Effect of Amiodarone on the Expression of Myosin Isoforms and Cellular Growth of Cardiac Muscle Cells in Culture

Asish C. Nag, Mei Li Lee, and Deborah Shepard

The effect of amiodarone on the expression of myosin isoforms and the growth of neonatal rat cardiac muscle cells in culture was studied by native gel electrophoresis, assays of DNA and protein synthesis, and electron microscopy. Cardiac myocytes exposed to amiodarone in the absence of triiodothyronine (T3) showed predominant V1. When cardiac myocytes were exposed to amiodarone in the presence of T3, they expressed prevalent isomyosin V3, or both V3 and V1 equally. Supraphysiological concentration of T3 counteracted the effect of amiodarone on myocytes, showing the expression of predominant isomyosin V1. Amiodarone has inhibitory effects on DNA synthesis and differentiation of cardiac myocytes. Myocytes treated with amiodarone showed maximum labeling index with 11% labeled cells after day 1. Subsequently, the labeling indexes declined and on the third day ceased, as opposed to the control culture, which attained a peak in labeling index with 60% labeled myocytes on the third day. The labeling indexes declined, showing 11% labeled myocytes at the terminal time point. Myocytes treated with amiodarone lost most of the well-organized myofibrils and other organelles, and instead contained sparse, scattered segments of myofibrils, free myofilaments, many mitochondria with disrupted cristae, and autophagic vacuoles. The results demonstrated that amiodarone has a direct influence on the expression of isomyosin by cardiac myocytes. Furthermore, this drug has inhibitory and degrading effects on the growth and differentiation of cardiac myocytes. (Circulation Research 1990;67:51–60)

Amiodarone, a benzofuran derivative and a potent antiarrhythmic drug, has been used extensively for the treatment of cardiac arrhythmias and angina1,2 in many countries and recently was introduced for use in the United States. Studies of amiodarone’s effect on the heart have offered two types of findings by different groups of investigators. One has suggested that the chronic treatment with amiodarone may have effects that resemble those of hypothyroidism.1–9 Another finding has indicated that both hypo- and hyperthyroidism occurred in some patients treated with amiodarone for cardiac arrhythmias or angina.10,11 Ikeda et al13 reported that amiodarone caused prolongation of repolarization in cardiac tissue. This type of repolarization was found to be an effect produced by thyroidectomy in rabbits.4 It was observed that simultaneous administration of thyrroxine (T4) inhibited amiodarone-induced lengthening of repolarization of atrial and ventricular action potentials.5 In addition, amiodarone has been found to cause a number of characteristic features of hypothyroidism such as bradycardia,6,7 prolonged systolic time intervals,8 and a decrease in Ca2⁺-ATPase activity of cardiac myosin.9 Lindenmeyer et al7 have been able to revive the bradycardia by administration of supraphysiological doses of triiodothyronine (T3). Bagchi et al9 reported that amiodarone treatment for 6 weeks in rats resulted in lower heart weight, decreased atrial production of 14CO₂ from labeled glucose, decreased myosin Ca2⁺-ATPase activity, and more synthesis of V3 isomyosin compared with that of the control. These effects were similar to those observed in hypothyroid rats but were lesser in magnitude. Although the effects of amiodarone treatment suggest hypothyroidism, serum T4 is increased during amiodarone treatment, and serum T3 remains in the normal range.9,10 Martino et al12 reported the occurrence of hypo- and hyperthyroidism after chronic treatment with amiodarone. Hyperthyroidism showed elevation in serum T3 or free T3 concentrations, and hypothyroidism was best diagnosed by showing an elevated serum thyrotropin concentration. Both hypo- and hyperthyroidism have been noted to occur in some patients treated with amiodarone when the patients with hypothyroidism...
had subnormal T₄ levels, and the patients with hyperthyroidism had elevated T₃ levels.¹³

Past studies have been carried out in the in vivo system where various endogenous factors might control the drug actions in the body. The present study examines the effect of amiodarone on cardiac muscle cells that have been cultured and exposed to ami-
darone in the presence or absence of exogenous thyroid hormone. The specific objective of this study
is to investigate the influence of amiodarone on the expression of myosin isoforms and cellular growth of
cardiac muscle cells in culture in the presence or absence of thyroid hormone. The rationale for the
presence or absence of thyroid hormone in the culture is to examine whether there is interaction between
the drug and thyroid hormone in the expression of isomy-
osins and the growth of cardiac myocytes.

Materials and Methods

Cell Culture

Ventricles of 4- to 5-day neonatal rats were used for isolation of cells. The isolation procedure was the
same as those of our previous studies.¹⁴,¹⁵ Briefly, the ven-tricular tissue mince was dissociated into single-
cell suspension by incubation in 0.15% trypsin, 0.025% collagenase, 4% chicken serum, and 96% Ca²⁺- and Mg²⁺-free Tyrode’s solution. The ven-tricular cells were incubated in a basic medium containing 99% Eagle’s basal medium with Earle’s salts, 1% bovine serum albumin, norepinephrine (10⁻⁵ M/ml), insulin/transferrin/se-lenium mixture (0.1/100 ml), ascorbic acid (0.02 mg/ml), epidermal growth factor (10 ng/ml), 2% calf serum, and 1% penicillin/ streptomycin mixture. To grow cells in the presence
of amiodarone, at least 2% serum is needed. The cells were grown in three experimental conditions: one set of culture was grown in the above medium with amiodarone (30–40 μg/ml) (amiodarone was a gift of Dr. A. Urdang, Sanofi, New York); the second set of culture was grown in the above medium with T₃ (10⁻⁵ M/ml) and amiodarone with the same concentrations as above. The growth medium of the third set was the same as in the second one with the exception of the T₃ dose, which was three times the second set. The maximum dose of this drug was determined on the basis of experimentation that showed cell death at a higher concentration than the doses used. Controls for three sets of cell culture were grown in their respective culture media without amiodarone. The cells were plated at a density of 1×10⁶ cells per 35-mm dish and cultured for 7 days in an incubator in a humidified atmosphere of 5% CO₂ in air. The cultures were terminated at intervals of 4 and 7 days of culture for biochemical studies. Eleven experiments were carried out for these studies.

Preparation of Myosin and Cells

The cultured cells were scraped out of the plates with a plastic scraper at selected intervals as men-
tioned above. Myosin extraction was carried out follow-

ing our previous method¹⁴ with certain modifications. Briefly, the cells were homogenized by a Dounce
homogenizer (Corning Glass Works, Parkridge, Ill.) in a
buffer containing (mM) NaCl 40, EGTA 5, Na₂HPO₄
3, and phenylmethylsulfonyl fluoride 1 (pH 7.2). The
homogenate was centrifuged at 7,974g for 20 minutes,
and the pellet was immersed and centrifuged at
139,238g for 3 hours in a modified extraction solution
containing 100 mM Na₂HPO₄, 15 mM 2-mercapto-
ethanol, 1 mM phenylmethylsulfonyl fluoride, and 2
μg/ml leupeptin (pH 8.8). The supernatant was col-
lected and used for electrophoresis. Myosin from intact
neonatal and adult ventricles was prepared by extract-
ing tissue homogenate with 20 vol of the above extrac-
tion buffer. Protein concentration was determined by
the method of Bio-Rad (Richmond, Calif.).

Electrophoresis

Pyrophosphate gels were prepared following essen-
tially our previous method¹⁴ with minor modifications
that included 3.88% acrylamide and 0.12% bisacryla-
mide in a buffer containing 20 mM Na₂HPO₄ (pH 8.8),
2 mM cysteine, and 10% glycerol (vol/vol). A prerun
of 1 hour was carried out under conditions identical
with those of electrophoresis with a constant 78 V. Myosin samples (100 μl) in 50% glycerol were loaded
directly on the top of the gels, and electrophoresis was run overnight (16 hours) with a constant 90 V. Stain-
ing and densitometer tracing of gels were essentially
the same as those in our previous studies.¹⁴,¹⁷

Assay of [³H]Thymidine Incorporation

Into Heart Cells

Cells were continuously exposed to 1 μCi/ml [³H]thymidine (TdR) for 24 hours before termination of
cultures. The cultures were terminated at intervals of
1, 2, 3, and 5 days of incubation, and cells were scraped out of the plates after rinsing in cold 0.01 M
phosphate buffer (pH 7.5) containing 0.01 M sodium pyrophosphate. Subsequently, the cells were pelleted by centrifugation, suspended in sodium pyrophos-
phate, and solubilized in 0.05N NaOH. The solution was then assayed for radioactivity in toluene-based
scintillation fluid in a Packard Tri-Carb scintillation
counter (Packard Instrument Co., Downers Grove, Ill.) as described previously.¹⁸

Assay of Cellular Protein

The cells were collected from the culture dish by
gently scraping them out with a rubber policeman.
The cells were then pelleted by centrifugation and
subsequently suspended in phosphate-buffered saline
followed by solubilization in 0.05N NaOH. Aliquots
were taken for protein estimation using the Bio-Rad
Coomassie blue assay. Data, expressed as micro-
grams of protein, are the means of determinations
made on six or more individual tissue culture dishes.
Acid-Schiff Technique and Periodic Acid-Schiff Technique

Cells were labeled with the same dose and length of exposure to [3H]Tdr as described above. The cells were fixed in cold formaldehyde: alcohol (1:9) for 24 hours at 4°C and subsequently processed for periodic acid-Schiff (PAS) technique and autoradiography as described previously.18,19 Cardiac muscle cells were identified by PAS technique that stains cardiac muscle cells for their glycogen content.18,20 For scoring labeling indexes, at least 200 cells were counted under a light microscope. Triplicate plates were used for each time point, and pooled results of five experiments were recorded as mean values for labeled or unlabeled cells with their standard deviation.

Electron Microscopy

The cells in monolayer were processed for electron microscopy after 1, 3, 5, and 7 days of culture, following our previous methods.20,21 Essentially, the methodology involves rinsing cultured cells in Tyrode's solution several times and fixating them in half-strength Karnovsky's fixative20 for 1.5 hours at room temperature. The cells then were rinsed in cacodylate buffer (pH 7.4) several times and post-fixed in 1% osmium tetroxide for 1.5 hours at 4°C. The fixed cells were embedded in situ in Epon 81222 after dehydration. The embedding consisted of two stages. First, polymerization of Epon was carried out at 55°C overnight, and subsequently the embedded culture was peeled off the flask. Second, the peeled embedded culture was polymerized further at 60°C for 24 hours for proper hardening. Thin sections were prepared and stained with uranyl acetate and lead citrate. Sections were examined and photographed in a Philips Electronic Instruments 410 LS electron microscope (Mahwah, N.J.) operated at an accelerating voltage of 60 kV.

Results

Myosin from neonatal rat cardiac myocytes in culture was examined by pyrophosphate gel electrophoresis. The culture was exposed to amiodarone under three experimental conditions as follows: 1) myocyte culture was exposed to amiodarone (30–40 μg/ml) in the absence of T3; 2) myocyte culture was exposed to amiodarone (30–40 μg/ml) in the presence of T3 (10−5 M/mL); 3) myocyte culture was exposed to amiodarone (30–40 μg/ml) in the presence of three times the amount of T3 in experiment 2. The optimum concentrations of amiodarone for cell culture were determined by experimentation. The cells did not survive in concentrations higher than 40 μg/ml.

Myosin isoform profiles

The cultured myocytes with treatment of the drug and without T3 contained predominant isoform V1 (Figure 1). The V2 band was not as clear as those of isoforms V1 and V3. Although the expression of myosin isoform profiles in response to different doses of amiodarone was alike (Figure 1), the amount of myosin isoforms in cultured cardiac myocytes exposed to differential doses (30, 35, 40 μg/ml) of
amiodarone was not alike. With the increased dose of the drug, there was an increase in V1 content in cells grown without T3 (Table 1). The intact ventricles from 5-day neonatal rats without the treatment of amiodarone expressed predominant myosin isofrom V1, whereas the cultured myocytes without treatment of the drug and T3 (control culture 1) showed predominant isoform V2 as observed in our previous studies.14

When cardiac myocytes in culture were exposed to amiodarone in the presence of added T3, the expression of myosin isoform V3 was prevalent (Figure 2) or as strong as V1 (Figure 3), unlike those of control myocytes grown in the absence of the drug and presence of added T3 (control culture 2). The control expressed predominant myosin isoform V1. This observation conformed with those of Bagchi et al9, who reported preferential synthesis of V3 isomyosin over the control using an in vivo system in which endogenous thyroid hormones were present. In this experiment, the myosin isoform content was also found to be drug dose dependent, showing an increase in the myosin V3 content with increased dose. Cardiac myocytes exposed to amiodarone (30–40 μg/ml) in the presence of triple the usual dose of T3 expressed predominant isomyosin V1 (Figure 2).

DNA Synthesis in Heart Cells

Because there is no significant difference in DNA synthesis between T3 treated and untreated myocytes, the results discussed do not include T3 treatment. DNA synthesis as determined by autoradiography of cardiac muscle cells grown in the presence or absence of amiodarone is presented in Figure 4. Initially, control cardiac myocytes grown in the absence of amiodarone showed approximately 15% labeled myocytes, whereas experimental myocytes grown in the presence of amiodarone exhibited 11% labeled myocytes after 24 hours of culture. With the continuation of the culture, however, the control cardiac myocytes exhibited a gradual rise in the number of labeled cells. The labeling index of control myocytes peaked on the third day, showing approximately 60% labeled myocytes. The labeling index declined to approximately 11% on the fifth day of culture (Figure 4). Cardiac myocytes exposed to amiodarone showed a sharp decline in labeling indexes after showing 11% labeled myocytes 24 hours after culture (Figure 4). The labeling of experimental myocytes ceased on the third day of culture, unlike that of the control culture, which showed labeled cells until termination of culture on the fifth day.

The profile of incorporation of [3H]TdR by heart cells as determined by the scintillation counter is presented in Figure 5. The incorporation of [3H]TdR into DNA of heart cells, which included cardiac muscle and nonmuscle cells without exposure to the drug, was significantly higher (p>0.001) than that of the cells exposed to the drug. The results indi-

Table 1. Determination of Myosin Isoform Content of Cardiac Myocytes Grown in the Presence of Amiodarone Alone or Amiodarone and Triiodothyronine

<table>
<thead>
<tr>
<th>Triiodothyronine treatment</th>
<th>Amiodarone (40 μg/ml)</th>
<th>% Isoform</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>V1</td>
<td>52±8</td>
</tr>
<tr>
<td>1.0</td>
<td>V2</td>
<td>17±3</td>
</tr>
<tr>
<td>1.0</td>
<td>V3</td>
<td>31±4</td>
</tr>
<tr>
<td>1.0</td>
<td>V1</td>
<td>56±6</td>
</tr>
<tr>
<td>1.0</td>
<td>V2</td>
<td>30±5</td>
</tr>
<tr>
<td>1.0</td>
<td>V3</td>
<td>14±3</td>
</tr>
<tr>
<td>1.0</td>
<td>V1</td>
<td>45±5</td>
</tr>
<tr>
<td>1.0</td>
<td>V2</td>
<td>55±8</td>
</tr>
<tr>
<td>1.0</td>
<td>V3</td>
<td>100±6</td>
</tr>
<tr>
<td>1.0</td>
<td>V1</td>
<td>100±7</td>
</tr>
<tr>
<td>1.0</td>
<td>V2</td>
<td>50±4</td>
</tr>
<tr>
<td>1.0</td>
<td>V3</td>
<td>50±2</td>
</tr>
<tr>
<td>1.0</td>
<td>V1</td>
<td>100±5</td>
</tr>
</tbody>
</table>

Values are mean±SD. Myosin isoforms were measured by graphic resolution of absorbance peaks for protein and by measuring the area under the peaks. Isoforms V1 and V2 only were determined for cells in vitro. V1 in cell culture with 30 μg/ml amiodarone was 67±9 and with 35 μg/ml amiodarone, 94±8. V1 in culture with triiodothyronine and 30 μg/ml amiodarone was 52±5; with triiodothyronine and 35 μg/ml amiodarone, 46±6. 0, absence of treatment in intact hearts; –, absence of treatment in cultured cells; +, presence of treatment; ++++, triple dose of treatment.
cated that the incorporation of 3H]TdR per unit protein in the experimental cells declined sharply after 24 hours of incubation, showing minimal incorporation value on the terminal time point of the culture (Figure 5).

The cellular protein content at different time points of the culture is presented in Figure 6. The protein content in the control culture continued to increase throughout the culture period, whereas that of the experimental culture initially showed a slightly lower value than that of the control culture. Subsequently, the values for protein content in the drug-treated culture decreased significantly ($p>0.001$) compared with those of the control culture.

Ultrastructural Organization of Cardiac Myocytes

Cardiac myocytes in culture exposed to amiodarone were examined with the electron microscope to determine differentiation of their myofilbrils and other cellular organelles during different time periods of culture. Myocytes after 24 hours of culture in the presence of amiodarone exhibited abundant myofilbrils, mitochondria, free ribosomes, polysomes, glycogen, and sarcoplasmic reticulum similar to those of controls grown in the absence of amiodarone. Unlike the controls, myocytes contained scattered autophagic vacuoles and whorls of phospholipid. Mitochondria of the experimental myocytes often contained small, hollow, dense circular profiles absent in the controls (Figure 7). As the culture continued, well-organized myofibril content of the experimental myocytes decreased significantly, showing scattered segments of myofilbrils and free myofilaments in the sarcoplasm of the cells after 3 days of culture (Figure 8). In addition, these myocytes contained abundant free ribosomes and polysomes, autophagic vacuoles, and whorls of phospholipid. Many mitochondria exhibited disrupted cristae. The whorls of phospholipid content increased in number after 6 days of culture, showing amorphous matrix in the central region of the whorl (Figure 9). The myofibril content and other cellular organelles of cardiac myocytes at this terminal point of culture did not differ significantly from those of 3-day-old culture myocytes. In contrast to the experimental myocytes, the control myocytes after 7 days of culture contained abundant organized myofilbrils, mitochondria, ribosomes, glycogen, and sarcoplasmic reticulum (Figure 10).

Figure 4. Quantitation of labeled cardiac myocytes grown in the presence or absence of amiodarone; 30 µg/ml amiodarone culture medium was used. The dose of 3H]thymidine and length of cell exposure to the radioactive isotope are described in “Materials and Methods.” The standard deviation in different determinations did not exceed 10% of the mean.

Figure 5. The incorporation of 3H]thymidine (TdR) into neonatal rat heart cells exposed to amiodarone-free or amiodarone-containing media; 30 µg/ml amiodarone medium was used. The dose of radioactive isotope and the length of exposure of cells to the isotope are discussed in “Materials and Methods.” SD bars are included.
Discussion

The present study shows that treatment with amiodarone produced two main types of results concerning the expression of myosin isoforms. When cardiac myocytes were exposed to amiodarone in the absence of added T₃ in the medium, myocytes expressed predominantly myosin isoform V₁, whereas addition of T₃ in the medium containing amiodarone showed

Figure 6. Quantitation of cellular protein in neonatal heart cells grown in the presence or absence of amiodarone. The concentration of amiodarone was 30 μg/ml medium. Values are mean ± SD of six determinations at each time point.

Figure 7. Electron micrograph of a portion of cardiac muscle cell after 24 hours of culture in 30 μg amiodarone. The micrograph shows specifically abundant myofibrils and mitochondria along with dense circular profiles (Cp) in the mitochondria and a whorl of phospholipid (P) in the sarcoplasm. Mf, myofibril; Sr, sarcoplasmic reticulum; Rb, ribosomes. Magnification, ×21,420.
the preferential expression of isomyosin V₁. It appears that amiodarone probably competes with T₃ in T₃-receptor sites and thus counteracts the influence of T₃ on the expression of myosin isoform V₁ during the treatment of cardiac myocytes with amiodarone in the presence of T₃. This interpretation is in agreement with the idea that the intracellular inhibition of the conversion of T₄ to T₃ is not the ultimate mode of the action of the amiodarone effect on heart rate. It is thought that amiodarone interacts with T₃ at its receptor or somewhere later along the pathway from the T₃-receptor interaction to the final effect of T₃ on the heart rate. Furthermore, the present interpretations agree with the previous findings⁶ that patients receiving amiodarone had a slowing heart rate, which gradually increased after withdrawal of the drug. This previous report⁶ conforms with the interpretation of the present data that the drug probably competes with T₃ for receptor sites and thus inhibits the function of T₃ in the myocardium. After withdrawal of the drug, the receptor sites become available only to T₃, and the heart rate returns to its original state. Because amiodarone and T₃ apparently are competing for the common receptor sites, the sites probably are distributed between these two extracellular agents, resulting in the formation of two pools of receptor-agent complexes, such as receptor-drug complex and receptor-hormone complex. It is possible that, as a result of the generation of two heterogeneous pools of receptor-agent complexes, there has been an alteration in the receptor function, which did not cause induction of the expression of isoform V₁ although each of these agents (amiodarone and T₃) independently can cause the expres-

Figure 8. Electron micrograph of a portion of cardiac muscle cell after 3 days of culture in 30 𝜇g amiodarone. The cardiac myocyte exhibits scanty myofibrils (Mf), many disrupted mitochondria (Dm), autophagic vacuoles (Av), and whorls of phospholipid (P). Magnification, ×15,730.
Surprisingly, cardiac myocytes grown in the absence of added T₃ and in the presence of amiodarone expressed predominant myosin isoform V₁, in contrast to the control, which expressed predominant isomyosin V₃. The control myocytes were grown in the medium devoid of amiodarone. This opposite effect of amiodarone as compared with the above finding is not fully understood. Amiodarone under this experimental condition does not compete much for T₃ receptors because of the lack of added T₃ in the medium and probably occupies most of the T₃-receptor sites for drug actions. This finding appears to imply an analogous role of this drug to that of T₃, in preferentially promoting the expression of isomyosin V₁ rather than V₃. These observations may show a positive implication on the findings that show the occurrence of both hypo- and hyperthyroidism in some patients treated with amiodarone.¹³

The previous in vivo studies concerning antiarrhythmic activity of amiodarone suggested that amiodarone inhibits the peripheral conversion of T₄ to T₃ and may block the metabolic action of thyroid hormone in bringing about the reduced heart rate.⁶,²³,²⁴ It is also reported that the effect of amiodarone was observed despite normal serum T₃ and thyroid-stimulating hormone and elevated T₄ concentrations, which most likely are due to inhibition of peripheral 5'-deiodinase rather than the effect of iodine released from the drug.²,²⁵ The present studies show that amiodarone has a direct effect on the expression of myosin isoymes of cardiac muscle cells in culture. The preferential expression of myosin isoform V₁ by cardiac myocytes exposed to amiodarone in the presence of physiological concentration of T₃ results in reduced contractility owing to its lower ATPase activity. This effect probably includes the reduction

FIGURE 9. Electron micrograph of a portion of experimental cardiac myocyte after 6 days of culture showing specifically a large number of whorls of phospholipid (P), scanty myofibrils (Mf), autophagic vacuole (Av), and damaged mitochondria (Dm). Magnification, ×15,030.
in oxygen demand on cardiac muscle cells and thus may cause the antianginal effect of the drug. Although a dose-dependent response of amiodarone was observed, the dose higher than 40 μg/ml killed the myocytes, showing its toxic effect on the cells. T3 above the physiological concentration reversed the expression of myosin isoform caused by amiodarone, showing an expression of predominant isoform V1. This observation agrees with that of in vivo studies and indicates that amiodarone causes a hypothyroid-like state in the myocardium. In the past, therapeutic induction of hypothyroidism helped the treatment of intractable angina. However, it is not known whether antithyroid activity of amiodarone causes the antiarrhythmic effect of the drug.

Amiodarone has significant influences on DNA synthesis, cellular protein content, differentiation, and survival of cardiac myocytes in culture. DNA synthesis in cardiac myocytes is inhibited and subsequently stopped by amiodarone after 3 days of culture in contrast to the control, which attained a peak in labeling index with approximately 60% labeled cardiac myocytes after 3 days of culture. The labeling index of the control cardiac myocytes gradually declined, showing 11% labeled myocytes after the terminal time point of culture on the fifth day. The data on cellular protein content in drug-treated cultures showed significant lower values compared with those of control cultures, which showed continuous increase in protein concentration throughout the culture period. These observations show that this drug has a strong inhibitory effect on cardiac cell proliferation and protein synthesis, and thereby the growth of the myocardium. The lower protein content in the experimental culture appears to be a reflection of the lower cell proliferation rate, of reduced protein synthesis, and, to a certain extent, of cell degradation. The effect of amiodarone on the differentiation of myofibrils and cellular organelles as observed by electron microscopy showed that this drug has retarding and degrading effects on these structures. Initially, cardiac myocytes contained...
abundant, well-differentiated myofibrils and cellular organelles, but as the culture continued, myofibrils
were disassembled, showing scattered irregular seg-
ments of myofibrils and free myofilaments in the
sarcoplasm. The myocytes contained many degraded
mitochondria and autophagic vacuoles containing
degraded cellular materials. A considerable number
of degraded cardiac cell bodies were observed in late
culture. These cell bodies were indicative of cell
deterioration and death. The overall effect of this
drug on the ultrastructure of cardiac cells is not
conducive to the maintenance of cellular structures
needed for proper functioning.

These studies have demonstrated that amiodarone
has a direct influence on the cardiac myocytes for
expression of myosin isoforms. Moreover, this drug
has an inhibitory effect on the growth and differenti-
tation of cardiac myocytes. The ultrastructural studies
suggest that prolonged use of this drug can
damage the myocardium.

Acknowledgments

The authors gratefully acknowledge the gift of
amiodarone from Dr. A. Urdang, SanoI, New York.

References

1. Mead RS, Harrison DC: Therapy with investigational antiar-
2. Sogol PB, Hershman JM, Reed AW, Dillmann WH: The
effects of amiodarone on serum thyroid hormones and hepatic
thyroxine 5′-monodeiodination in rats. Endocrinology 1983;
113:1464–1469
3. Ikeda N, Nademanee K, Kannan R, Singh BN: Electrophysi-
ologic effects of amiodarone: Experimental and clinical obser-
vation relative to serum and tissue drug concentrations. Am
Heart J 1984;108:890–898
of altered thyroid state on atrial intracellular potentials. J
Physiol (Lond) 1970;207:357–369
5. Singh BN, Vaughan-Williams EM: The effect of amiodarone,
a new antianginal drug, on cardiac muscle. Br J Pharmacol
1970;39:657–667
BN, Hershman JM: Hyperthyroxinemia with bradycardia and
normal thyrotropin secretion after chronic amiodarone admin-
7. Lindenmeyer M, Sporri S, Staubli M, Studer A, Studer H:
Does amiodarone affect heart rate by inhibiting the intracel-
lar generation of triiodothyronine from thyroxine? Br J
Pharmacol 1984;82:275–280
8. Peccoz PB, Beck P, Piscitelli G, Volpi A, Maggioni AP,
Cattaneo MG, Giani P, Landolina M, Tognoni G, Faggia G:
Evidences for a resistance to thyroid hormone action in
patients responsive to amiodarone treatment, in Hall R, Kubberlin J (eds): Thyroid Disorders Associated with Iodine
Deficiency and Excess. Serono Symposia, NY, Raven Press,
Publishers, 1985, pp 289–292
9. Bagchi B, Brown TR, Schneider DS, Banerjee SK: Effect of
amiodarone on rat heart myosin isoenzymes. Circ Res 1987;
60:621–625
10. Singh BN, Nademanee K: Amiodarone and thyroid function:
Clinical implications during antiarrhythmic therapy. Am Heart
J 1983;106:875–889
Acta Cardiol (Brux) 1981;36:199–205
12. Martino E, Safran M, Ashini-Lombard F, Rajatanavin R,
Lenziardi M, Fay M, Pacchiariotti A, Aronin N, Macchia E:
Environmental iodine intake and thyroid dysfunction during
13. Borowski GD, Garofano CD, Rose LI, Spielman SR: Effect of
long-term amiodarone therapy on thyroid hormone levels and
cardiac muscle cells in culture. Biochem J 1984;221:21–26
heart cell proliferation in serum-free synthetic media. In Vitro
16. Hoh JFY, McGrath PA, Hale PT: Electrophoretic analysis of
multiple forms of rat cardiac myosin: Effects of hypophysec-
tomy and thyroxine replacement. J Mol Cell Cardiol 1977;
10:1052–1076
17. Nag AC, Cheng M: Biochemical evidence for cellular dedif-
erentiation in adult rat cardiac muscle cells in culture:
Expression of myosin isoforms. Biochem Biophys Res Commun
1986;137:855–862
18. Nag AC, Cheng M: DNA synthesis in mammalian heart cells:
Comparative studies of monolayer and aggregate cultures. Cell
cardiac muscle cells in long-term culture. Tissue Cell 1986;
18:491–497
on cardiac muscle cells in culture. Am J Physiol 1988;
255:C291–C296
the ultrastructure of cardiac muscle cells in culture. Mol Cell
Biol 1986;32:709–716
22. Lindenmeyer M, Sporri S, Staubli M, Studer A, Studer H:
Does amiodarone affect heart rate by inhibiting the intracel-
lar generation of triiodothyronine from thyroxine? Br J
Pharmacol 1984;82:275–280
23. Kannan R, Okkhtens M, Chopra JJ, Singh BN: Effects of chronic administration of amiodarone on kinetics of metabo-
the conversion of thyroxine to triiodothyronine in isolated rat
25. Burger A, Dinichett C, Nicod P, Jenny M, Beraud-
Lemarchand T, Valtottom MB: Effect of amiodarone on
serum triiodothyronine, reverse triiodothyronine and thyrotro-
pin: A drug influencing metabolism of thyroid hormone. J Clin
Invest 1976;58:225–259
26. Blumgart HL, Freedberg AS, Kurland G: Treatment of incapa-
citated euthyroid cardiac patients with radiactive iodine:
Summary of results in treatment of 1,070 patients with angina pectoris or congestive failure. JAMA 1955;157:1–4

Key Words • amiodarone • cardiac myocytes • myosin
isoenzymes • DNA synthesis • ultrastructure
Effect of amiodarone on the expression of myosin isoforms and cellular growth of cardiac muscle cells in culture.
A C Nag, M L Lee and D Shepard

Circ Res. 1990;67:51-60
doi: 10.1161/01.RES.67.1.51

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1990 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/67/1/51