The purpose of the present study was the identification of A₁ adenosine receptors in intact rat ventricular myocytes, which are thought to mediate the negative inotropic effects of adenosine. The adenosine receptor antagonist [³H]-8-cyclopentyl-1,3-dipropylxanthine was used as radioligand. Binding of the radioligand to intact myocytes was rapid, reversible, and saturable with a binding capacity of 40,000 binding sites per cell. The dissociation constant of the radioligand was 0.48 nM. The adenosine receptor antagonists 8-cyclopentyl-1,3-dipropylxanthine, "xanthine amine congener," and theophylline were competitive inhibitors with affinities in agreement with results obtained for A₁ receptors in other tissues. Competition experiments using the adenosine receptor agonists R-N⁶-phenylisopropyladenosine, S'-N⁶-ethylcarboxamidoadenosine, and S'-N⁶-ethylcarboxamidoadenosine gave monophasic displacement curves with IC₅₀ values of 50 nM, 440 nM, and 4,300 nM, which agreed well with the GTP-inducible low affinity state in cardiac membranes. The low affinity for agonists was not due to agonist-induced desensitization, and correlated well with the corresponding IC₅₀ values for the inhibition of cyclic AMP accumulation by isoprenaline. It is suggested that only a low affinity state of A₁ receptors can be detected in intact rat myocytes due to the presence of high concentrations of guanine nucleotides in intact cells. (Circulation Research 1988;63:613–620)

Membrane-bound adenosine receptors, which mediate coronary dilation, negative chronotropic, dromotropic, and inotropic effects have been demonstrated in the heart (see Daly¹ for a review). Depending on their coupling to adenylyl cyclase, two subtypes of adenosine receptors can be distinguished. The A₁ receptor mediates an inhibition of adenylyl cyclase, whereas the A₂ subtype mediates an activation.² In cardiac myocytes, adenosine receptors negatively coupled to adenylyl cyclase, and therefore belonging to the A₁ subtype, have been demonstrated,³ whereas A₂ adenosine receptors have been demonstrated on the coronary endothelium⁴ and coronary smooth muscle.⁵

Subsequently, cardiac A₁ receptors have further been characterized by radioligand binding to myocardial membranes through the use of the adenosine receptor agonists R-N⁶,[¹²⁵]I-p-hydroxyphenylisopropyladenosine and [¹²⁵]I-N⁶-4-aminobenzyladenosine.⁶,⁷

Recently, the A₁-selective antagonist radioligand [³H]-8-cyclopentyl-1,3-dipropylxanthine ([³H]DPCPX) has been shown to be a suitable radioligand for the characterization of A₁ adenosine receptors of bovine myocardial membranes.⁸ However, the results obtained in membrane preparations may not reflect physiological conditions, and cell disruption could induce changes in receptor properties and regulation. Therefore, we attempted to identify adenosine receptors in intact rat ventricular myocytes by measurement of [³H]DPCPX binding.

Materials and Methods

[³H]DPCPX (specific activity 105 Ci/mmol) and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) were synthesized as described earlier⁸ and were diluted in 0.1% 3-[3-(cholamidopropyl)dimethylammonio]-1-propanesulfonate to reduce adsorption to surfaces. This addition did not affect the respective assays. R- and S-N⁶-phenylisopropyladenosine (R-PIA and S-PIA) were donated by Dr. Stegmeier, Boehringer Mannheim GmbH, Mannheim, FRG; S'-N⁶-ethylcarboxamidoadenosine (NECA) was provided by Prof. Klemm, Byk Gulden Lomberg Chemische Fabrik, Konstanz, FRG; and 8-{4-[[[[2-
aminoethyl)amino)carbonyl)methyl)oxy)phenyl)-1, 3-dipropylxanthine (xanthine amine congener, XAC) was a kind gift from Dr. Entzeroth, Dr. Karl Thome GmbH, Biberach, FRG. Theophylline, \((\text{S}-(\text{p}-\text{nitrobenzyl})-\text{6-thioinosine})\) (NBFI), bovine serum albumin fraction V, and crude collagenase type 1 were from Sigma, Deisenhofen, FRG. All other materials were from sources described previously and of analytical grade or best commercially available.

Isolation of Rat Ventricular Myocytes

Calcium-tolerant myocytes were isolated as previously described.

Adult male Wistar rats (120-250 g) were injected with 500 units sodium heparin i.p. followed by 60 mg/kg sodium pentobarbital i.p. The hearts were rapidly excised, mounted on a cannula of a Langendorff perfusion system, and perfused for 5 minutes at a pressure of 50 cm water with a calcium-free Krebs-Ringer bicarbonate-glucose buffer (KRBG-buffer) containing (mM) NaCl 118, KCl 4.74, KH₂PO₄ 0.93, MgSO₄ 1.2, NaHCO₃ 25, and glucose 10 equilibrated at 37°C with 95% O₂-5% CO₂ and adjusted to pH 7.4. All subsequent steps were done at 37°C. The hearts were perfused for 10 minutes in a recirculating manner with 50 ml KRBG-buffer containing 0.1% bovine serum albumin and 0.05% collagenase. The ventricles were then cut down, two vertical slashes were made toward the apex, and the tissue was incubated in KRBG-buffer supplemented with 2% bovine serum albumin and 0.1% collagenase under gentle shaking. After 5 minutes, the undigested tissue was again incubated in a new portion of the same solution for 10 minutes as before. The resulting suspension was filtered through a 200-µm nylon gauze and centrifuged (25g, 90 seconds), and the sediment was washed twice with KRBG-buffer containing 2% bovine serum albumin. Finally, the pellet was resuspended in a modified KRBG-buffer supplemented with 10 mM HEPES and 1.4 mM CaCl₂. Viability, based on the percentage of myocytes that were rodshaped in the presence of 1.4 mM CaCl₂, was 72% and remained constant for up to 2 hours of incubation at 37°C.

Preparation of Rat Myocardial Membranes

Rat myocardial membranes were prepared as described previously. The protein concentration was measured according to Peterson.

Binding Assays

Binding of \([\text{H}]\text{DPCPX}\) to rat ventricular myocytes (100,000-130,000 cells/tube) was done in a total volume of 250 µl, containing KRBG-buffer supplemented with 10 mM HEPES and 1.4 mM CaCl₂. Further additions were 0.5 units/ml adenosine deaminase to remove endogenous adenosine and 0.2 nM \([\text{H}]\text{DPCPX}\). Under standard conditions, the incubation lasted for 1 hour at 37°C under gentle shaking and was terminated by the addition of 4 ml incubation buffer (4°C). The samples were kept on ice for 3 minutes, followed by rapid filtration through Whatman GF/B glass fiber filters and four washes with 4-ml portions of ice-cold incubation buffer. The filter radioactivity was determined by liquid scintillation counting for 10 minutes. Non-specific binding was defined by the presence of 1 mM theophylline. The addition of 4 ml buffer and storage on ice before filtration resulted in a reduction of nonspecific binding by more than 70% with only a slight (10%) lowering of specific binding. In typical experiments in which a radioligand concentration of 0.2 nM \([\text{H}]\text{DPCPX}\) was used, total binding was approximately 550 cpm compared with 120 cpm nonspecific binding. All assays were done in duplicate.

Binding of \([\text{H}]\text{DPCPX}\) to myocardial membranes was done in a volume of 250 µl of 50 mM Tris-HCl (pH 7.4) with the same additions described above and approximately 200 µg of membrane protein. Prior to the start of the incubation, myocardial membranes were suspended in 50 mM Tris-HCl and 10 mM EDTA (pH 7.4) to remove endogenous divalent cations, centrifuged (100,000g, 10 minutes, 4°C), and the pellet resuspended in 50 mM Tris-HCl (pH 7.4). Incubation was carried out at 25°C for 1 hour. At the end of the incubation, a 200-µl aliquot was filtered through a Whatman GF/B glass fiber filter, followed by two washes with 4-ml portions of 50 mM Tris-HCl (pH 7.4, 4°C). Nonspecific binding was defined as above, and at a radioligand concentration of 0.2 nM \([\text{H}]\text{DPCPX}\) was approximately 60 cpm compared with 300 cpm of total binding.

Measurement of Cyclic AMP

The cyclic AMP content of ventricular myocytes was measured as previously described. Briefly, rat ventricular myocytes (approximately 15,000 cells/tube) were incubated in a total volume of 1 ml KRBG-buffer supplemented with 10 mM HEPES and 1.4 mM CaCl₂. Further additions were 0.5 units/ml adenosine deaminase, 0.5 mM 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724), and 1 μM isoprenaline. For the calculation of \(Kₐ\) values, dose-response curves of R-PIA in the presence of three different concentrations of the respective adenosine receptor antagonist were performed. The incubation lasted 10 minutes at 37°C and was terminated by the addition of 200 µl of 3.9 M HClO₄. Cyclic AMP was determined by a sensitive radioimmunoassay.

Data Analysis

Radioligand binding data were analyzed with the nonlinear curve-fitting program SCYMM. Kinetic data were fitted as previously described. Kinetics in the presence of a competitor were fitted using Equation 1 of Matulsky and Mahan, using the general exponential equation previously given. Concentration response curves were fitted to the
Hill equation by a nonweighted nonlinear curve fitting program as described earlier. The apparent dissociation constant of competitors K_B was calculated according to Arunlakshana and Schild.

Results

Binding of [3H]DPCPX to Rat Ventricular Myocytes

The specific binding of 0.2 nM [3H]DPCPX to rat ventricular myocytes occurred rapidly with half-maximal binding after 3 minutes and achievement of equilibrium after 30 minutes (Figure 1). Nonspecific binding in the presence of 1 mM theophylline reached a steady state after 2 minutes and contributed approximately 20% to total binding at equilibrium (data not shown). Nonlinear curve-fitting of the association reaction of specific binding gave no improvement of the fit when two components were assumed. Therefore, the association of the radioligand appears to be monophasic, indicating a homogeneity of binding sites. The observed forward rate constant (k_{on}) was calculated to 0.165/min, giving an association constant (k_{+}) of 0.233/nM/min.

The radioligand binding was reversible as demonstrated by the addition of an excess of theophylline at equilibrium (Figure 1). The dissociation occurred with a half-life of 6 minutes, corresponding to a dissociation rate constant (k_{-i}) of 0.124/min. The ratio k_{-i}/k_{+} was 0.53 nM and provides an estimate of the equilibrium dissociation constant K_d, independent from saturation experiments.

Data from saturation experiments are shown in Figure 2. The specific binding of [3H]DPCPX was saturable. The Scatchard plot of the data is linear, indicating again a homogeneous population of noncooperative binding sites with a binding capacity (B_{max} value) of 68 fmol/10^6 cells. Assuming that one molecule of [3H]DPCPX binds to one receptor, the total number of receptors was found to be 40,000/cell. The K_d value was calculated to 0.48 nM, which is in excellent agreement with the K_d value calculated from kinetic experiments. It can be seen that nonspecific binding constitutes only 35% of total binding at the K_d.

Further characterization of [3H]DPCPX binding sites on rat ventricular myocytes was achieved by
competition experiments using the adenosine receptor agonists R-PIA, NECA, and S-PIA (Figure 3 and Table 1). The competition curves were monophasic with slope factors not different from unity. The A1 receptor–selective compound R-PIA was the most potent agonist with a K_I value of 50 nM, whereas NECA had a ninefold lower affinity, which is characteristic for A1 adenosine receptors, as opposed to A2 receptors. The S-isomer of PIA was about 100 times less potent than the R-isomer in displacing [3H]DPCPX from its binding sites, indicating a high stereospecificity.

A high affinity state for R-PIA with a K_I value below 1 nM, as described in bovine myocardial membranes, could not be detected. Since competition experiments were performed under equilibrium conditions (1 hour of incubation), the lack of a high affinity state for agonists might be due to an agonist-induced desensitization. This phenomenon has been described for muscarinic and β-adrenergic receptors.16,17 To determine whether incubation of intact myocytes with an agonist induces a conversion of A1 receptors from a high to low affinity state the experimental procedure previously described by Nathanson was used.18 Kinetics of the binding of [3H]DPCPX to intact myocytes were measured in the absence or presence of 10 nM R-PIA (Figure 4). This concentration caused only a 6% reduction of specific binding at equilibrium but up to 25% reduction during the first 5 minutes of incubation. If this transient larger inhibition of [3H]DPCPX binding were caused by the presence of a high agonist affinity form, then preincubation with 10 nM R-PIA should cause conversion to the low affinity state before the addition of the radioligand, therefore resulting in a smaller initial inhibition of [3H]DPCPX binding.

!

FIGURE 3. Competition for [3H]DPCPX binding to rat ventricular myocytes. Binding of [3H]DPCPX was measured as described under Methods in the presence of increasing concentrations of competitors: ●, R-PIA; ■, NECA; ○, S-PIA. Data are means of three experiments.

<table>
<thead>
<tr>
<th>Agonists</th>
<th>IC<sub>50</sub> (nM)</th>
<th>K_I (nM)</th>
<th>R_H (%)</th>
<th>K_H(nM)</th>
<th>K_L(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-PIA</td>
<td>60*</td>
<td>50</td>
<td>64</td>
<td>1.2</td>
<td>60</td>
</tr>
<tr>
<td>NECA</td>
<td>360*</td>
<td>440</td>
<td>63</td>
<td>4.3</td>
<td>350</td>
</tr>
<tr>
<td>S-PIA</td>
<td>16,000*</td>
<td>4,300</td>
<td>66</td>
<td>66</td>
<td>3,450</td>
</tr>
<tr>
<td>Antagonists</td>
<td>K_B (nM)</td>
<td>K_I (nM)</td>
<td>K_I(nM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPCPX</td>
<td>0.15</td>
<td>0.46</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XAC</td>
<td>20*</td>
<td>34</td>
<td>10.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theophylline</td>
<td>12,000</td>
<td>4,900</td>
<td>2,900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various</td>
<td>K_I (nM)</td>
<td>K_I(nM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBTI</td>
<td>>10,000 (−12%)</td>
<td>>10,000 (−17%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTP</td>
<td>>100,000 (−6%)</td>
<td>>100,000 (−11%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inosine</td>
<td>>1,000,000 (−2%)</td>
<td>>1,000,000 (−20%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Data from Martens et al.9

K_I values were calculated from competition experiments using 8–11 concentrations of the displacing compound. Estimates of the high (K_H) and low (K_L) affinity dissociation constants and the percentage of total receptors in a high affinity state (R_H) are given, if a two-site model gave a significantly better fit. K_B, apparent dissociation constant, calculated from Schild plot.
binding. Preincubation with R-PIA did not alter the transient inhibition of [3H]DPCPX binding. This suggests that the initial inhibition is a result of a higher association rate of 10 nM R-PIA than of 0.2 nM [3H]DPCPX. However, these experiments do not rule out the possibility that agonist-induced conversion from a high to a low agonist affinity state occurs in a time scale too rapid to be detectable in these experiments.

Several alkylxanthines competed for [3H]DPCPX binding to myocytes with slope factors of about 1. DPCPX was the most potent antagonist, being about 100 times more potent than XAC and 10,000 times more potent than theophylline (Table 1).

In order to exclude that [3H]DPCPX binds to adenosine uptake sites, or that [3H]DPCPX binding to intact cells is mainly due to intracellular uptake facilitated by the adenosine transport system, we investigated the influence of the adenosine uptake blocker NBTI on [3H]DPCPX binding to rat ventricular myocytes. Even a high concentration of NBTI (10 μM) caused only a 12% reduction of radioligand binding. In addition, inosine, a degradation product of adenosine, and GTP failed to modulate [3H]DPCPX binding to rat ventricular myocytes.

Binding of [3H]DPCPX to Rat Myocardial Membranes

[3H]DPCPX binding sites were further characterized in myocardial membranes in order to determine differences between binding to membranes and whole cells. All antagonists exhibited monophasic displacement curves with slope factors of about 1, indicating one homogeneous class of binding sites. The K_t values (Table 1) were not significantly different from those obtained in experiments using intact myocytes, with DPCPX being more potent than XAC and theophylline.

However, the competition curves for agonists, as demonstrated in Figure 5 for R-PIA, were shallow and could be fitted significantly better to a two-site model ($p<0.001$, F-test), which indicates that agonists can discriminate two affinity states of [3H]DPCPX binding sites in myocardial mem-

FIGURE 4. Association of [3H]DPCPX binding to rat ventricular myocytes in the absence or presence of R-PIA. Myocytes were incubated with 0.2 nM [3H]DPCPX in the absence (●) or presence of 10 nM R-PIA added simultaneously (○), or 0.2 nM [3H]DPCPX was added after a preincubation with 10 nM R-PIA for 5 minutes (□). Specific binding is given as means of three experiments.

FIGURE 5. Competition for [3H]DPCPX binding to rat cardiac membranes. Specific binding of [3H]DPCPX in the absence (●) and presence of 100 μM GTP (■) was determined with various concentrations of R-PIA. Given are the means of two experiments. Analysis of the curves as described in "Materials and Methods" gave the following estimates: R-PIA without GTP: $K_H 1.2 \text{ nM, } K_L 60 \text{ nM, } R_H 64\%$, and $R_L 36\%$; with GTP: $K_H 1.2 \text{ nM, } K_L 57 \text{ nM, } R_H 14\%$ and $R_L 86\%$.
Effect of Various Adenosine Receptor Agonists and Antagonists on Isoprenaline-Mediated Cyclic AMP Accumulation

To compare the results from [3H]DPCPX binding to rat ventricular myocytes and cardiac membranes with functional parameters, we have examined the effect of various adenosine agonists and antagonists on isoprenaline-mediated cyclic AMP accumulation. As shown in Figure 6 R-PIA caused a reduction of cyclic AMP content of myocytes by up to 50% with an IC50 value of 60 nM. Using different concentrations of DPCPX a dose-dependent shift of the concentration-response curve of R-PIA to higher concentrations was observed without alteration of the slope and the maximal effect of R-PIA.

The apparent dissociation constant (Kd) of DPCPX was calculated to 0.15 nM, which is in good agreement with the corresponding data from radioligand binding.

In addition, the IC50 and Kd values of various adenosine agonists and antagonists for the modulation of cyclic AMP content of rat ventricular myocytes via A1 receptors (Table 1) were in fairly good agreement with their Kd values obtained in [3H]DPCPX binding to intact myocytes.

Discussion

Binding of [3H]DPCPX to A1 adenosine receptors in membrane preparations has been described in several tissues including brain and heart.8,19 This radioligand has a more than 700-fold selectivity for the A1 subtype, a very low nonspecific binding, and a high specific activity. This led us to attempt a characterization of A1 receptors in intact cells with this radioligand.

The present study demonstrates [3H]DPCPX binding sites on rat ventricular myocytes, which possess properties characteristic for A1 adenosine receptors. The binding of [3H]DPCPX to its binding sites was rapid, reversible, and saturable with a binding capacity of 40,000 binding sites per cell. Therefore, the receptor density is lower than that reported for muscarinic, insulin, and β-adrenergic receptors on myocytes, which are at least twofold higher.20-22

Evidence that [3H]DPCPX binds to A1 receptors in intact myocytes was established in competition experiments with the adenosine receptor antagonists DPCPX, XAC, and theophylline. All alkylxanthines had only one class of binding sites with identical affinities in cardiac membranes and myocytes. In addition, the Kd values obtained are in good agreement with those reported in other tissues.8 Furthermore, these compounds antagonize the A1 receptor-mediated reduction of cyclic AMP levels with the same affinities. The usefulness of alkylxanthines for the characterization of adenosine recep-
tors is demonstrated by the independence of the K_i values from the method used.

The potencies of the adenosine receptor agonists in competing for the binding sites of myocytes were in the order R-PIA > NECA > S-PIA, consonant with an interaction at A_1 receptors. The same rank order of potency has been observed for the inhibition of the isoprenaline-mediated cAMP-accumulation in rat ventricular myocytes. In addition, the affinities of the adenosine agonists in intact myocytes agree well with the low affinity state in membranes.

In addition to a single class of low agonist affinity $[\text{H}]\text{DPCPX}$ binding sites in intact rat ventricular myocytes, we have recently shown by $[\text{H}]\text{R-N}^6$-phenylisopropyladenosine binding to A_1 receptors of intact rat adipocytes, that there was no detectable high affinity binding for agonists in intact cells, either. Therefore, this seems to be a general phenomenon of A_1 adenosine receptors.

There is a good correlation between the K_i values of agonists in intact cells and the IC$_{50}$ values for the reduction of cyclic AMP accumulation. This suggests that the functional response is initiated by binding of the agonists to a low affinity state. The virtual absence of the high agonist affinity state indicates that the interaction with G is a very transitory process, followed by rapid conversion to the low affinity state, presumably by binding of GTP, causing dissociation of G, and the receptor. Similar findings were recently reported for the A_1 adenosine receptor in isolated rat adipocytes. In agreement with our results it is also true in the case of muscarinic receptors that only low affinity binding sites can be detected in intact cardiac myocytes, whereas in myocyte membranes also a high affinity state was detectable. The low affinity form could be induced by GTP and was not due to desensitization. It was concluded that the low affinity state is the physiologically active form of muscarinic receptors.

The affinities of R-PIA and NECA for $[\text{H}]\text{DPCPX}$ binding sites on intact rat ventricular myocytes correlate well with their potencies to inhibit cyclic AMP accumulation, and are also in the same range as the IC$_{50}$ values of their negative inotropic effects in guinea pig papillary muscle. This contrasts with the A_1 receptor system of adipocytes: here the IC$_{50}$ values of agonists for the reduction of cyclic AMP levels are 20-fold lower than the corresponding K_i values determined in binding experiments. From that and additional evidence, it was concluded, that adipocytes have spare A_1 receptors. In contrast, it may be reasoned from the same argument that the good correlation between the affinity of agonists for A_1 receptors of intact myocytes and their IC$_{50}$ values for the reduction of cyclic AMP levels indicates the absence of spare A_1 receptors in ventricular myocytes.

In summary, our results indicate, that $[\text{H}]\text{DPCPX}$ is the first radioligand suitable for the characterization of A_1 receptors on intact myocytes. A_1 receptors on intact cells seem to be in a low affinity state for agonists.

Acknowledgment

The authors should like to thank Ms. Heidrun Vogt for her excellent technical assistance.

References

KEY WORDS • adenosine receptors • ventricular myocytes • radioligand binding • xanthines
[3H]-8-cyclopentyl-1,3-dipropylxanthine binding to A1 adenosine receptors of intact rat ventricular myocytes.

D Martens, M J Lohse and U Schwabe

Circ Res. 1988;63:613-620
doi: 10.1161/01.RES.63.3.613

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/63/3/613