
Alan Chu, Adrienne Stakely, Chang-Chyi Lin, and Frederick R. Cobb

The effects of atrial natriuretic peptide (ANP) on transmural myocardial blood flow distribution and the reactive hyperemic response in the presence and absence of flow-limiting coronary stenosis were examined in chronically instrumented conscious dogs. Ten-second coronary occlusion without subsequent flow restriction resulted in marked reactive hyperemic responses (Doppler flow probes), mean flow debt repayment was 481±55%. When the 10-second coronary occlusions were followed by a 20-second partial restriction that allowed normal preocclusion coronary inflow, the subsequent reactive hyperemia was significantly augmented, mean flow debt repayment was 938±91% (p<0.05). Pretreatment with ANP (3 μg/kg) did not alter the flow debt repayment after a 10-second occlusion without restriction (474±30%, NS) but attenuated the augmentation of reactive hyperemia resulting from the 20-second inflow restriction, flow debt repayment (613±66%, NS). Regional myocardial blood flow to the ischemic region was measured during restricted inflow after a 10-second coronary occlusion before and after ANP pretreatment. Before ANP, subendocardial flow decreased (0.54±0.04 ml/min/g) and subepicardial flow significantly increased (1.03±0.12 ml/min/g) when compared with the nonischemic zone (subendocardial, 1.03±0.09 ml/min/g; subepicardial, 0.87±0.09 ml/min/g, p<0.05), indicating maldistribution of the restricted inflow. The resultant subendocardial-to-subepicardial ratio in the ischemic region was significantly decreased when compared with the nonischemic region (0.56±0.03 vs. 1.18±0.04, p<0.05). After ANP pretreatment, subendocardial flow to the ischemic region significantly increased (0.71±0.07 ml/min/g, p<0.05) and the subendocardial-to-subepicardial ratio in the ischemic zone was significantly improved (0.91±0.10, p<0.05). Myocardial flow measured during coronary occlusion was not altered after ANP pretreatment, indicating no change in native collateral flow to the ischemic region. Myocardial oxygen consumption, aortic and left ventricular end-diastolic pressures, dP/dt, and heart rates were also not affected by pretreatment with ANP. These data indicate that ANP favorably redistributed blood flow to the subendocardium and reduced subendocardial ischemia after a transient occlusion in the presence of a flow limiting coronary stenosis. The reversal of subendocardial hypoperfusion by ANP in the absence of alterations of intrinsic vascular reactivity or native collateral flow supports a dilation effect of ANP on the intramural arteries. (Circulation Research 1989;64:600–606)

From the Department of Medicine, Division of Cardiology, Duke University and Durham Veterans Administration Medical Centers, Durham, North Carolina.
Supported in part by grants RR-00806, RR-01117, HL-31749 and HL-17670 from the National Heart, Lung, and Blood Institute, Bethesda, Maryland, and from the Research Service, Veterans Administration Medical Center. Supported in part by GTP226 Walker P.

Inman Memorial Foundation Grant. A.C. is supported by a Career Development Award from the Veterans Administration Medical Center, Durham, North Carolina.
Address for reprints: Frederick R. Cobb, MD, Professor of Medicine, Division of Cardiology (IIA), Durham VA Medical Center, Durham, NC 27705.
Received March 10, 1988; accepted August 30, 1988.
Atrial natriuretic peptide (ANP) induces natriuresis and diuresis. In addition, it has been demonstrated to exert vasorelaxant activity and has been reported to cause mild systemic hypotension. In recent studies, we have demonstrated that ANP injection induces direct, sustained dose-related increases in proximal coronary dimension in chronically instrumented awake dogs. In contrast, ANP injection causes a much briefer direct vasodilation of the distal resistance vessels that results in dose-dependent increases in phasic coronary blood flow. The effects of ANP on the large intramural coronary arteries and native collateral vessels have not been examined.

Previous studies indicate that the large intramural coronary arteries may be an important contributor to coronary resistance that leads to maldistribution of blood flow in the setting of a flow-limiting stenosis and ischemia. The maldistribution of flow results in persistent subendocardial ischemia and augmentation of the reactive hyperemic response. Pretreatment with nitroglycerin (NTG) attenuates the maldistribution of blood flow and consequently reduces both subendocardial ischemia and augmentation of reactive hyperemia without changing native collateral flow during ischemia. These data suggest that NTG dilates the intramural coronary arteries, resulting in a more favorable distribution of transmural blood flow. Subsequent studies have demonstrated that diltiazem and nifedipine also exert similar effects during transient ischemia in the setting of flow limitation, while propranolol is ineffective in redistributing transmural flow.

The present study was designed to determine whether ANP would favorably alter the maldistributed transmural blood flow that occurred after ischemic stimulation in the setting of critical stenosis and whether the effects on regional perfusion would be of sufficient magnitude to reduce ischemia as measured by the reactive hyperemic response. It was reasoned that a favorable effect of ANP on transmural flow after ischemic stimulation without a change in collateral flow or in indexes of myocardial oxygen demand would support an important vasodilator effect of ANP on the intramural coronary vasculature.

Materials and Methods

Seventeen healthy mongrel dogs (25–30 kg) were used in this study. Twelve (Group A) were anesthetized with thiopental sodium (60–80 mg/kg i.v.) and subjected to left thoracotomy. The heart was suspended in a pericardial cradle. Heparin-filled polyvinyl catheters were inserted into the left atrium via the left atrial appendage, in the left ventricular cavity via the apex, and in the ascending aorta via the left internal thoracic artery. A 10-MHz cuff-type pulsed Doppler flow probe (Dr. C.J. Hartley, Houston, Texas) was implanted on the proximal circumflex coronary artery. An inflatable pneumatic snare was placed around the circumflex artery distal to the flow probe. The catheters, tubing, and wires were tunneled to a subcutaneous pouch at the base of the neck.

The dogs were subjected to a 10-second coronary occlusion. Those that failed to demonstrate significant S-T segment elevation and increased heart rate were excluded since significant collateral circulation may have been present in these animals. The dogs were further subjected to a transient 10-second coronary occlusion and, later, to a transient 10-second coronary occlusion followed by 20 seconds of inflow restriction to preocclusion level. The delayed reactive hyperemic flow (after release of a 10-second coronary occlusion followed by a 20-second inflow restriction) was compared with the reactive hyperemic flow after a simple 10-second occlusion. Previous studies using a similar model demonstrated augmentation of the delayed reactive hyperemia in the presence of flow restriction. Dogs that failed to demonstrate an augmented delayed reactive hyperemic response were also excluded. Four dogs were excluded from the data analyses using these criteria.

Myocardial blood flow distribution was evaluated in all eight Group A dogs using the radioactive microsphere technique. Microspheres (9±1 μm) labeled with I211, 141Ce, 51Cr, 113Sn, 90Sc, 103Ru, or 99mTc (New England Nuclear, Boston, Massachusetts) were infused via the left atrial catheter. Before each injection, the microspheres were vortexed thoroughly and agitated in an ultrasonic bath for at least 15 minutes. For each injection, 1 ml of the diluted microsphere suspension (approximately 3 x 10^6 microspheres) was infused over 5–10 seconds and flushed with 5 ml saline. Beginning 2–5 seconds before each microsphere injection and continuing for 90 seconds, a reference sample was collected from the aortic catheter at a precalibrated constant rate of approximately 17 ml/min using a Harvard withdrawal apparatus (South Natick, Massachusetts).

Dogs were subjected to a 10-second coronary occlusion, and the reactive hyperemia was recorded to establish the intrinsic reactive hyperemic response to a standard ischemic stimulation. Five minutes later, they were subjected to a 10-second occlusion followed by 20 seconds of flow restriction before complete release. The restricted flow was carefully adjusted to exactly equal the preocclusion level. The subsequent augmented delayed reactive hyperemic response was also recorded. Previous studies demonstrated that in conscious dogs, a transient 5-second coronary artery occlusion induced reactive hyperemia resulting in threefold to fourfold ray-
ment of flow debt. If the occluder was only partially released after a transient occlusion so that coronary artery inflow was held at the preocclusion level for 20 seconds before complete release, the delayed reactive hyperemia was markedly augmented. Each dog was then given a 3 \(\mu \)g/kg bolus of ANP (a-human, 28-amino acids, Peninsula Laboratories) via the left atrial catheter (total volume, <2 ml infused in <5 seconds). To avoid any potential effects of ANP on the distal autoregulatory vasculature, studies were performed 10 minutes after ANP injection, when phasic blood flow had returned to preinfusion level.3 At this time, the 10-second occlusion followed by reactive hyperemic response was repeated. Five minutes after the phasic coronary flow returned to preocclusion level, the 10-second occlusion/20-second flow restriction/delayed reactive hyperemia sequence was again carried out. All measurements were made in duplicate, and the occlusions were at least 10 minutes apart. Duplicate measurements deviating by >10% were excluded. The sequence of occlusion was randomized.

Myocardial blood flow was measured in the same dogs on the following day. After reproducing comparable reactive hyperemic responses to a single 10-second occlusion and comparable augmented delayed reactive hyperemia after the 10-second occlusion/20-second flow restriction sequence, myocardial blood flow was quantitated by injecting the radioactive microspheres. Previous studies demonstrated that the vasodilating effects of ANP on the epicardial conductance vessels were maximal at this time.3

On a third day, the same eight dogs were returned once more to the laboratory. After establishing comparable reactive hyperemic response to a single 10-second coronary occlusion and comparable delayed augmented reactive hyperemia following a 10-second occlusion/20-second constant flow stimulus, each dog was subjected to a 60-second coronary occlusion. Beginning at 5 seconds after the acute occlusion, another microsphere injection was made for quantitation of native collateral flow. After a rest period of 60 minutes, a repeat ANP dose (3 \(\mu \)g/kg) was given to each dog. At 10 minutes after ANP bolus injection, myocardial blood flow was measured during another 60-second coronary occlusion.

The dogs were then killed with an overdose of thiamylal sodium and potassium chloride. The hearts were extracted and placed in 10% buffered formalin for tissue fixation to facilitate subsequent sectioning. After removing the atria, right ventricle, and epicardial fat, the left ventricle was sectioned into four transverse rings, which were further divided into six circumferential regions. Each region was then sliced into four transmural layers of equal thickness from the epicardium to the endocardium. The resultant tissue samples were weighed and counted in a Packard Gamma Scintillation Spectrometer (Downers Grove, Illinois) with a multichannel analyzer using preset window settings for each isotope. The radioactive blood withdrawn during the microsphere injections were also counted in the same fashion. The resultant radioactive counts, after appropriate correction for background and spill-over using a dedicated computer program,9 were used to determine myocardial blood flow:

\[
Q_m = Q_r \times C_m / C_r
\]

where \(Q_m \) is myocardial blood flow (ml/min), \(Q_r \) is reference blood flow (ml/min), \(C_m \) is counts in myocardial sample (counts/min), and \(C_r \) is counts in reference blood (counts/min). \(Q_m \) was then divided by the sample weight and expressed as milliliters per minute per gram.

In a separate group of five dogs (Group B), jugular vein and carotid artery cutdowns were performed under local lidocaine infiltration anesthesia while the dogs were lying awake on their right side. A 7-F multipurpose catheter was advanced under fluoroscopy to the coronary sinus, and a 7-F right coronary catheter was advanced to the aortic root. Arterial and coronary sinus venous blood samples were simultaneously withdrawn before and at 10 minutes after injection of 3 \(\mu \)g/kg ANP bolus into the left atrium. The oxygen content of the arterial and venous samples were determined and the myocardial arteriovenous oxygen difference calculated.

Data were analyzed as follows using the same dog as its own control. Reactive hyperemic flow (KHz · sec) = total flow during reactive hyperemia (KHz · sec) - [control flow (KHz) × duration of reactive hyperemia (sec)]. Blood flow debt (KHz · sec) = control flow (KHz) × duration of occlusion (sec). Blood flow debt repayment (%) = (reactive hyperemic flow/blood flow debt) × 100%.

Blood flow debt repayment in the presence of 20-second flow restriction was compared with the flow debt repayment after a single 10-second occlusion. The same comparison was made after ANP injection. Each flow debt repayment before ANP injection was further compared with its counterpart measured after ANP injection. The corresponding myocardial blood flow measurements were similarly compared for both the normal (anterior wall)
TABLE 1. Mean Resting Hemodynamic Measurements Before Each Intervention

<table>
<thead>
<tr>
<th></th>
<th>No ANP Before 10-sec occlusion</th>
<th>No ANP Before 10-sec occ/20-sec constant flow</th>
<th>After ANP Before 10-sec occlusion</th>
<th>After ANP Before 10-sec occ/20-sec constant flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic pressure (mm Hg)</td>
<td>97±3</td>
<td>99±3</td>
<td>93±3</td>
<td>92±3</td>
</tr>
<tr>
<td>LV end-diastolic pressure (mm Hg)</td>
<td>8±1</td>
<td>8±1</td>
<td>8±1</td>
<td>8±1</td>
</tr>
<tr>
<td>LV dP/dt (mm Hg/sec)</td>
<td>2,080±170</td>
<td>2,060±210</td>
<td>2,170±230</td>
<td>2,140±200</td>
</tr>
<tr>
<td>Heart rate (beat/min)</td>
<td>76±7</td>
<td>73±7</td>
<td>70±9</td>
<td>68±8</td>
</tr>
<tr>
<td>Coronary flow (KHz)</td>
<td>1.82±0.12</td>
<td>1.80±0.11</td>
<td>1.68±0.11</td>
<td>1.69±0.11</td>
</tr>
</tbody>
</table>

ANP, atrial natriuretic peptide; occ, occlusion; LV, left ventricular. Values are mean±SEM.

and ischemic (posterior wall and posterior papillary) regions. Statistical analyses were performed using Student's paired t test.

Results

Mean aortic and left ventricular end-diastolic pressures, dP/dt, heart rates, and rest coronary blood flow of all dogs in Group A are illustrated in Table 1. There were no significant differences in rest hemodynamic parameters before the 10-second occlusion or before the 10-second occlusion/20-second restricted flow sequence. In addition, these resting parameters were not significantly different from rest measurements obtained before the occlusions performed after ANP was given.

Figure 1 illustrates a representative reactive hyperemic response after a 10-second transient occlusion (A), and following 10-second occlusion with subsequent 20-second flow restriction before (B) and then after (C) pretreatment with 3 μg/kg ANP. As shown in Table 2, the delayed percent blood flow debt repayment was significantly augmented in the presence of 20 seconds of flow restriction after 10 seconds of coronary occlusion (938±91%) when compared with 10 seconds of coronary occlusion alone (481±55%, p<0.05).

![Figure 1](http://circres.ahajournals.org/)

Figure 1. Representative recordings of phasic coronary reactive hyperemic response in a dog after a 10-second transient occlusion (A), and after a 10-second occlusion with a subsequent 20-second flow restriction before (B) and then after (C) pretreatment with ANP (3 μg/kg). Reactive hyperemic response after a 10-second coronary occlusion was significantly augmented in the presence of a subsequent 20-second flow restriction. This augmented response was substantially attenuated after pretreatment with ANP.
TABLE 3. Regional Myocardial Blood Flow (ml/min/g) Measured During Restricted Flow After 10-Second Coronary Occlusion

<table>
<thead>
<tr>
<th>Region</th>
<th>Nonischemic</th>
<th>Ischemic</th>
<th>Nonischemic</th>
<th>Ischemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocardial</td>
<td>1.03±0.09</td>
<td>0.54±0.04*</td>
<td>0.93±0.09</td>
<td>0.71±0.07*</td>
</tr>
<tr>
<td>Epicardial</td>
<td>0.87±0.09</td>
<td>1.03±0.12*</td>
<td>0.76±0.08†</td>
<td>0.82±0.09†</td>
</tr>
<tr>
<td>Endo/epi</td>
<td>1.18±0.04</td>
<td>0.56±0.03*</td>
<td>1.24±0.05</td>
<td>0.91±0.10†</td>
</tr>
</tbody>
</table>

ANP, atrial natriuretic peptide; Endo/epi, subendocardial-to-subepicardial flow ratio.
*P<0.05 compared with corresponding normal region.
†P<0.05 compared with same region before ANP.

Discussion

In previous studies, we observed preferential effects of ANP on different segments of the coronary vasculature. ANP caused a direct sustained dose-related vasodilation of proximal coronary arteries and a much briefer dilation of the distal resistance vessels of less than 10 minutes. In the present study provides new data concerning the effects of ANP 1) on the reactive hyperemic response after transient myocardial ischemia with and without blood flow restriction, 2) on the distribution of blood flow after transient ischemia in the presence of a flow-limiting severe coronary stenosis, and 3) on blood flow via innate collateral vessels. ANP reduced the augmented delayed reactive hyperemic response observed after transient ischemia in the presence of initial flow restriction, and favorably redistributed blood flow to the subendocardium. In contrast, ANP did not alter the basic reactive hyperemic response to a simple occlusion and did not alter collateral blood flow during coronary occlusion. These data provided strong support for an important vasodilatory effect of ANP on the intramural vasculature. The data also demonstrated that ANP exerts no effect on the innate collateral vessels.

The reactive hyperemic response after transient myocardial ischemia is a function of metabolic demands and the degree of ischemia during the period of coronary occlusion. In the present...
by guest on April 6, 2017 http://circres.ahajournals.org/ Downloaded from

Table 4. Regional Myocardial Blood Flow (ml/min/g) Measured During Coronary Occlusion

<table>
<thead>
<tr>
<th></th>
<th>No ANP</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Endocardial</td>
<td>0.13±0.10</td>
<td>0.11±0.02*</td>
</tr>
<tr>
<td></td>
<td>Epicardial</td>
<td>0.76±0.10</td>
<td>0.22±0.02*</td>
</tr>
<tr>
<td></td>
<td>Endo/epi</td>
<td>1.36±0.08</td>
<td>0.52±0.10*</td>
</tr>
</tbody>
</table>

ANP, atrial natriuretic peptide; Endo/epi, subendocardial-to-subepicardial flow ratio.
*p<0.05 compared with corresponding normal region.

Cultured cerebral arteries are not affected. In the setting of ischemia plus a partial stenosis as used in the present study, the pressure distal to the occluder decreases markedly after transient ischemia and subsequent dilation of the resistance vessels. Consequently, the normally insignificant resistance in the intramural conductance vessels becomes significant, leading to maldistribution of blood flow with subendocardial hypoperfusion and subepicardial hyperperfusion, as observed in the present study. The maldistribution of blood flow is thus a result of vasodilation of autoregulatory resistance vessels in a setting in which total flow cannot increase, resulting in a decrease in perfusion pressure and a relative increase in the resistance imposed by more proximal intramural conductance vessels that differentially affects endocardial and epicardial perfusion. In this setting, agents that preferentially dilate the conductance vasculature may be expected to improve the maldistribution of flow; further preferential dilation of the distal resistance vasculature may further decrease perfusion pressure and worsen or not improve the maldistribution of flow. The present study was performed at 10 minutes after ANP, at a time when the effect of ANP on the distal vasculature had subsided, while its effects on proximal conductance vessels were still maximal. Our data demonstrate that at this time ANP not only reduced the maldistribution of blood flow, resulting in improvement of subendocardial ischemia, but it also reduced the reactive hyperemic response indicating a reduction in ischemic stimulation. These data provide support for an important vasodilator effect of ANP during ischemia on the intramural vasculature in the presence of a critical stenosis. Previous studies from our laboratory and others using this model have demonstrated that NTG and calcium channel blockers produce comparable effects in conscious dogs.

Table 5. Mean Arterial O2 Content, Coronary Sinus O2 Content, and Arteriovenous Oxygen Difference in All Group B Dogs (ml/100 ml)

<table>
<thead>
<tr>
<th></th>
<th>No ANP</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial O2 content</td>
<td>17.97±0.52</td>
<td>17.72±0.63</td>
<td></td>
</tr>
<tr>
<td>Coronary sinus O2 content</td>
<td>6.81±1.09</td>
<td>7.10±1.08</td>
<td></td>
</tr>
<tr>
<td>Arteriovenous O2 difference</td>
<td>11.16±0.64</td>
<td>10.62±0.80</td>
<td></td>
</tr>
</tbody>
</table>

ANP, atrial natriuretic peptide.
In a recent study, we have demonstrated that vasodilating effects of ANP on the proximal epicardial and distal resistance arteries are very similar to that of NTG. Both agents exert a preferential, more sustained, direct increase in dimension of proximal coronary vessels and a relatively brief dilation of distal resistance arteries. Both agents are believed to act via stimulation of the guanylate cyclase system, although ANP acts through the particulate enzyme, while NTG acts via the soluble isoenzyme. Indeed, this preferential proximal dilation appears to be a consistent property of vasodilating agents mediated via the guanylate cyclase pathway, including endothelium-derived relaxing factor. Our study provides further support for the view that ANP behaves like an "endogenous nitrate" and is consistent with the previous observation that the penetrating intramural arteries behave like the epicardial conductance vessels during ischemia.

In summary, our present study demonstrates that in the presence of a flow-limiting stenosis, ANP is capable of favorably reversing the subendocardial hypoperfusion resulting from maldistribution of transmural blood flow induced by transient myocardial ischemia. The reversal of subendocardial hypoperfusion reduces ischemic stimulation as measured by the reactive hyperemic response without affecting intrinsic vascular reactivity or native collateral flow, indicating that this favorable effect on transmural flow probably results from dilation of the penetrating intramural arteries.

Acknowledgments

The authors wish to thank Mark Russell and Michael Miller for technical assistance, the Medical Media Section of the Durham VA Medical Center for illustrations, and Cathie Collins for expert secretarial assistance.

References

KEY WORDS • atrial natriuretic peptide • coronary dilation, intramural • coronary blood flow, transmural • reactive hyperemia • coronary stenosis
Effects of atrial natriuretic peptide on transmural blood flow and reactive hyperemia in the presence of flow-limiting coronary stenosis in the awake dog: evidence for dilation of the intramural vasculature.
A Chu, A Stakely, C C Lin and F R Cobb

Circ Res. 1989;64:600-606
doi: 10.1161/01.RES.64.3.600

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/64/3/600