Increased Thromboxane Biosynthesis During Coronary Thrombolysis
Evidence That Platelet Activation and Thromboxane A₂ Modulate the Response to Tissue-Type Plasminogen Activator In Vivo
Desmond J. Fitzgerald, Frank Wright, and Garret A. FitzGerald

Platelet activation is markedly increased during coronary thrombolysis and limits the response to thrombolytic therapy. A possible mediator of platelet activation in this setting is thromboxane (TX) A₂, a potent platelet agonist formed in greatly increased amounts during coronary thrombolysis in man. To address this hypothesis, we examined the role of TXA₂ in modulating the response to intravenous tissue-type plasminogen activator (t-PA) in a chronic canine model of coronary thrombosis. Reperfusion occurred in 60±5 minutes and was complicated by spontaneous reocclusion. The times to reperfusion and reocclusion were platelet-dependent. Consistent with a role for TXA₂ in this process, TXA₂ biosynthesis, determined as excretion of its enzymatic metabolite, 2,3-dinor-TXB₂, was markedly increased during coronary thrombolysis. Furthermore, inhibition of TXA₂ by aspirin, given alone or in combination with a TXA₂/prostaglandin endoperoxide receptor antagonist, accelerated reperfusion and partly inhibited cyclic flow variations during reperfusion. The delay in reperfusion and reocclusion induced by TXA₂ appeared to be mediated by platelet aggregation since the F(ab')₂ fragment of 7E3, a monoclonal antibody to the platelet GPIIb/IIIa, also accelerated reperfusion and prevented reocclusion without altering TXA₂ biosynthesis. These findings suggest that platelet aggregation limits the response to coronary thrombolysis and that platelet activation in this setting is partly TXA₂-dependent. (Circulation Research 1989;65:83-94)

Thrombolytic therapy of acute myocardial infarction is limited by failure to reperfuse the occluded artery in 20-50% of patients and by acute reocclusion in 20-30% of those who initially reperfuse. In addition, experimental studies suggest that myocardial injury, a major determinant of survival, increases rapidly over the first few hours of coronary occlusion, whereas reperfusion may be delayed an hour or more following intravenous administration of a thrombolytic agent. The mechanisms of delayed or failed reperfusion in man are unknown, but studies in experimental models suggest a role for platelets. Platelets are a major component of coronary thrombi in man, particularly at their point of attachment to the vessel wall. In addition, recent studies demonstrate marked platelet activation during coronary thrombolysis with intravenous streptokinase and tissue-type plasminogen activator (t-PA). Thus, the high density of platelet aggregates in human coronary thrombi and continued activation of platelets during coronary thrombolysis may limit the efficacy of thrombolytic agents.

What mediates platelet activation during coronary thrombolysis is unknown. However, we have recently demonstrated a marked increase in thromboxane (TX) A₂ biosynthesis in patients with acute myocardial infarction treated with either intravenous streptokinase or t-PA. TXA₂, the major cyclooxygenase product of arachidonic acid in platelets, is a potent platelet activator and induces platelet aggregation in response to a variety of platelet agonists, including ADP, epinephrine, and low concentrations of thrombin and collagen. In the pres-
ence of TXA2 receptor antagonists, these agents fail to induce complete, irreversible aggregation despite platelet activation and formation of TXA2. TXA2 biosynthesis is increased and studies with the TXA2 inhibitor, aspirin, imply a pathogenic role for TXA2 in a number of platelet-dependent conditions, including acute myocardial infarction, unstable angina, and pregnancy-induced hypertension. These observations are consistent with the hypothesis that TXA2 is an important regulator of platelet function in vivo. Formation of this eicosanoid during coronary thrombosis exceeds that seen in unstable angina and acute myocardial infarction, suggesting that it may also exert a biological effect in this setting. In these studies, we examine the functional significance of the increased TXA2 formation that occurs during coronary thrombosis with t-PA in a chronic canine model of coronary thrombosis.

Materials and Methods

The experimental protocol was approved by the Animal Care Committee at Vanderbilt University. Coronary thrombosis was induced by electrical injury to the endothelium, as previously described. Male mongrel dogs (17–23 kg) were anesthetized with pentobarbital 30 mg/kg i.v. and ventilated using a respirator (Harvard Apparatus, South Natick, Massachusetts). Coronary artery was isolated, and all branches were ligated down to the first obtuse marginal branch. A needle electrode, consisting of 30-gauge silver wire insulated with Teflon and tipped with 2 mm of a 25-gauge hypodermic needle, was passed through the vessel wall so that 4–5 mm of exposed wire lay against the endothelium. An ultrasonic flow probe was positioned proximal to the electrode, and the terminals of the electrode and flow probe were brought to the surface in a subcutaneous pouch. The chest was closed, and the animal was allowed to recover. Heparin sulfate (2,000 units) was administered subcutaneously every 8 hours for 48 hours. Preliminary studies demonstrated that with this anticoagulant regimen no clot formed at the electrode site even at 10 days after surgery.

Experimental Procedure

Five to 7 days after surgery, the animal was sedated with morphine (1–2 mg/kg) and acepromazine (1–2 mg/kg) (total dose given over the period of study). This regimen had no effect on blood pressure or ex vivo platelet aggregation. The electrode was connected in series with a potentiometer, an ammeter, and the anode of a 9-volt battery, and the circuit was completed by grounding to the subcutaneous tissues. The ultrasonic flow probe was connected to a directional pulsed Doppler flowmeter for continuous recording of coronary blood flow. Blood pressure was recorded in a subset of animals through a catheter placed in the femoral artery by the Seldinger technique and connected to a strain gauge manometer. All tracings, including an electrocardiogram, were recorded onto a strip chart using a physiological recorder (model 79D, Grass Instruments, Quincy, Massachusetts). Coronary thrombosis was induced by passing a 200-μA current through the electrode and resulted in complete coronary occlusion in 1–2 hours. Two hours after complete occlusion, defined as the absence of coronary flow detected by the flow probe, t-PA 10 μg/kg/min was infused until 10 minutes after complete reperfusion had been achieved. This was defined as a coronary blood flow greater than or equal to that at baseline. After reperfusion, the animal was observed for 4 hours.

In four experiments, coronary angiography was performed through the femoral artery at intervals during the experiment using a 7F Amplatz catheter (Cordis, Miami, Florida). Coronary angiograms were obtained in the left anterior oblique projection after the injection of 3–4 ml of contrast using a Philips image intensifier (Atlanta, Georgia).

Urine was collected by catherization before surgery and at intervals on the day of study for determination of 2,3-dinor-TXB2 and 2,3-dinor-6-keto-prostaglandin (PG) F1α, major enzymatic metabolites of TX and prostacyclin (PGI2), respectively. These studies were not performed in experiments where the femoral artery was cannulated since the resulting trauma artifactually elevates eicosanoid biosynthesis. Peripheral venous blood was obtained through a 19-gauge cannula for platelet aggregation, coagulation, and hematological studies at intervals throughout the experiment.

Pharmacological Studies

PGI2 (epoprostenol) was dissolved in glycine buffer, pH 10.5, immediately before use. Active drug or vehicle was administered intravenously beginning either 30 minutes before infusion of t-PA or after reperfusion and was continued for 1 hour after reperfusion. Ex vivo platelet aggregation was determined immediately before and 30 minutes after the initiation of the PGI2 infusion and again after withdrawal of PGI2.

To examine the role of TXA2 in this model, we examined the effect of aspirin and of two structur-
ally distinct TXA2/prostaglandin endoperoxide receptor antagonists: 3-carboxyl-dibenzo (b,f) theipin-
5,5-dioxide (L636,499) and [1-(Z),28,5]-7-[5-[(1,1-biphenyl)-4-yl]methoxy]-2-(4-morpholiny1)-
3-oxyclopropentyl]-4-heptenoic acid (AH23848). Aspirin was dissolved in 0.1 M Na2CO3 immediately
before use and was administered intravenously over 10 minutes in a dose of 20 mg/kg either 30 minutes
before t-PA administration or after reperfusion. L636,499 was administered in 0.05 M Na2CO3 at a
dose of 20 mg/kg over 10 minutes followed by an intravenous infusion of 2 mg/kg/min. AH23848 was
administered in 0.1 M NaHCO3 in a single dose of 1 mg/kg given i.v. over 10 minutes either 30 minutes
before t-PA administration or after reperfusion.

In a separate series of studies, we examined the effects of a monoclonal antibody (7E3) to the platelet
glycoprotein IIb/IIIa complex,22,23 the putative putative fibrinogen receptor. The F(ab)2 fragment of 7E3
was compared with the F(ab')2 fragment of OCI25, a monoclonal antibody to a human ovarian cell carci
noma antigen, which has no antiplatelet activity.2 The antibodies were administered in a dose of 0.8
mg/kg given over 10 minutes through a peripheral vein commencing 30 minutes before the administra-
tion of t-PA. At this dose, 83% of platelet binding sites for 7E3 are occupied.2 Platelet aggregation was
determined before and 30 minutes after antibody administration, after reperfusion, and again at 4 hours
after reperfusion. The platelet count in whole blood was determined before administration of the antibody
and again at the completion of the experiment.

Platelet Aggregation

Platelet aggregation studies were performed in platelet-rich plasma (PRP) by light transmission,24
using a multichannel aggregometer (Biodata PAP-4, Biodata, Hartboro, Pennsylvania). PRP was pre-
pared by centrifuging citrated venous blood (3.8%
Na citrate, 9:1 vol/vol) at 3,000 rpm for 50 seconds.
This allowed us to examine the response to PG12,
which is rapidly inactivated in biological fluids.
Platelet-poor plasma was obtained by centrifuging
the remaining blood at 3,000 rpm for 10 minutes.
Platelet aggregations were performed in 500 µl
aliquots with aggregating agents added in volumes
of 10% or less. For all agonists, a threshold concen-
tration, that is, the minimum concentration induc-
ing maximum and irreversible aggregation, was
identified and used to assess the response to inter-
ventions. The concentration of aggregating agents
was expressed as the final concentration in PRP. Platelet
aggregation was expressed as percent light trans-
mision, where PRP equals 100%. In vitro, canine
platelets will fully aggregate in response to the
TXA2/prostaglandin endoperoxide analogue,
U46619, but must first be partially activated by
epinephrine or ADP. Less frequently, canine plate-
lets require priming before they will respond to
arachidonic acid. Therefore, to examine the response
to U46619 and arachidonic acid, the platelets were
first primed with ADP at a concentration (1–2 µM)
that induced a small (<10%), reversible wave of
aggregation, as previously described.25

Biochemical Studies

Urinary 2,3-dinor TXB2 and 2,3-dinor-6-keto
PGF1α were determined by gas chromatography,
negative ion-chemical ionization, and mass spec-
rometry using their respective tetradeuterated ana-
logues as internal standards. Briefly, to a 5-ml
sample of urine was added 5 ng of each internal
standard and the urine extracted by immunoaffinity
chromatography as previously described.26 After
formation of the methoxime derivatives, further
purification was achieved by thin layer chromatog-
raphy and the sample derivatized to the trimethyl-
silyl ether. Final separation and quantification was
achieved by a gas chromatograph in series with a
Nermag R10–10 mass spectrometer operated in the
negative ion mode.

Serum TXB2 was determined by radioimmuno-
assay following incubation of whole blood in a glass
test tube at 37° C for 45 minutes.27

Coagulation and Hematological Studies

Fibrinogen concentration was determined before
and 2 hours after t-PA administration as thrombin-
clottable protein in citrated plasma using a fibrometer
(BBL, Becton Dickinson and Co, Cockeysville, Mary-
land). The partial thromboplastin time (PTT) was
determined as the time to clot formation after the
addition of activated rabbit brain cephalin (Actin,
American Dade, Aguada, Puerto Rico) to citrated
plasma. The platelet count in citrated whole blood
was determined using a Coulter counter. All samples
were analyzed immediately to minimize artifacts due
to ex vivo fibrinogenysis and were repeated 2 hours
after discontinuation of the infusion of t-PA.

Histology

Sections of the reperfused circumflex coronary
artery were fixed in formalin 10% for subsequent
light microscopy and in glutaraldehyde for electron
microscopy.

Statistical Analysis

Groups were compared by Wilcoxon rank-sum
test or by the Kruskal-Wallis one-way analysis of
variance where appropriate. These are nonparamet-
ric tests and, therefore, are independent of the
distribution of the data.28

Results

Control Experiments

In control experiments, t-PA 10 µg/kg/min
induced reperfusion in all animals, with a time to
reperfusion ranging from 42 to 80 minutes (mean
60±4.5) (n=9). In contrast, administration of vehi-
cle (0.9% sodium chloride) had no effect, and spon-
taneous reperfusion did not occur over 4 hours of

Fitzgerald et al Platelet Activation and TXA2 Response to t-PA 85

Downloaded from http://circres.ahajournals.org/ on June 23, 2017 by guest
observation \((n=5)\). Reperfusion was complicated in all cases by episodes of gradual reocclusion followed by abrupt reperfusion (Figure 1) and, ultimately, by complete coronary occlusion at 32±5.2 minutes \((range\ 16-49)\). Angiographic studies in four animals demonstrated that, following reperfusion, there was a severe coronary stenosis \((80-90\%)\), which was the site of subsequent reocclusion \((Figure\ 2)\). In additional experiments, histological studies demonstrated that the coronary narrowing reflected residual thrombus that, at higher magnification and on electron microscopy, was found to be rich in platelets \((Figure\ 3)\).

Biochemical Studies

Urinary excretion of 2,3-dinor-TXB\(_2\) \((range\ 494-1,819,\ median\ 779\ \text{pg/mg\ creatinine})\) and 2,3-dinor-6-keto-PGF\(_{1\alpha}\) \((range\ 129-554,\ median\ 244\ \text{pg/mg\ creatinine})\) was not significantly different on the day of study compared with presurgical levels. After induction of coronary thrombosis, excretion of both metabolites increased and remained elevated throughout the 2 hours of occlusion \((Figure\ 4)\). After reperfusion with t-PA, there was a further marked increase in urinary excretion of 2,3-dinor-TXB\(_2\) \((peak\ 998-5,067,\ median\ 3,356\ \text{pg/mg\ creatinine})\) and 2,3-dinor-6-keto-PGF\(_{1\alpha}\) \((peak\ 203-1,399,\ median\ 1,004\ \text{pg/mg\ creatinine})\). No further increase was seen in animals in whom coronary thrombosis was induced and treated with vehicle only \((Figure\ 4)\) or after infusion of t-PA 10 \(\mu\text{g/kg/min}\) for 60 minutes in animals in whom coronary thrombosis was not induced \((3,115\pm1,043\ \text{versus}\ 3,212\pm1,132\ \text{pg/mg\ creatinine\ after\ t-PA\ infusion,}\ n=3)\). Administration of aspirin 20 mg/kg i.v. 30 minutes before reperfusion with t-PA abolished the increase in both metabolites \((Figure\ 5)\).

Platelet and Coagulation Studies

Fibrinogen concentration in plasma decreased during the infusion of t-PA and was similarly depressed \((range\ 10-23\%,\ median\ 11\%)\) 2 hours after completion of the infusion. However, plasma fibrinogen also decreased in vehicle-treated controls to a similar extent \((range\ 4-23\%,\ median\ 11\%)\). Platelet aggregation to the threshold concentration of ADP decreased slightly during and following the infusion of t-PA \((65\pm7.0\%\ versus\ 80\pm3.0\%,\ p<0.05)\) whereas aggregation to arachidonic acid and U46619 was unaltered.

Pharmacological Studies

Studies with PGI\(_2\). In six experiments, reocclusion occurred despite the administration of heparin \((200\ units/kg\ i.v.)\) and marked prolongation of the PTT at the time of reocclusion \((77\pm32\ versus\ 12\ seconds,\ p<0.05)\) \((Figures\ 1\ and\ 6)\). Reocclusion also occurred in the absence of heparin. In contrast, PGI\(_2\) \((500\ ng/kg/min)\) prevented reocclusion and stabilized coronary blood flow in 10 of 11 animals \((Figure\ 6)\). This occurred whether PGI\(_2\) was administered before reperfusion \((n=6)\) or during cyclic coronary flow following reperfusion \((n=5)\). Discontinuation of the PGI\(_2\) resulted in abrupt reocclusion in all cases \((Figure\ 6)\) with a mean time to reocclusion of 14±3 minutes \((range\ 8-29\ minutes)\). At the doses used, PGI\(_2\) markedly depressed ex vivo platelet aggregation to ADP \((15\pm4.6\%\ versus\ 69\pm7.4\%);
FIGURE 2. Serial angiograms of the circumflex coronary artery during a single experiment. Following induction of coronary thrombosis complete coronary occlusion occurred. Two hours later, tissue-type plasminogen activator was administered in a dose of 10 μg/kg/min, resulting in reperfusion 1 hour thereafter. Reocclusion occurred rapidly at the site of residual narrowing with the distal vessel now filling through a collateral from the left anterior descending coronary artery.

Studies with TXA₂ inhibitors. Administration of aspirin reduced serum TXB₂ by 96±5%, abolished the platelet aggregation response to arachidonic acid (data not shown), and decreased urinary 2,3-dinor-TXB₂ by 60±8%. Aspirin prevented reocclusion and stabilized coronary flow in some experiments (Table 1, Figure 7, upper panel) while in others it had no effect (Figure 7, lower panel). In part, this may have reflected incomplete inhibition of TXA₂ biosynthesis since urinary 2,3-dinor-TXB₂ was still markedly elevated in some experiments early following aspirin administration (Figures 5 and 7). Furthermore, addition of a TXA₂/prostaglandin endoperoxide-receptor antagonist, L636,499, enhanced the response to aspirin without inducing a further reduction in 2,3-dinor-TXB₂ (Figure 7). The reverse was also true; that is, addition of aspirin enhanced the response to L636,499. A similar effect was seen with a structurally distinct TXA₂/prostaglandin endoperoxide-receptor antagonist, AH23848 (Table 1). The effect of these treatments on reocclusion was similar whether they were administered before t-PA or following reperfusion. Pretreatment of animals with aspirin also decreased the time to reperfusion (range 23–60, median 42 minutes) although the effect was more marked when aspirin was combined with the TXA₂/prostaglandin endoperoxide-receptor antagonist, AH23848 (range 15–36, median 25 minutes) (Table 1).

Studies with the F(ab')₂ fragment of 7E3. Administration of the 7E3 monoclonal antibody to the platelet glycoprotein IIb/IIIa abolished platelet aggregation to ADP, U46619, and arachidonic acid (Figure 8) over the 4 hours of observation but had no effect on blood pressure or heart rate. 7E3 also shortened the time to reperfusion, abolished cyclical flow variations after reperfusion, and prevented reocclusion in all experiments (Figure 9, Table 2). In contrast, the control antibody, OC125, had no effect on ex vivo platelet aggregation. Furthermore, OC125 did not alter the time to reperfusion with t-PA, and in all experiments reperfusion was complicated by cyclic coronary blood flow, and ultimately, complete reocclusion occurred. There was no signifi-
FIGURE 3. Histological sections through the circumflex coronary artery after reperfusion with tissue-type plasminogen activator. The artery was tied distally, then proximally in situ to prevent dislodgment of the clot. At low power, residual thrombus is seen attached to the vessel wall (upper panels). Platelet aggregates (arrows) are seen at higher power and on electron microscopy (right lower panel).

cant fall in platelet count with 7E3 or OC125 (Table 2). These studies further demonstrate, therefore, a role for platelets in this model. Despite the inhibition of platelet aggregation by 7E3, there was evidence of continued platelet activation. Thus, urinary excretion of 2,3-dinor-TXB₂ demonstrated a similar increase after reperfusion with t-PA in 7E3-treated (range 40-332%, median 150%) as in control experiments (range 31-443%, median 195%).

Discussion

Recent studies in experimental models of coronary thrombosis suggest that platelets limit the response to thrombolytic therapy. A possible mediator of platelet activation in this setting is TXA₂. Thus, we have demonstrated a marked increase in TXA₂ biosynthesis in patients with acute myocardial infarction treated with intravenous t-PA or streptokinase. These studies explore the role of TXA₂ further and demonstrate that TXA₂ limits the response to intravenous thrombolytic therapy and that this largely reflects TXA₂-mediated platelet aggregation. Thus, 1) TXA₂ biosynthesis was markedly increased after administration of t-PA in this platelet-dependent model of coronary thrombolysis, 2) inhibition of TXA₂ accelerated reperfusion and partly inhibited reocclusion, 3) the response depended on the degree of inhibition of TXA₂, and 4) prevention of platelet aggregation exerted a similar effect without altering TXA₂ biosynthesis.

Platelet activation has been shown to play a role in delaying reperfusion induced by t-PA and
streptokinase in a number of acute, open-chest models of coronary thrombosis. Interpretation of data obtained in such models is confounded by the marked platelet activation that occurs as a result of tissue trauma and that may exaggerate the platelet dependence of the response to t-PA. Thus, activated platelets release a number of proteins that may inhibit plasminogen activators, including a specific inhibitor, PAI-1. Experimental models have also suggested that platelet activation induces acute reocclusion. However, in these models, reocclusion occurred in the presence of a copper coil or a mechanically induced severe stenosis, both of which induce occlusion in the absence of pharmacological reperfusion. To avoid these artifacts, we used a chronic, closed-chest model in which coronary thrombosis was induced remote from the trauma of surgery. As in humans, the thrombus formed is rich in platelets and can be inhibited by antiplatelet drugs.

As in humans, we demonstrated a marked increase in TXA2 biosynthesis during coronary thrombosis in this model. To measure TXA2 formation, we determined the urinary excretion of its enzymatic metabolite, 2,3-dinor-TXB2, by gas chromatography and mass spectrometry. This is a highly specific assay and avoids the traumatic increase in TXA2 formation, which confounds measurements of its plasma hydrolysis product in TXE2.35 In addition, TXA2 biosynthesis was determined in a chronic, stable state when eicosanoid formation, massively increased by surgery, had returned to normal. Urinary 2,3-dinor-TXB2 increased after reperfusion with t-PA. Administration of aspirin (ASA) 20 mg/kg i.v. immediately before t-PA abolished the increase in Tx-M and PGI-M and decreased Tx-M.

Effect of PGI2 on coronary blood flow following reperfusion with tissue-type plasminogen activator (t-PA) in the canine model. Following t-PA administration, reperfusion was induced and was complicated by episodes of reocclusion. Heparin failed to prevent reocclusion despite marked prolongation of the partial thromboplastin time (PTT). In contrast, PGI2 prevented reocclusion and stabilized coronary flow. Complete reocclusion occurred following withdrawal of PGI2 (The step up in the tracing during PGI2 administration reflects resetting of the calibration to its pre-reperfusion value of 50 mv.)
and remained elevated over the 4 hours of observation. Furthermore, this increase was prevented by aspirin given immediately before reperfusion, demonstrating that this reflected de novo TXA₂ formation and not washout and subsequent metabolism of inactive TXB₂ formed during the induction of coronary thrombosis.

In addition to biochemical evidence of enhanced TXA₂ biosynthesis, these studies demonstrate a functional role for TXA₂ in this platelet-dependent model. Thus, inhibition of TXA₂ accelerated reperfusion and inhibited reperfusion, although incompletely. The dose of aspirin used in this study was selected to achieve a >95% inhibition of serum TXB₂ in the dog. This degree of inhibition of the capacity of platelets to generate TXA₂ is required to achieve substantial inhibition of TXA₂ formation in vivo.36 Despite marked suppression of TXA₂ biosynthesis, aspirin exerted only a modest effect on the response to t-PA. This may have reflected incomplete inhibition of TXA₂ biosynthesis since the response to aspirin was enhanced by the addition of either L636,499 or AH23848. L636,499 is a TXA₂/prostaglandin endoperoxide-receptor antagonist.20 Consistent with this, we have previously demonstrated that at the dose used in this study, L636,499 inhibited ex vivo platelet aggregation to the endoperoxide analogue, U46619, and to arachidonic acid but did not alter ADP-induced platelet aggregation.15,17 Furthermore, L636,499 had no effect
on platelet cyclic AMP, TXA₂, or PGI₂ biosynthesis. AH23848 is a structurally distinct TXA₂/prostaglandin endoperoxide-receptor antagonist, which at the doses used selectively inhibited U46619-induced platelet aggregation (data not shown). Thus, the additional effect of these antagonists on the TXA₂ receptor suggests residual TXA₂-mediated platelet activation. This was further supported by evidence of continued, although greatly reduced, TXA₂ biosynthesis following aspirin administration. Therefore, these studies demonstrate that a very marked degree of TXA₂ suppression is required to achieve a biological effect during coronary thrombolysis. Another mechanism that may have limited the response to aspirin was suppression of PGI₂ formation, as demonstrated by a reduction in the excretion of its enzymatic metabolite, 2,3-dinor-6-keto-PGF₁α. Indeed, PGI₂ may also play a role in modulating platelet activity in this setting. However, this is not the primary mechanism limiting the response to aspirin during coronary thrombolysis, since aspirin also enhanced the response to a TXA₂/prostaglandin endoperoxide-receptor antagonist, L636,499.

These studies therefore suggest a role for TXA₂ in limiting the response to thrombolytic therapy of coronary thrombosis. A similar effect was achieved by preventing platelet aggregation without inhibiting TXA₂ biosynthesis. Thus, 7E3, an antibody to both primate and canine platelet GPIIb/IIIa, abolished platelet aggregation, accelerated reperfusion, and prevented reocclusion. However, 7E3 did not inhibit TXA₂ formation, demonstrating that while it prevents platelet aggregation, it does not prevent primary activation of platelets. Consistent with this hypothesis, platelets exhibited a normal shape change to a variety of agonists ex vivo (Figure 8). This suggests that TXA₂-mediated platelet aggregation limits coronary thrombolysis.

Similarly, our findings suggest that the major mechanism of TXA₂-mediated reocclusion is plate-
platelet aggregation. In this study, reperfusion was complicated by a severe residual stenosis, which is also seen following coronary thrombolysis in humans, and was demonstrated angiographically to be the site of reocclusion. A number of investigators have demonstrated that platelet aggregation can induce occlusion at the site of a severe stenosis. This can be prevented in part by inhibition of TXA₂ and totally by GPIIb/IIIa blockade. The primary stimulus to platelet activation in this setting is uncertain, but it may reflect an increased shear rate at the site of the stenosis. Consistent with this possibility, shear-induced platelet aggregation in vitro reflects TXA₂-mediated vasoconstriction. TXA₂ is a potent constrictor of canine vascular smooth muscle in vitro and has been shown to mediate platelet-dependent vasoconstriction at the site of vascular injury in vivo.

In conclusion, these studies demonstrate that TXA₂ may limit the response to coronary thrombolysis, both by delaying reperfusion and by inducing acute reocclusion, and that this appears to be mediated largely by platelet aggregation. Data from a large clinical trial demonstrating an enhanced effect of aspirin combined with streptokinase over streptokinase alone in patients with acute myocardial infarction are consistent with this hypothesis. Combined with evidence of increased platelet activation and TXA₂ formation during coronary thrombolysis in humans, these data support clinical evaluation of the use of TXA₂ inhibition early in the course of intravenous thrombolytic therapy in patients with acute myocardial infarction.

Acknowledgment

We gratefully acknowledge the technical assistance of Patricia Price.

References

Table 2. Comparison of the Effects of the F(ab')₂ Fragments of the 7E3 Antibody to the Platelet Glycoprotein IIb/IIIa and OC125, the Control Antibody, in the Chronic Canine Model of Coronary Thrombolysis

<table>
<thead>
<tr>
<th>Exp</th>
<th>Occlusion (min)</th>
<th>Reperfusion (min)</th>
<th>Reocclusion (min)</th>
<th>Pre-t-PA</th>
<th>2 hours</th>
<th>Platelet count (1,000/μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC125</td>
<td>202</td>
<td>68</td>
<td>60</td>
<td>21</td>
<td>340</td>
<td>310</td>
</tr>
<tr>
<td>204</td>
<td>85</td>
<td>83</td>
<td>12</td>
<td>155</td>
<td>312</td>
<td>310</td>
</tr>
<tr>
<td>209</td>
<td>165</td>
<td>48</td>
<td>19</td>
<td>218</td>
<td>241</td>
<td>380</td>
</tr>
<tr>
<td>211</td>
<td>190</td>
<td>55</td>
<td>28</td>
<td>211</td>
<td>26</td>
<td>217</td>
</tr>
<tr>
<td>212</td>
<td>125</td>
<td>68</td>
<td>26</td>
<td>212</td>
<td>225</td>
<td>274±20</td>
</tr>
<tr>
<td>7E3</td>
<td>199</td>
<td>150</td>
<td>34</td>
<td>>240</td>
<td>202</td>
<td>310</td>
</tr>
<tr>
<td>201</td>
<td>94</td>
<td>31</td>
<td>>240</td>
<td>227</td>
<td>315</td>
<td>404</td>
</tr>
<tr>
<td>203</td>
<td>168</td>
<td>46</td>
<td>>240</td>
<td>225</td>
<td>245</td>
<td>205</td>
</tr>
<tr>
<td>206</td>
<td>30</td>
<td>29</td>
<td>>240</td>
<td>555</td>
<td>490</td>
<td>430</td>
</tr>
<tr>
<td>208</td>
<td>80</td>
<td>32</td>
<td>>240</td>
<td>280</td>
<td>290</td>
<td>271</td>
</tr>
<tr>
<td>104±25</td>
<td>34±3.1</td>
<td>>240</td>
<td>296±69</td>
<td>302±53</td>
<td>328±54</td>
<td>326±60</td>
</tr>
</tbody>
</table>

45. Lam JYT, Cheseboro JH, Steele PM, Fuster V: Is vaso-

Key Words • coronary thrombolysis • platelet activation • thromboxane A2 • tissue-type plasminogen activator
Increased thromboxane biosynthesis during coronary thrombolysis. Evidence that platelet activation and thromboxane A2 modulate the response to tissue-type plasminogen activator in vivo.

D J Fitzgerald, F Wright and G A FitzGerald

doi: 10.1161/01.RES.65.1.83

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1989 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/65/1/83

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/