus illustrated in myocytes of epicardial, M region, and endocardial origin. In M region and epicardial myocytes, the spike and dome morphology of the action potential is absent in early premature beats and is seen to gradually recover in less premature responses. These time-dependent changes in the early phases of the action potential are not observed in endocardial myocytes.

Ionic Currents

The ionic basis for the electrophysiological distinctions between cells and tissues of epicardial, M region, and endocardial origin is the subject of intensive investigation at our laboratory as well as others. In this study, we report on differences and similarities in I_{Kl} and I_{n} in the three predominant cell types.

Steady-State Current–Voltage Relation and Inward Rectifier Potassium Current

Steady-state I-V relations were examined in epicardial, M region, and endocardial myocytes by application of a slowly depolarizing voltage ramp (8–10 mV/sec) from approximately -90 mV to 0 or $+10$ mV/sec by using the single microelectrode switch voltage-clamp technique. The representative results illustrated in Figure 5A show that all three cell types display a similar N-shaped I-V configuration with a prominent negative
slope conductance region. I_{K1} was measured as the current blocked by 10 mM CsCl. I-V relations denoted by the filled squares were recorded after the addition of Cs⁺ to the superfusate. I_{K1}, defined as the Cs⁺-sensitive component, was obtained by subtracting currents before and after CsCl (Figure 5B). We could not discern any major differences in the configuration and magnitude of I_{K1} in the three cell types. The average peak magnitudes of I_{K1} were 392±86 pA ($n=6$) for epicardial, 289±65 pA ($n=7$) for M region, and 348±115 pA ($n=8$) for endocardial myocytes.

To exclude the possibility that the different cell types may have different sensitivities to Cs⁺, we performed another series of experiments in which time-independent currents were measured in the presence and absence of extracellular K⁺ by the whole-cell patch-clamp technique. TTX (15 μM), MnCl₂ (2 mM), and ouabain (2-5 μM) were used throughout the experiment to block sodium, calcium, and Na⁺-K⁺ pump currents, respectively. Figure 6 shows the voltage protocol used and the representative current recordings obtained under these conditions. Steady-state I-V relations were constructed by plotting the current levels at the end of 2-second pulses from a holding potential of −50 mV to test potentials ranging between −100 and +30 mV (Figure 6B). I_{K1} was isolated by subtracting the currents recorded in the presence (6 mM) and absence of extracellular potassium. Composite data of I-V and current density−voltage relations of I_{K1}, measured under these conditions, are illustrated in Figure 7. Our results indicate that I_{K1} isolated in this manner is similar to that measured as Cs⁺-sensitive current by using either voltage-step or ramp protocols. No significant difference in I_{K1} could be discerned among the three cell types.

Characteristics of the Transient Outward Current in Canine Ventricular Myocytes

The action potential data thus far presented, coupled with data from previous studies involving syncytial tissues, suggest important differences in the contribution of I_{Na} to the electrical activity of cells spanning the canine ventricular wall. Using whole-cell patch-clamp techniques, we set out to systematically characterize I_{Na} in epicardial, M region, and endocardial myocytes. Figure 8 illustrates the results of a representative experiment. The action potentials shown in the left panel were recorded using a patch pipette under the whole-cell current-clamp mode (BCL, 2,000 msec). Figure 8A serves to illustrate that the salient features of transmembrane activity of the three distinct cell types are maintained under these recording conditions. Thus, in this experiment and several others in which ionic currents were evaluated, we were able to distinguish between M cells, epicardial cells, and endocardial cells not only on the basis of their anatomic source (level of the ventricular wall from which they were isolated) but also on the basis of their action potential characteristics.

To assess the contribution of I_{Na} in these cells, we clamped the membrane potential for 300 msec to a test potential between −40 and +70 mV in 10-mV steps from a holding potential of −80 mV. Figure 8B shows membrane currents recorded in response to test pulses ranging between +30 and +70 mV. The current tracing shows a time-dependent I_{Na} with rapid activation and inactivation kinetics. I_{Na} was most prominent in the epicardial myocyte, somewhat less prominent in the M cell, and smallest in the endocardial cell. The I_{Na} recorded under these conditions was largely abolished by exposure of the myocytes to 5 mM 4-AP (data not shown), suggesting that it is the predominantly 4-AP-
sensitive component of I_{Na}, commonly referred to as I_{Na1}. The calcium-activated component, frequently referred to as I_{Na2}, is largely eliminated by the calcium buffering of the internal pipette solution with 10 mM EGTA. The voltage dependence of peak current measured in 14 cells is graphically summarized in Figure 9. At a test voltage of +70 mV, the mean amplitude of I_{Na1} was 4,551 ± 1,740 pA in epicardial myocytes, 3,700 ± 1,006 pA in M cells, and 577 ± 79 pA in endocardial cells. All epicardial and M cell measurements of I_{Na1} positive to a test potential of +10 mV were significantly different from the current levels measured in endocardial cells. Differences between epicardial and M cells were not statistically significant at any potential.

The results presented in Figures 8 and 9 are from experiments in which no attempt was made to block any other current. This enabled us to record the action potential and ionic currents within several minutes of each other and thus to gauge as directly as possible the influence of I_{Na} magnitudes on action potential morphology. Because activation of I_{Na} overlaps that of I_{Ca} and I_{K}, in another experimental series we blocked these inward currents using TTX (15–30 μM) and MnCl2 (Mn2+, 2 mM). Most experiments involving characterization of the voltage dependence of activation and inactivation as well as the kinetics of reactivation were performed in the presence of these inward current blockers.

Figure 10 shows the results obtained when the protocols described for Figures 8 and 9 were repeated in cells pretreated with TTX and Mn2+. It is noteworthy that little if any difference was apparent in the voltage dependence of peak current in the presence and absence of Mn2+ and TTX (compare with Figures 9 and 10B). Very large and fast transient outward currents were consistently recorded from epicardial and M region myocytes. In contrast, I_{Na1} recorded from endocardial myocytes was always very small (Figure 10). All epicardial and M cell measurements of I_{Na1} positive to a test potential of 0 mV were significantly different from the current levels measured in endocardial cells. Once again, we found no statistical significance between peak I_{Na1} measured in epicardial and M cells. At a test voltage of +70 mV, the mean amplitude of I_{Na1} was 4,203 ± 2,370 pA in epicardial myocytes ($n=7$), 3,638 ± 1,135 pA in M cells ($n=14$), and 714 ± 286 pA in endocardial cells ($n=7$). It should be noted that M cells used to collect data for Figure 9 were isolated from the entire M region (deep subepicardium to midmyocardium), whereas those used to generate data for Figure 10 were principally from the deep subepicardium. The reason for limiting our tissue source for M cells in the patch-clamp experiments stems from the fact that action potential experiments using standard microelectrodes in myocytes (as well as tissues) indicated that the cells with the most pronounced M cell behavior (steep APD-rate relation) were found in the deep subepicardium. As will be discussed later, a variety of transitional cell types are also encountered in the M region, but less so in the deep subepicardium.

The regional differences in the amplitude of I_{Na} could be caused by a number of factors. One possibility is that measured differences in outward current may in fact reflect differences in inward currents such as I_{Na} and I_{Ca} (T and L type), whose activation overlaps that of I_{Na}. Although the experiments illustrated in Figure 10 were conducted in the presence of 2 mM Mn2+ and 15–30 μM TTX, an inward current is readily apparent in the endocardial recordings. Since 2 mM Mn2+ blocks most I_{Ca} in canine ventricular myocytes, the inward current apparent in our endocardial recordings is likely due to incomplete TTX block of I_{Na}. It is possible that this residual inward current may cause an underestimation of the peak I_{Na}, particularly at modest test voltages; however, this influence should dissipate at more positive test potentials, approaching the reversal potential for I_{Na} and I_{Ca}. The persistence of differences in outward current at +70 mV argues against a major contribution of inward currents to the measured differences in I_{Na}.

Another possible explanation for the regional differences in I_{Na} is that the threshold for activation of I_{Na} is shifted to more positive potentials in endocardial versus epicardial and M region myocytes. This does not seem likely, since the peak I-V relations do not appear shifted along the voltage axis but are simply scaled down. Thus, the normalized peak I-V relations are almost superim-
posable (Figure 11). Another possibility is that the voltage dependence of inactivation of \(I_{\text{to}} \) is different, resulting in different levels of steady-state inactivation of the current at the same resting potential.

Voltage Dependence of Inactivation of the Transient Outward Current

The voltage dependence of inactivation of \(I_{\text{to}} \) was studied by clamping the cell at various preconditioning voltages \((V_p) \) for 1 second from a holding potential of \(-80\) mV and then to a test potential of \(+40\) mV. The interval between test pulses was 10 seconds. Normalized inactivation curves recorded from representative cells of epicardial, M region, and endocardial origin are illustrated in Figure 12. The peak amplitude of \(I_{\text{to}} \) during the test pulse was normalized to the maximum amplitude of current recorded in each group. The inactivation curves of the three cell types were virtually superimposable and thus were fit as a group to a Boltzmann distribution function:

\[
\text{Inactivation variable} = \frac{1}{1 + \exp[(V_c - V_{0.5})/k]}^{-1}
\]

where \(V_{0.5} \) is the half-maximal inactivation voltage \((-34.9\) mV) and \(k \) is the slope factor \((k=3.6)\). Similar results were obtained in 11 other experiments; the mean value of \(V_{0.5} \) for the entire group was \(-40 \pm 8.3\) mV. These data indicate that differences in voltage dependence of inactivation cannot explain the regional differences in \(I_{\text{to}} \) amplitude. Another possibility is that the kinetics of reactivation, especially near the resting potential, are different in the different cell types.

Transitional Outward Current Reactivation Kinetics

We examined the time course of recovery of \(I_{\text{to}} \) from inactivation (reactivation) using a standard double-pulse protocol. Twin voltage pulses (from \(-80\) to \(+40\) mV, 200-msec duration) were applied once every 10 seconds with varying interpulse intervals. Figure 13 shows the results of an experiment performed using a cell from the M region of the left ventricular free wall. The \(I_{\text{to}} \) amplitude of the second pulse is plotted as a fraction of the \(I_{\text{to}} \) amplitude of the first. The current was nearly absent with an interpulse interval of 10 msec and increased gradually at longer intervals. The reactivation time course was well fit with a biexponential process with fast and slow time constants \((40\) and \(270\) msec, respectively; see Figure 13 inset). Figure 14 presents the results of 15 experiments in which reactivation kinetics were evaluated. Two exponential processes were apparent in all the cells studied. The fast time constant averaged \(35 \pm 10, 57 \pm 35, \) and \(57 \pm 10\) msec in cells of epicardial, M region, and endocardial origin, respectively. The slow time constant averaged \(264 \pm 71, 456 \pm 212, \) and \(390 \pm 61\) msec in cells of epicardial, M region, and endocardial origin, respectively. The average values of both slow and fast time constants in M cells were longer than those of epicardial and endocardial cells, but this difference did not achieve statistical significance. Likewise, no significant difference could be discerned between the time course of reactivation of epicardial and endocardial cells.

Discussion

Action Potential Characteristics

Previous studies from our laboratory have defined important electrophysiological and pharmacological distinctions between epicardium, endocardium, and the M region (deep subepicardial to midmyocardial layers) of the canine ventricular free wall. \(^{1,4,9,11,20-23}\) The extent to which these regional dissimilarities reflect intrinsic properties of the cells has previously not been fully appreciated. Moreover, the ionic bases for many of the electrophysiological distinctions are unknown. These issues are not readily amenable to study in tissue preparations but can be more directly addressed through isolation and evaluation of single cells from distinct layers of the ventricular wall. In the present
study, we used standard microelectrode, single microelectrode switch voltage-clamp, and whole-cell patch-clamp techniques to examine the characteristics of transmembrane activity and ionic currents in myocytes enzymatically dissociated from discrete layers of the free wall of the canine left ventricle.

Initial characterization of the myocytes was performed using standard microelectrode techniques so as to minimize any alteration of the intracellular milieu. Action potential characteristics and APD–rate relations of myocytes isolated from the epicardial, endocardial, and M regions were remarkably similar to those observed previously in syncytial preparations (Figures 1–4).1–4,21 In another experimental series, we evaluated action potential characteristics in tandem with ionic currents using whole-cell patch recording techniques. Although APD–rate relations were sometimes difficult to quantitate in epicardial and M cells because of loss of the action potential dome at slow frequencies (due to all-or-none repolarization at the end of phase 1), action potential characteristics under these conditions appeared qualitatively similar to those observed using standard microelectrode techniques as well as those previously described in tissues isolated from the respective regions of the heart.

A prominent spike and dome morphology of the action potential was observed with standard microelectrode and patch-pipette recording techniques in myocytes of M region and epicardial origin but not in cells isolated from endocardium. This distinction between epicardium and endocardium was first described and characterized in canine ventricular tissues in vitro.4 More recently, it has been described in the canine heart5,6 in vivo, in human ventricular epicardium7 studied in vitro, and in rabbit7 and feline8 ventricular myocytes. The spike and dome configuration appears most prominent in canine and human epicardium, is less so in cat and rabbit epicardium, and is totally lacking in calf epicardium.1

These results strongly suggest that the electrophysiological distinctions between epicardium and endocardium are due to differences in the intrinsic electrical properties of the cells and not to electrotonic interactions or differences in the accumulation or depletion of ions in the extracellular space of these tissues.
Our data also provide further evidence in support of the existence of a distinct and unique subpopulation of cells in the deep subepicardial to midmyocardial layers of the canine ventricle. These cells, termed M cells, display characteristics common to both myocardial (spike and dome morphology, absence of phase 4 depolarization) and specialized (higher maximal rate of rise of the action potential upstroke, steeper APD-rate relation) conducting cells. Unlike specialized conducting cells, however, they show no phase 4 depolarization, not even in the presence of catecholamines and low [K+]o. Action potentials from most myocytes isolated from the M region show a prominent prolongation of APD at slower stimulation rates (steep APD-rate relation).

Cells with prolonged APDs have previously been reported to exist in the deep myocardial layers of transmural preparations obtained in the region of the papillary muscles (canine right and left ventricles). Action potentials with unusually prolonged APDs at slow rates have also been described in single myocytes dissociated from transmural preparations of canine, rat, and guinea pig ventricles. Most recently, Wang et al. provided in vivo evidence for the existence of M cells in intact dogs using intramyocardial monophasic action potential recording techniques.

Recent studies designed to assess the distribution of M cells across the canine ventricular wall by mapping transmural slices of the wall indicate that M cells are indeed widely distributed within the ventricular wall and that transitional behavior is apparent throughout, but particularly between midmyocardium and endocardium. In line with this observation, we found a wide range of transitional behaviors in myocytes isolated from the ventricular wall. Figure 15 illustrates superimposed action potentials recorded from six different myocytes at BCLs ranging from 300 to 8,000 msec. Cells 1 and 6 were isolated from epicardial and endocardial regions, respectively. Cells 2–5 were isolated from the M region. They are arranged such that action potentials with the greatest spike and dome are closer to the top (epicardium) and those with a lesser spike and dome are below. The transitional type behavior displayed in cells 2 and 5 was often seen in the myocytes isolated from the interior of the ventricular wall (2–7 mm from the epicardial surface). These findings suggest that the transitional behavior observed in tissues may be due to differences in the intrinsic electrical properties of the cells as well as to electrotonic interactions among the different cell types. In future experiments we plan to isolate and study cells from several discrete levels within the same localized segment of the ventricular wall so as to be able to more precisely correlate the electrophysiological characteristics of the cells with their anatomic site of origin.

Ionic Currents (I_{K1} and I_{mo})

Using the switched-clamp technique and KCl-filled microelectrodes to minimize alterations of intracellular
milieu, we initially compared the steady-state I-V relations of the three classes of myocytes. Myocytes from all three regions displayed a similar I-V configuration, with regions of inward rectification, negative slope, and outward rectification (Figure 4). We found no apparent differences in steady-state I-V relations in cells from the three regions. Step and ramp depolarizations elicited under whole-cell patch-clamp conditions also yielded similar steady-state I-V relations in the three cell types. The magnitude of I_k1 (defined as membrane current blocked by 10 mM CsCl) was comparable in all cell types, averaging 342 ± 97.8 pA (n=21). Similar results were obtained when I_k1 was defined as the steady-state difference current recorded in the presence and absence of extracellular K+. The average peak value for I_k1 using this method was 334 ± 110 pA. These values are larger than those reported for patch-clamped Purkinje myocytes but comparable to values reported in rabbit ventricular myocytes.

It is noteworthy that Furukawa et al recently reported major differences in the characteristics of I_k1 between epicardial and endocardial myocytes enzymatically dissociated from the cat left ventricle. The steady-state current in these endocardial cells displayed a distinct N-shaped I-V relation; the outward current region was much smaller in the epicardial cells, yielding a blunted N-shaped appearance. The K+-sensitive component representing I_k1 was prominent in endocardial but not epicardial cells. This suggests the possibility that important species differences exist between canine and feline ventricular epicardium.

Previous studies from our laboratory suggested that the presence of a prominent I_o in canine ventricular epicardium but not endocardium is, in large part, the basis for the prominent spike and dome morphology seen in epicardium but lacking in endocardium. We tested this hypothesis by measuring I_o in the different cell types. In most experiments, contamination of this current by inward I_o and I_oK was minimized by addition of TTX and Mn2+ to the superfusate. Use of 10 mM EGTA in the pipette solution also eliminated the Ca2+-activated component of I_o (I_oCa) and/or Ca2+-activated chloride current. The remaining current, largely abolished by 4-AP, is generally referred to as I_oL.

In support of the hypothesis, I_oL was found to be very prominent in epicardial cells and much less prominent in endocardial cells (Figures 8–11). In epicardial myocytes, mean amplitude of I_oL was 4,205 pA at a test
potential of +70 mV. The average value for epicardial cell capacitance was 150±34 pF (Table 1). The calculated I_{ol} density is therefore 28 pA/pF (Table 2). This value is several times that reported in the cat12 (10 pA/pF; test potential, +80 mV) or rabbit7 epicardium (15 pA/pF; test potential, +60; 35°C). Our calculated density for I_{ol} in canine endocardial myocytes was 4.9 pA/pF, approximately 1/5 of that recorded in epicardial cells. In rabbit ventricle, Fedida and Giles7 reported an approximately 50% lower I_{ol} density in papillary muscle cells than in epicardial cells, with endocardial trabecular cells displaying intermediate levels. Furukawa et al12 observed similar distinctions in I_{ol} between epicardial and endocardial cells isolated from the left ventricle of cat hearts. I_{ol} density was reported to be 10.2±4.8 pA/pF in epicardial myocytes and absent or very small in endocardial myocytes.

The greater amplitude of I_{ol} measured in epicardial versus endocardial myocytes cannot be explained by differences in the voltage dependence of either activation (Figure 11) or inactivation (Figure 12) of the current. The mean $V_{1/2}$ was similar for the three cell types, averaging −40 mV. This value is close to that (−38 mV) reported by Lue and Boyden34 in canine epicardial myocytes. Values for $V_{1/2}$ of I_{ol} inactivation vary in the literature, with values of −13.5 mV reported for ferret right ventricular myocytes,35 −23 mV for adult human atrial cells,36 −38 mV for rabbit ventricular...
cells,7 and −57 mV for rat ventricular myocytes.37 A number of factors, in addition to species differences, can contribute to variability in the quantitation of this parameter: 1) Divalent cations (Co²⁺, Cd²⁺, and Ni²⁺) commonly used as Ca²⁺ channel blockers in the above studies have recently been shown by Agus et al38 to shift the voltage dependence of Ino activation and inactivation to more positive potentials in rat ventricular myocytes; Mayer and Sugiyama39 have demonstrated a similar effect of Mn²⁺ in neurons. 2) The 1,4-dihydropyridine Ca²⁺ antagonists and D600 have also been reported to inhibit Ca²⁺-independent Ino in rabbit atrial40 and rat ventricular41 myocytes. 3) A recent report by Dukes and Morad37 also shows modulation of the gating parameters of Ino in rat ventricular myocytes by extracellular but not intracellular Na⁺ and Ca²⁺ as well as by TTX. TTX was shown to shift the voltage dependence of inactivation of Ino to more negative potentials37 in rat ventricular myocytes. Little if any effect of TTX has been noted in other studies involving rat ventricular myocytes.42

Currently unknown are the effects of Mn²⁺ on Ino in rat ventricular myocytes or the effects of any of the cations or of TTX on Ino in canine ventricular myocytes. Therefore, we are unable to comment on whether the blockers used in this study influenced V₀.5. More pertinent to the objective of the present study, however, is the observation that under similar experimental conditions the voltage dependence of inactivation is similar in the three cell types.

Differences in reactivation kinetics, likewise, cannot explain the greater amplitude of Ino in epicardial versus endocardial cells (Figure 14). At −80 mV, recovery from inactivation was found to follow a biexponential time course in most cells. The time constants of the fast and slow components of reactivation averaged 42±23 and 343±206 msec, respectively, when data from all cells were grouped. The time constants recorded in epicardial cells were similar to those of endocardial cells. Cells from the M region, however, displayed longer time constants for both slow and fast components of reactivation, averaging 57±35 and 456±212 msec, respectively. In comparison, Tseng and Hoffman16 reported time constants of 95 and 610 msec for the two components at −80 mV in myocytes of transmural origin (see Figure 6 of Reference 16). These values are similar to those observed in some of our M cells in the present study (Figure 14) as well as in M cells studied in syncytium using the delta phase 1 restitution method (see Figure 8C of Reference 9). Long time constants have been reported in Purkinje myocytes, although at lower temperature and more positive voltages (fast component, 95 msec; slow component, 922 msec; 20°C; −42 mV). Faster time constants on the order of 25 msec have been reported for rat ventricular cells.43

![Figure 11](image1.png)

Figure 11. Graph showing normalized peak current–voltage relations for the 4-aminopyridine–sensitive transient outward current (I_{to}) in myocytes of epicardial (EPI), midmyocardial (M region), and endocardial (ENDO) origin. Amplitudes of peak I_{to} from Figure 10B are normalized to values obtained at test potentials of +70 mV. Values represent mean±SD. Tetrodotoxin (15–30 μM) and MnCl₂ (2 mM) were present throughout. No statistically significant differences were detected at any potential. Values are mean±SD.

![Figure 12](image2.png)

Figure 12. Graph showing voltage dependence of inactivation of the 4-aminopyridine–sensitive transient outward current (I_{to}) in myocytes of epicardial (Epi), myocardial (M cell), and endocardial (Endo) origin. From a holding potential of −80 mV, cells were depolarized to various conditioning potentials (V_c) for 1,000 msec. The conditioning pulse was followed by a standard test pulse to +40 mV. As the V_c was made more positive, the amplitude of I_{to} decreased in a sigmoidal fashion. The data are normalized to the largest peak I_{to} value obtained in each cell (I_{max}). The curve was fit to a Boltzmann distribution as described in the text. The voltage at half-maximal inactivation was −34.9 mV, and the slope factor was 3.6. The external solution contained 30 μM tetrodotoxin and 2 mM MnCl₂.
Although the mechanism(s) responsible for the regional differences in I_{wo} requires further study, our data point to differences in channel density and/or unitary conductance as the basis for the marked regional differences in I_{wo}. Consistent with this hypothesis are the results of Fedida and Giles. These authors recently reported that single-channel amplitudes, burst open probabilities, and ensemble averages are very similar in rabbit ventricular myocytes from epicardium, endocardial trabeculae, and papillary muscle. Regional differences in I_{wo} among these cell types were concluded to be due to differences in channel density, with epicardial cells showing nearly twice the density of papillary muscle cells.

Contribution of Other Ionic Currents to Regional Heterogeneity

Differences in ionic currents other than I_{wo} undoubtedly contribute to the regional differences in action potential characteristics observed in the canine ventricle. Recent studies using feline myocytes indicate several important differences in the ionic currents that underlie the activity of ventricular epicardium and endocardium. Furukawa et al. showed that, compared with endocardial myocytes, ATP-regulated K^+ channels in feline epicardial cells are activated by smaller reductions in intracellular ATP. This group of investigators also reported comparable levels of inward I_{Ca} but a greater density of I_{K} in epicardial versus endocardial myocytes enzymatically dissociated from the cat left ventricle. Preliminary data from our laboratory point to no significant difference in I_{K} density between epicardial and endocardial myocytes of the canine left ventricle but to much lower levels of this current in myocytes isolated from the M region of the same hearts (D.-W. Liu and C. Antzelevitch, unpublished observation). A great deal of work clearly remains to be done in defining the distinctions in ionic currents that contribute to regional differences in electrical function.
FIGURE 15. Transmembrane action potentials recorded using standard microelectrodes from six different myocytes disaggregated from epicardial, midmyocardial, and endocardial preparations of the canine left ventricle. Basic cycle lengths were varied over a range of 300–8,000 msec. Cells 1 and 6 were isolated from epicardial and endocardial tissues, respectively. Cells 2–5 were isolated from the midmyocardial region. They are arranged such that action potentials with the greatest spike and dome are closer to the top and those with a lesser spike and dome are below. The transitional type behavior displayed in cells 2 and 5 was often seen in the myocytes isolated from the midmyocardial region. They are also observed in the midmyocardial region of a transmural tissue slice.

Physiological Implications

Our results provide further support for the existence of marked electrophysiological heterogeneities among cells spanning the ventricular wall of the canine heart. The identification of cells with diverse action potential morphologies and electrophysiological characteristics at different levels of the ventricular wall may contribute to our understanding of a number of basic electrophysiological and electrocardiographic phenomena.

The presence of a prominent \(I_{\text{to}}\) with slow reactivation kinetics gives rise to a phase of “excess overshoot” in canine ventricular epicardium (Figure 3). During this period, the amplitudes of phases 0 and 1 of the action potentials of early premature beats are larger than those of responses elicited later in diastole. Because of this uncommon restitution characteristic, it is possible for premature beats to conduct under conditions in which basic beats are blocked (supernormal conduction). Successful conduction of the premature beats is due to the greater amplitudes of the early phases of the epicardial action potential, which provide for a greater source current in early versus late diastole. M cells share this characteristic of epicardium (Figure 2B) and thus may contribute to the manifestation of a supernormal phase of conduction in ventricular myocardium.

The presence of a prominent \(I_{\text{to}}\) in epicardium but not endocardium also contributes to differences in the time and rate dependence of APD and refractoriness in these two types of tissue and to a differential sensitivity of these two tissues to depression during exposure to ischemia.

The presence of M cells displaying accentuated APD–rate relations in the deep subepicardial to mid-myocardial regions of the ventricular wall has several implications. The development of a progressively more prominent dispersion of repolarization and refractoriness within the ventricular wall as stimulation rate is slowed is one consequence. A deep subepicardial or midmyocardial “wall” of refractoriness or “arc of block” would be expected to develop at slow rates, setting the stage for a variety of reentrant arrhythmias, intramural reentry in particular. Intramural reentry has recently been identified as the principal mechanism underlying the initiation and maintenance of ventricular tachycardia leading to ventricular fibrillation during ischemia. Bradycardia-induced intramural reentry is well described in the acute stages of ischemia.

M cells in the deep subepicardium may also contribute to a number of electrocardiographic manifestations, including long QT intervals, U waves, and drug-induced torsade de pointes. Electrocardiographic U waves and long QT intervals are generally seen at slow rates, and their manifestation is usually enhanced by drugs known to prolong APD and/or induce early afterdepolarizations in the specialized conduction system of the ventricle. A number of hypotheses have been advanced to explain these electrocardiographic phenomena. Prominent among these is the hypothesis that U waves and long QT intervals are due to late repolarization of the Purkinje system and/or the development of early or delayed afterdepolarizations in the Purkinje system. The conduction system, however, has long been argued to be of insufficient mass to generate a distinct U wave on a surface electrocardiogram. We have proposed that M cells, with or without a contribution from the conduction system, are responsible for the manifestation of U waves and long QT intervals in the electrocardiogram. The presence of a prominent notch or spike and dome morphology in epicardial and M cell action potentials but not in endocardial cells may also contribute to the manifestation of a J wave or Osborne wave in the electrocardiogram.

Although beyond the scope of this study, the pharmacology of the M cells is of great interest. Preliminary studies indicate that tissues and cells from the M region, but not those from adjacent epicardial or endocardial regions, develop prominent early and delayed afterdepolarizations and triggered activity in response to a
Circulation Research Vol 72, No 3 March 1993

Table 2. Calculated and Measured Densities of the 4-Aminopyridine–Sensitive Transient Outward Current in Myocytes of Epicardial, Midmyocardial, and Endocardial Origin

<table>
<thead>
<tr>
<th>Region</th>
<th>Epicardium</th>
<th>Midmyocardium</th>
<th>Endocardium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current amplitudes (pA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean±SD</td>
<td>4,203±2,370</td>
<td>3,638±1,135</td>
<td>714±286*</td>
</tr>
<tr>
<td>n</td>
<td>7</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Capacitance (pF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean±SD</td>
<td>150±34</td>
<td>142±27</td>
<td>145±44</td>
</tr>
<tr>
<td>n</td>
<td>19</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>Calculated density (pA/pF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured density (pA/pF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean±SD</td>
<td>29.0±13.7</td>
<td>32.8±11.6</td>
<td>5.59±3.19*</td>
</tr>
<tr>
<td>n</td>
<td>4</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

n, Number of cells studied.

Current amplitudes were measured at +70 mV. Calculated densities represent the ratio of average current amplitudes (Figure 10) and capacity (Table 1) measurements for all cells from a given region of the myocardium. Measured densities are derived from experiments in which current amplitude and capacity measurements were available for the same cell.

*p<0.01 endocardium vs. epicardium or midmyocardium.

Summary and Conclusions

Our results demonstrate prominent intrinsic electrophysiological distinctions among cells spanning the ventricular wall of the canine ventricle. Myocytes isolated from the epicardial surface display a prominent spike and dome but a fairly flat APD–rate relation. M cells from the deep subepicardium to midmyocardium exhibit a prominent spike and dome as well as a steep APD–rate relation. Finally, myocytes isolated from the endocardial surface display neither a spike and dome nor a steep APD–rate relation. Transitional behavior is observed as well. These distinctions among myocytes isolated from discrete regions of the ventricular wall are very similar to those observed in syncytial tissues isolated from the respective regions of the wall.

The data provide strong support for the hypothesis that differences in the magnitude of the spike and dome configuration of the action potential in the various cell types are due largely to differences in the contribution of I_{Na}. The data also show that the 4-AP–sensitive I_{Na}, I_{Na4}, of canine epicardial myocytes is several times the density recorded in ventricular myocytes of other species (e.g., cat and rabbit). I_{Na} was characterized in all these three cell types with respect to voltage-dependent activation, inactivation, and reactivation, and it was concluded that differences in the voltage dependence or kinetics of these parameters are unlikely responsible for the regional differences. Further studies are needed to test the hypothesis that these regional differences in I_{Na} are due to differences in channel density. Evaluation of the inward rectifier in the three cell types revealed no important differences. Future work, some already in progress, is aimed at delineation of other ionic currents across the canine ventricular wall.

These findings will hopefully advance our understanding of the basic function of the heart as well as our understanding of the electrocardiographic J wave, T wave, U wave, and long QT intervals. These results may also provide new insights into the mechanisms underlying some forms of cardiac arrhythmia.

Acknowledgments

We are grateful to Drs. Serge Sicouri, Arthur Iodice, Jose Di Diego, and Vladislav Nesterenko for their valuable assistance during the course of this study. We also wish to acknowledge the expert technical assistance of Judy Hefferon and Robert Goodrow.

References

3. Litovsky SH, Antzelevitch C: Rate dependence of action potential duration and refactoriness in canine ventricular endocardium differs from that of epicardium: The role of the transient outward current. J Am Coll Cardiol 1989;14:1053–1066

Sicouri S, Antzelevitch C: Afterdepolarizations and triggered activity develop in a select population of cells (M cells) in canine ventricular myocardium: The effects of acetylcholine and Bay K 8644. PACE 1991;14:1714-1720

Shah S, Sicouri S, Antzelevitch C: Calcium-activated chloride current in canine ventricular and epicardial myocytes: A quantitative kinetic analysis. (abstract) Circulation 1991;84(suppl II):103

Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle.

D W Liu, G A Gintant and C Antzelevitch

Circ Res. 1993;72:671-687
doi: 10.1161/01.RES.72.3.671

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1993 American Heart Association, Inc. All rights reserved.

Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/72/3/671

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation Research* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation Research* is online at:
http://circres.ahajournals.org//subscriptions/