Inhibition of ATP-Sensitive Potassium Channels of Adult Rat Heart Cells by Antiarrhythmic Drugs

Robert A. Haworth, Atilla B. Goknur, and Herbert A. Berkoff

We have investigated the effect of antiarrhythmic drugs on the increased potassium conductance induced in isolated adult rat heart cells by ATP depletion. The rate of 86Rb uptake in the presence of ouabain was used as a measure of potassium conductance. Treatment of cells with rotenone plus p-trifluoromethoxyphenylhydrazone (FCCP) rapidly depleted ATP levels and strongly stimulated the rate of 86Rb uptake. The stimulated uptake and the ATP depletion were inhibited by oligomycin; thus, the uptake was not induced by rotenone plus FCCP directly. The stimulated uptake, but not the ATP depletion, was inhibited potently by glyburide (IC$_{50}$, 38.3 nM), quinidine (IC$_{50}$, 2.7 μM), verapamil (IC$_{50}$, 4.5 μM), and amiodarone (IC$_{50}$, 19.1 μM). The stimulated uptake was also inhibited by tetraethylammonium ion and by 4-aminopyridine but not by tetrodotoxin or manganese. We conclude that 1) the stimulated 86Rb uptake is measuring ATP-sensitive potassium channel activity, 2) the ATP-sensitive potassium channel is strongly inhibited by quinidine, verapamil, and amiodarone, and 3) this inhibition may contribute to the antiarrhythmic action of these drugs. (Circulation Research 1989;65:1157-1160)

Antiarhythmic drugs exhibit a wide variety of electrophysiological effects. Some drugs act by prolonging the inactivation of sodium channels, either by directly binding to the sodium channel or by delaying repolarization. It is not yet clear what role may be played by other channels in the generation of arrhythmias. Physiologically important conditions that are arrhythmogenic include hypoxia and ischemia. Under these conditions, ATP levels drop, and a shortening of the action potential is observed. The latter appears to stem from an increase in time-independent outward potassium current. Therefore, using a novel assay with 86Rb, we have investigated the effect of antiarrhythmic drugs on the increased potassium conductance induced by ATP depletion.

Materials and Methods

Cells were isolated from female retired breeder rat hearts as previously described and resuspended in experimental medium containing (mM) NaCl 118, KCl 4.8, N-2-hydroxyethylpiperazine-N'2-ethanesulfonic acid (HEPES) 25, KH$_2$PO$_4$ 1.2, MgSO$_4$ 1.2, CaCl$_2$ 1, glucose 11, sodium pyruvate 5, and insulin 1 (μM), pH adjusted to 7.4 with NaOH at 37°C. Guinea pig heart cells were isolated by an identical procedure. At the times shown on the graphs in Figures 1 and 2, 0.5 ml aliquots were centrifuged through bromo-dodecane for measurement of 86Rb uptake, as previously described for other isotopes. Other 0.1 ml aliquots were added to 0.1 ml cold 16% perchloric acid, and ATP was measured by high-performance liquid chromatography. The following drugs were generously supplied by these laboratories: nitrendipine by Miles Laboratories, New Haven, Connecticut, amiodarone by Wyeth Laboratories, Philadelphia, Pennsylvania, and glyburide by Hoechst-Roussel Pharmaceuticals, Somerville, New Jersey.

Results

Potassium conductance of isolated adult rat heart cells was measured on cells in suspension from the rate of 86Rb uptake in the presence of ouabain to inhibit uptake by the sodium pump. Rubidium, a potassium analogue, is a good choice for measuring potassium channel activity since its specificity for potassium channels over the sodium channel exceeds that of potassium itself. Cells treated with 1 mM ouabain alone showed a low linear rate of 86Rb uptake, and this rate was unaffected by the addition of 100 μM quinidine (Figure 1A). Higher levels of ouabain caused no further measurable inhibition of
Figure 1. Graphs showing stimulation of quinidine-sensitive 86Rb uptake by ATP depletion. Cells in experimental medium with 2 µCi/ml tritiated water were given 1 mM ouabain (C, •, ○, ●, and △), followed after 15 seconds by 100 µM quinidine (● and ○) or 40 µM oligomycin (△), followed after 15 seconds by 3 µM rotenone plus 0.3 µM p-trifluoromethoxyphenylhydrazine (○, ●, and △), followed after 15 seconds by 0.1 µCi/ml 86Rb; the latter at time 0 on the graph. Panel A: 86Rb uptake. Values are measured values minus 2.9 nmol/mg, an intercept arising from extracellular 86Rb (see Reference 5). Panel B: ATP decline. Data is from a single experiment.

86Rb uptake; this result indicated that pump inhibition was complete (data not shown). Uptake of 86Rb is expressed as nanomole potassium equivalents per milligram protein, as though the 86Rb behaved just like potassium. To rapidly induce the ATP-sensitive potassium conductance, we treated cells with metabolic inhibitors rotenone, an inhibitor of mitochondrial nicotinamide adenine dinucleotide-linked respiration, and p-trifluoromethoxyphenylhydrazone (FCCP), an uncoupler of oxidative phosphorylation, which induces a large mitochondrial ATPase activity. When cells were given rotenone and FCCP 15 seconds before 86Rb, the level of ATP was rapidly depleted (Figure 1B), and the uptake of isotope was massively accelerated. The accelerated rate was inhibited by quinidine (Figure 1A) although quinidine had no effect on the ATP depletion (Figure 1B). Oligomycin, an inhibitor of mitochondrial ATPase activity, prevented the ATP depletion induced by rotenone plus FCCP (Figure 1B) and also prevented the increase in conductance (Figure 1A). This shows that the conductance change was not induced by rotenone plus FCCP directly. Measurements with 14C sucrose showed, as we have found previously, that no increase in sucrose-permeable space occurred in the course of the experiment even though the cells were ATP-depleted (data not shown). There was, therefore, no evidence for rupture of the sarcolemma.

No significant effect of 25 µM tetrodotoxin (TTX) on 86Rb uptake was observed; after 3 minutes, uptake was 70.6±5.1 nmol/mg with TTX and 72.4±5.9 nmol/mg without TTX (n=3 measurements). Also, neither 0.1 µM isoproterenol nor 0.1 µM isoproterenol plus 1 µM propranolol had any effect on 86Rb uptake induced by rotenone plus FCCP (data not shown).

To determine the IC₅₀ for quinidine, the 86Rb uptake after 3 minutes was measured, under the conditions of Figure 1, in the presence of various levels of quinidine (Figure 2). The IC₅₀ was 3.8 µM. The inhibitory action of a number of antiarrhythmic drugs and potassium channel inhibitors was tested in the same way, and the results are shown in Table 1. Since verapamil inhibited (Table 1), we checked for calcium channel participation by looking for the verapamil effect in a medium with 10 mM MnCl₂ in place of 1 mM CaCl₂. Manganese replacement had no effect on stimulated 86Rb uptake, and the verapamil effect remained with a similar IC₅₀. Nitrendipine, a potent dihydropyridine calcium channel blocker, was threefold less effective than verapamil at inhibiting 86Rb uptake. 86Rb uptake was also

Figure 2. Dose-response curve for inhibition of 86Rb uptake by quinidine. 86Rb uptake within 3 minutes was measured under the conditions of Figure 1, by cells treated with 3 µM rotenone plus 0.3 µM p-trifluoromethoxyphenylhydrazine in the presence or absence of quinidine as shown. Data are mean±SD from three experiments.
Table 1. Inhibition of 86Rb Uptake by Antiarrhythmic Drugs and Potassium Channel Inhibitors

<table>
<thead>
<tr>
<th>Drug</th>
<th>IC$_{50}$ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinidine</td>
<td>2.7±0.2</td>
</tr>
<tr>
<td>Quinidine (guinea pig)</td>
<td>17.0±4.0</td>
</tr>
<tr>
<td>Verapamil (-Mn)</td>
<td>4.5±0.4</td>
</tr>
<tr>
<td>Nitrendipine</td>
<td>2.8±1.0</td>
</tr>
<tr>
<td>Amiodarone*</td>
<td>13.4±4.7</td>
</tr>
<tr>
<td>Tween 80f</td>
<td>19.1±5.9</td>
</tr>
<tr>
<td>Diphenylhydantoin</td>
<td>32.0±4.7</td>
</tr>
<tr>
<td>Lidoamine</td>
<td>102.3±4</td>
</tr>
<tr>
<td>4-Aminopyridine</td>
<td>98.8±19.5</td>
</tr>
<tr>
<td>4-Aminopyridine</td>
<td>38.3±9.7</td>
</tr>
<tr>
<td>Tetroethylammonium chloride</td>
<td>85.3±38.6</td>
</tr>
</tbody>
</table>

Values are mean±SD obtained on three preparations of heart cells from rat unless otherwise indicated. The IC$_{50}$ value was taken as the concentration of drug needed to inhibit the quinidine-sensitive 86Rb uptake in 3 minutes by 50%. Thus, the uptake obtained in the presence of quinidine (100 µM) was subtracted from all values before IC$_{50}$ was calculated.

*Cells were incubated 30 minutes with amiodarone. Calculated assuming an average molecular weight of 1,300. This IC$_{50}$ is equivalent to 0.0045% solution.

Table 2. Comparison of the Magnitude of 86Rb Uptake in the Presence of Rotenone Plus p-Toluenesulfonylhydrazone in Rat and Guinea Pig Heart Cells

<table>
<thead>
<tr>
<th></th>
<th>86Rb Uptake (mmeq K/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quinidine</td>
</tr>
<tr>
<td>Rat</td>
<td>87.2±13.9</td>
</tr>
<tr>
<td>Guinea pig</td>
<td>104.8±25.0</td>
</tr>
</tbody>
</table>

Values are mean±SD of measurements on three preparations taken 3 minutes after 86Rb addition under the conditions of Figure 1. Quinidine concentration was 100 µM.

Discussion

Glyburide is a specific inhibitor of ATP-sensitive potassium channels. A potassium channel has been described by Noma in heart that is activated at low ATP levels. Since 86Rb uptake stimulated by rotenone plus FCCP was inhibited completely by low levels of glyburide, we conclude that this uptake is a measure of ATP-sensitive potassium channel activity. The ATP-sensitive potassium channel in heart has also been found to be inhibited by TEA and 4-aminopyridine; this finding is consistent with our observation (Table 1).

The insensitivity of the stimulated 86Rb uptake to TTX shows that 86Rb uptake did not occur through the sodium channel, as expected from the specificity of this channel, and that sodium channel activity was not necessary for the 86Rb uptake observed. Likewise, since 10 mM manganese will block calcium channels, we conclude from the insensitivity of 86Rb uptake to manganese that calcium channels do not participate in the 86Rb uptake and that verapamil truly inhibits the ATP-sensitive potassium conductance.

Quinidine has been reported to inhibit several channels in isolated ventricular myocytes: sodium channels, delayed outward potassium currents in guinea pig but not rabbit, transient outward potassium current in rabbit, steady-state outward potassium current in guinea pig and dog but not rabbit. We saw very little inhibition of basal potassium conductance by quinidine (Figure 1); this finding suggests little effect on the inward rectifier. No effect of quinidine has been reported on ATP-sensitive potassium channels that we are aware of although inhibition of potassium efflux from metabolically exhausted frog skeletal muscle by quinine has been observed. These authors also observed a potentiation of potassium efflux by levels of quinine over 300 µM. At comparably high levels of quinidine we have found that 86Rb uptake is again stimulated, but the effect is quantitatively accounted for in terms of a loss of sarcolemmal integrity, as revealed by 14C-sucrose entry (data not shown).

Amiodarone was reported to potentiate sodium current in isolated cat heart cells but the drug was diluted in polysorbate 80 (Tween 80), the medium used in commercial preparations of amiodarone intended for intravenous use. This neutral dispersing agent has electrophysiological effects on the myocardium similar to amiodarone, and we also found it inhibited 86Rb uptake. When dissolved in dimethylsulfoxide, which has no effect on 86Rb uptake stimulated by rotenone plus FCCP, we conclude from the insensitivity of 86Rb uptake to manganese that calcium channels do not participate in the 86Rb uptake and that verapamil truly inhibits the ATP-sensitive potassium conductance.
were poor inhibitors of MRb uptake (Table 1). Of all the drugs tested, these are the only antiarrhythmic agents whose effect on ATP-sensitive potassium conductance was negligible at therapeutic concentrations. Therefore, their action may be restricted to a direct effect on sodium channels, an effect that has led to their classification as class I agents. How might inhibition of ATP-sensitive potassium channels have an antiarrhythmic effect? One possibility is by extending action potential duration and, hence, the refractory period in ATP-depleted cells. Exposing cells to metabolic stress, such as anoxia or ischemia 2 or uncouplers of oxidative phosphorylation, 22 results in a shortening of action potential duration and an increase in potassium conductance. 23, 24 Such conditions are arrhythmogenic. 24 Blocking these channels would be expected to lengthen the action potential duration, which itself could have an arrhythmogenic effect. 25 Another possibility, not exclusive of the first, is that potassium efflux through ATP-sensitive potassium channels causes extracellular potassium buildup. Such buildup is observed during ischemia, 25 and the resulting depolarization may tend to be arrhythmogenic because of decreases in conduction velocity. 26 Thus, blocking these channels could have an arrhythmogenic effect through reducing potassium efflux during ischemia. Both of these possibilities are supported by recent data showing that glyburide prevented hypoxia-induced shortening of the effective refractory period in ferret papillary muscle 26 and that glyburide reduced potassium loss during global ischemia and abolished irreversible ventricular fibrillation during regional and global ischemia in rat. 27 Finally, the effect of arrhythmogenic drugs on tissue excitability is known to be enhanced during ischemia. 28 The latter may be explained by a voltage dependence of drug activity on sodium channels. Our results suggest that an action on ATP-sensitive potassium channels could also contribute to this effect.

References

KEY WORDS: arrhythmias, potassium channel, quinidine, amiodarone, verapamil, polystyrate 80, glyburide
Inhibition of ATP-sensitive potassium channels of adult rat heart cells by antiarrhythmic drugs.
R A Haworth, A B Goknur and H A Berkoff

Circ Res. 1989;65:1157-1160
doi: 10.1161/01.RES.65.4.1157

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1989 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/65/4/1157

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/