Certain β-Blockers Can Decrease β-Adrenergic Receptor Number: II. Down-Regulation of Receptor Number by Alprenolol and Propranolol in Cultured Lymphoma and Muscle Cells

Richard J. Hughes, Lawrence C. Mahan, and Paul A. Insel

We have used two different cultured cell lines—S49 lymphoma cells and BC3H-1 muscle cells—to examine the regulation of β-adrenergic receptors by receptor antagonists. Rather than an increase ("up-regulation") of receptor number that such antagonists often produce, we found that certain β-blockers elicit a decrease ("down-regulation") of beta-adrenergic receptors. Alprenolol and propranolol, but not sotalol or ICI 118,551, at concentrations of 10-100 nM down-regulated β-adrenergic receptors 20-70% following 16-20 hours of treatment of S49 or BC3H-1 cells. Several observations suggest that this phenomenon depends upon beta-receptor interaction, including stereoselectivity [(-)-enantiomers more potent than (+)-enantiomers], blockade of the effect by ICI 118,551, absence of down-regulation of α-adrenergic receptors in BC3H-1 cells, and lack of a decrease in beta-adrenergic receptor-independent (forskolin-stimulated) cyclic AMP accumulation in S49 cells. The possibility of retained antagonist interfering with receptor measurement was precluded by the fact that the antagonist-induced decrease in receptor number required several hours incubation and occurred without a prominent change in receptor affinity. The ability of the β-blockers to elicit down-regulation did not correlate with hydrophobicity of the drugs. Antagonist-induced down regulation of beta-adrenergic receptors did not occur in S49 lymphoma cells that lack the α-subunit of Gs, the guanine nucleotide-binding regulatory protein, thus implying a requirement for receptor-α interaction in eliciting β-receptor down-regulation. The ability of certain antagonists to promote a down-regulation of β-adrenergic receptors provides a mechanism that may contribute to the pharmacological activity of these agents. (Circulation Research 1988;63:279–285)

Prolonged exposure of target cells to agonists that stimulate receptor-mediated responses frequently results in a loss of the corresponding receptor and its associated responses. These phenomena are termed "down-regulation" and "desensitization," respectively. β-Adrenergic receptors are perhaps the most well-studied receptors for which these phenomena have been observed.1-4 Receptor antagonists, on the other hand, elicit no response by themselves, but they do block agonist-mediated responses and agonist-promoted desensitization and down-regulation. Treatment of animals or people with receptor antagonists, including β-adrenergic receptor antagonists (β-blockers), often increases ("up-regulates") receptor number, perhaps as a consequence of blocking tonic down-regulation induced by ambient levels of agonist.5-9 When administered at low concentrations, antagonists are generally believed to have no effect other than competitive blockade of agonist occupation of the receptor. As described herein, we and others10-12 have recently obtained results that do not conform to this axiom. Certain β-blockers can be shown to decrease β-adrenergic receptor number. In this report, we document some of the characteristics of this phenomenon of β-blocker-induced receptor down-regulation elicited by two drugs, alprenolol and propranolol. The accompanying manuscript by DeBlasi et al13 documents a similar or identical phenomenon.
as expressed by acute exposure of cells to two different β-blockers, bopindolol and tertatolol.

Materials and Methods

Materials

The following drugs were received as generous gifts: phentolamine mesylate from CIBA-Geigy Corporation, Summit, New Jersey; (−)-cyanopindolol (CYP) from Dr. G. Engel, Sandoz Pharmaceuticals, East Hanover, New Jersey; (−)-propranolol and (+)-propranolol from Ayerst Research Laboratories, New York. Octanol was purchased from Sigma Chemical, St. Louis, Missouri. Carrier-free Na[123I] (>350 mCi/ml) and cyclic [2,8-3H]AMP (30 Ci/mmol) and [3H]prazosin (81 Ci/mmol) were obtained from Du Pont/New England Nuclear, Boston, Massachusetts.

Cell Culture

The BC3H-1 nonfusing muscle cells used in this study have been described previously. The cells were routinely grown in T-flasks in DMEM supplemented with 10% (vol/vol) fetal calf serum and maintained at 37°C in a humidified atmosphere of 10% CO2 in air. The cells were subcultured at 3-day intervals, using trypsin to dissociate them from the plastic substrate. For experimental purposes, unless indicated otherwise, approximately 1.5 × 10^6 cells were seeded into 150-mm diameter culture dishes containing 25 ml of culture medium. From this starting density, the cells reached confluence within 2–4 days. Wild-type and cyc−S49 murine lymphoma cells were grown in suspension culture as 2–4 days. Wild-type and cyc−S49 murine lymphoma cells were grown in suspension culture as described previously. The BC3H-1 membranes, suspended in Dulbecco’s Modified Eagle’s Medium (DMEM) and fetal calf serum were obtained from Grand Island Biological Company, Grand Island, New York, and 0.25% sterile trypsin solution from Irvine Scientific, Santa Ana, California. Flasks and dishes were manufactured by Falcon.

Preparation of [125I]ICYP

(−)-CYP was iodinated as described by Engel and coworkers. [125I]ICYP was stored at −20°C for no longer than two months, when it still migrated as a single peak on silica gel thin-layer chromatography with pyridine/glacial acetic acid/water (0.33:0.6:9.07, vol/vol) as solvent. The [125I]ICYP was assumed to be iodinated to the maximal theoretical specific activity of 2,200 Ci/mmol; correction for decay of [125I]ICYP assumed that the product of radioactive decay was unable to bind to the β-receptor since comparison with [3H]dihydroalprenolol showed this method to yield consistent receptor number in rat lung membranes.

Incubation of Cells With Antagonists

Antagonists were added to the growth medium of BC3H-1 cells that had just reached confluence or to S49 cells at a density of 0.5–0.8 x 10^6 cells/ml. After 16–20 hours of incubation, the cells were washed free of antagonist. In the case of BC3H-1 cells, the cells were washed four times at 37°C in situ on the dish with DMEM containing 20 mM, 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES), pH 7.4, and 1 mg/ml bovine serum albumin (Fraction V from Sigma). S49 cells were washed four times by centrifugation in 37°C DMEM containing 10% horse serum. Radioligand binding experiments were carried out as described below.

Radioligand Binding Assays

A crude membrane preparation of BC3H-1 cells, free of nuclei, was prepared as described previously. The BC3H-1 membranes, suspended in 50 mM Tris-HCl (pH 7.6) and 10 mM MgCl2, were incubated in a final volume of 0.25 ml for [125I]ICYP binding or 0.5 ml for [3H]prazosin binding studies at a protein concentration of 0.1–0.3 mg/ml. The binding reaction was carried out for 60 minutes at 30°C. Nonspecific binding was always less than 20% of total binding in these experiments. Binding to intact S49 cells was conducted using [125I]ICYP and 1 μM (−)-propranolol to define nonspecific binding, as described previously. In the case of Figures 3 and 6, where receptor density was estimated by measuring binding of a single concentration of [125I]ICYP, quadruplicate measurements were made of both total and nonspecific binding at a single radioligand concentration (0.2 nM). In all other cases, receptor density was determined by means of saturation binding isotherms performed using six concentrations of radioligand. [3H]Prazosin samples were counted in a Beckman LS-330 liquid scintillation spectrometer (Fullerton, California) at 40% efficiency; [125I]ICYP samples were counted in a Packard gamma counter (Downers Grove, Illinois) at 85% efficiency.

Cyclic AMP Accumulation

Cyclic AMP accumulation in intact S49 cells was assessed by incubation of cells with 1 μM forskolin or 1 μM (−)-isoproterenol for 15 minutes, with assay of cellular cyclic AMP levels as described previously.

Data Analysis

For Scatchard analyses of equilibrium binding data, total binding at each concentration of radioligand was determined in triplicate and nonspecific binding in duplicate. Linear regression analyses were carried out for all estimates of nonspecific binding since these varied linearly over the range of radioligand concentrations tested. Specific binding at each concentration of radioligand was then calculated from the difference between the mean of the values for total binding and the value for nonspe-
specific binding computed from that given by linear regression. Data were fit to the relation \(B = B_{max}[L]/(K_d + [L]) \), which in turn was used to simulate the saturation binding isotherms shown in the figures. The number of binding sites \((B_{max}) \) and the dissociation constant \((K_d) \) were obtained from Scatchard analysis of the data; \([L]\) represents the free radioligand concentration.

All experimental protocols were replicated as indicated in the figure legends and yielded similar results on each execution. Unless stated otherwise, representative data are presented. Individual data points generally varied less than 10% away from the mean. Error bars have been omitted from some figures for the sake of clarity, but where these are shown, they indicate the standard error of the mean.

Protein Determination

Protein was determined by the method of Peterson,24 employing log-log transformation to yield a linear standard curve.25 Bovine serum albumin, containing sodium azide (1 mg/ml) as a noninterfering bactericide, was employed for standards.

Results

Antagonist Down-Regulation of \(\beta_2 \)-Adrenergic Receptors

BC3H-1 muscle and S49 lymphoma cells both contain a pure population of \(\beta_2 \)-adrenergic receptors.15,22 In initial studies, these cell types were incubated for 16–20 hours in growth medium containing concentrations of \(\beta \)-blockers that were 10–200-fold in excess of their dissociation constants \((K_d) \) measured in separate experiments15,22,26 (data not shown). \(\beta \)-Adrenergic-receptor concentrations following treatment with antagonists were measured in either membranes prepared from BC3H-1 cells (Figure 1) or in intact S49 cells (Figure 2) using the radiolabeled \(\beta \)-receptor antagonist \([^{125}\text{I}]\text{ICYP}\). Scatchard analysis of these data divided the antagonists into two groups: those that had no effect on receptor number (sotalol and ICI 118,551) and those that elicited a substantial (20–80%) decrease in \([^{125}\text{I}]\text{ICYP} \) affinity. The kinetics for the antagonist-mediated decrease in the number of \(\beta \)-adrenergic receptors in both S49 and BC3H-1 cells were of greater importance than the relatively small loss in maximal binding sites detectable by \([^{125}\text{I}]\text{ICYP}\) through competition for radioligand binding sites. Nevertheless, Scatchard analysis indicated that the loss in maximal binding sites detectable by \([^{125}\text{I}]\text{ICYP}\) was of greater importance than the relatively small decrease in \([^{125}\text{I}]\text{ICYP} \) affinity. The kinetics for the antagonist-mediated decrease in the number of \(\beta \)-adrenergic receptors in BC3H-1 muscle cells. BC3H-1 cells were incubated for 16 hours in growth medium with no added drugs (○—○), 100 nM (−)alprenolol (○●●●●), or 90 \(\mu \)M sotalol (△...△). The cells were washed and membranes were prepared to which binding of \([^{125}\text{I}]\text{ICYP}\) was measured, as described in "Materials and Methods." Scatchard plots of a representative experiment are shown. Pooled data from three experiments yielded control, \(K_d = 107±10 \) pM, \(B_{max} = 58±2 \) fmol/mg; and (−)alprenolol, \(K_d = 57±1 \) pM \((p<0.01) \), \(B_{max} = 20±2 \) fmol/mg \((p<0.005) \).

FIGURE 1. Antagonist-mediated down-regulation of \(\beta_2 \)-adrenergic receptors in BC3H-1 muscle cells. BC3H-1 cells were incubated for 16 hours in growth medium with no added drugs (○—○), 100 nM (−)alprenolol (○●●●●), or 90 \(\mu \)M sotalol (△...△). The cells were washed and membranes were prepared to which binding of \([^{125}\text{I}]\text{ICYP}\) was measured, as described in "Materials and Methods." Scatchard plots of a representative experiment are shown. Pooled data from three experiments yielded control, \(K_d = 107±10 \) pM, \(B_{max} = 58±2 \) fmol/mg; and (−)alprenolol, \(K_d = 57±1 \) pM \((p<0.01) \), \(B_{max} = 20±2 \) fmol/mg \((p<0.005) \).

FIGURE 2. Antagonist down-regulation of \(\beta_2 \)-adrenergic receptors in S49 lymphoma cells. A representative experiment illustrates the effect of long term exposure of S49 cells to various antagonists. S49 cells were incubated for 20 hours in growth medium with no added drugs (○—○), 23 nM ICI 118,551 (△...△), 5 \(\mu \)M sotalol (△...△), 100 nM alprenolol (○●●●●), 15 nM (−)propranolol (●...●). The cells were washed and \([^{125}\text{I}]\text{ICYP}\) binding was measured. Pooled data from three experiments yielded control, \(K_d = 12±1 \) pM, \(B_{max} = 1163±60 \) sites/cell; sotalol, \(K_d = 13±1 \) pM, \(B_{max} = 1157±62 \) sites/cell; ICI 118,551, \(K_d = 13±1 \) pM, \(B_{max} = 1183±75 \) sites/cell; propranolol, \(K_d = 14±1 \) pM, \(B_{max} = 935±16 \) sites/cell \((p<0.05) \); and alprenolol, \(K_d = 13±2 \) pM, \(B_{max} = 603±18 \) sites/cell \((p<0.01) \).
adrenergic receptors measured on S49 cells by [125I]ICYP binding was relatively slow, requiring many hours exposure of cells to alprenolol or propranolol (Figure 3).

Specificity of Antagonist-Mediated Down-Regulation of β-Adrenergic Receptors

The water/octanol partition coefficients of the four adrenergic antagonists used in this study were measured in order to determine whether the ability of β-antagonists to decrease β-adrenergic receptor number was related to hydrophobicity of the drugs (Table 2). Since ICI 118,551 was equally as hydrophobic as alprenolol, and yet unlike alprenolol did not elicit receptor loss (Figures 1 and 2), hydrophobicity does not appear likely to be a critical factor in the ability of a β-blocker to elicit the decrease in β-adrenergic receptor number that we describe.

Evidence that receptor occupancy is an absolute requirement for antagonist-mediated down-regulation was provided by several types of experiments. The effect of propranolol to decrease β-adrenergic receptor number was expressed in a stereoselective manner. BC3H-1 cells were incubated for 16 hours in growth medium containing 100 nM (+)- or (−)-propranolol. The β-adrenergic receptor concentration in membranes prepared from these cells was reduced 20% by 100 nM of the (+)enantiomer and 60% (p < 0.02) by the (−)enantiomer of propranolol (Figure 4). We also examined the stereoselectivity of the effect of propranolol in studies with S49 cells. S49 cells were incubated for 20 hours in growth medium containing 50 nM (−)- or (+)-propranolol. After the cells were washed to remove the propranolol isomers, we quantitated the number of cellular β-receptors and the ability of 1 μM (−)-isoproterenol to elevate intracellular cyclic AMP. Preincubation of S49 cells with 50 nM (−)-propranolol decreased both β-receptor concentration and isoproterenol-stimulated cyclic AMP accumulation 40% more than did the (+)-isomer of propranolol, which itself did not diminish either β-receptor concentration or β-mediated cyclic AMP accumulation (Table 3).

The receptor specificity of this antagonist-mediated loss of β-receptors was demonstrated by assessing the effects of antagonists on other related membrane proteins. Incubation of BC3H-1 cells with 100 nM (−)-propranolol which decreased β-receptors 60% (Figure 5), elicited a small but not statistically significant change in α-adrenergic receptor number (Figure 5). In addition, incubation of S49 cells with 50 nM (−)-propranolol failed to decrease forskolin-stimulated cyclic AMP accumulation, whereas isoproterenol-stimulated cyclic AMP accumulation was markedly decreased under these conditions (Table 3). Thus, we conclude that the loss of re-

![Figure 3](http://circres.ahajournals.org/)

Figure 3. Kinetics of antagonist-mediated down-regulation of β-receptors in S49 cells. S49 cells were incubated in growth medium containing 100 nM (−)-alprenolol (●) or 100 nM (−)-propranolol (◆) for the indicated lengths of time. The cells were washed and receptor density was estimated by measuring binding of 0.2 nM [125I]ICYP. The data shown is the mean ± SEM of three experiments.
Figure 4. Stereoselectivity of propranolol in eliciting β-receptor down-regulation. BC3H-1 cells were incubated for 16 hours in growth medium with no added drug (○—○), 100 nM (−)-propranolol (●—●) or 100 nM (+)-propranolol (●—●). The cells were washed and membranes were prepared for measurement of binding of [3H]ICYP. The data shown is representative of that obtained in three experiments. Control, Kd=120±7 pM, Bmax=53±6 fmoles/mg; (+)-propranolol, Kd=215±10 pM (p<0.005), Bmax=44±6 fmoles/mg (p<0.05); and (−)-propranolol, Kd=463±50 pM (p<0.005), Bmax=21±3 fmoles/mg (p<0.02).

Receptors induced by β-adrenergic antagonists is specific for β-adrenergic receptors and is not a result of a nonspecific, general perturbation of cell membranes. Further evidence for a specific site of action of the β-blockers in inducing receptor down-regulation is that the β-receptor antagonist ICI 118,551, which fails to elicit receptor down-regulation, was able to block the alprenolol-mediated decrease in receptor number in S49 cells (Figure 6). In addition, cyc-S49 cells, which possess β-adrenergic receptors but lack the α-subunit of the guanine nucleotide-binding regulatory protein of Gs, failed to show an alprenolol-induced decrease in receptor number (Figure 6).

Discussion

We have found that certain adrenergic antagonists (alprenolol and propranolol), but not others (sotalol and ICI 118,551), decrease the concentrations of β-adrenergic receptors in both BC3H-1 muscle and S49 lymphoma cells. This phenomenon of antagonist-induced decrease in β-receptor concentration displays the following characteristics:

- **Dose-dependency**
- **Several hour kinetics**
- **Stereoselectivity**

 $(-)>(+)$
- **Specificity for β-receptors**
- **Requirement for the α-subunit of the guanine nucleotide-binding regulatory protein of Gs**
- **A lack of correlation with hydrophobicity of the antagonist**

The finding that alprenolol and propranolol decrease β-adrenergic receptor concentration is contrary to many experimental and clinical findings, where chronic exposure of animals and patients to these drugs has been shown to increase the number of β-adrenergic receptors.5-8-28 This increase in the number of β-adrenergic receptors may be explained as the result of blocking tonic down-regulation induced by ambient levels of agonist.8-29 Nevertheless, scattered reports in the literature have described decreases in β-receptor number following treatment with β-blockers. These reports include those documenting the effect of β-blockers to decrease β-adrenergic receptor number in cardiac tissue of spontaneously hypertensive rats,10 and in human lymphocytes.11,12,30,31 Our results, using cultured muscle and lymphoma cells, suggest that antagonist-mediated down-regulation might occur with a variety of cell types and β-blockers. The phenomenon

Table 3. Specificity of Antagonist Down-Regulation of β-Adrenergic Receptors in S49 Cells

<table>
<thead>
<tr>
<th>Cyclic AMP accumulation</th>
<th>1 μM Forskolin</th>
<th>[125I]ICYP binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 μM Isoproterenol (pmol cAMP/10⁶ cells/15 min)</td>
<td>1,387±129</td>
<td>1,076±97</td>
</tr>
<tr>
<td>Control</td>
<td>405±35</td>
<td>1,237±129</td>
</tr>
<tr>
<td>(−)-Propranolol</td>
<td>291±12</td>
<td>1,501±46</td>
</tr>
<tr>
<td>(−)-Propranolol (50 nM)</td>
<td>(p<0.01)</td>
<td>1,129±20</td>
</tr>
<tr>
<td>(+)-Propranolol (50nM)</td>
<td>407±37</td>
<td>1,573±128</td>
</tr>
<tr>
<td>(+)-Propranolol (50nM)</td>
<td>(p<0.05)</td>
<td>1,129±20</td>
</tr>
</tbody>
</table>

Cells were incubated for 20 hours in growth medium at 37°C with the indicated concentrations of β-antagonists. After extensive washing, cells were examined for either isoproterenol or forskolin-mediated stimulation of intracellular cAMP accumulation, and β-adrenergic receptor levels with 100 pM ICYP. Results shown are the mean ± SEM of three experiments.
anism. Neither alprenolol nor propranolol, in the concentration and effects on cyclic AMP accumulation require for the guanine nucleotide-binding protein (Gα) failure to alter α1-adrenergic receptor concentration and effects on cyclic AMP accumulation argue in favor of a receptor-mediated mechanism. Neither alprenolol nor propranolol, in the 1–100 nM range, measurably elevates intracellular cyclic AMP levels in S49 cells (data not shown), making it unlikely that the down-regulation is mediated by elevated levels of cyclic AMP in these cells.

Propranolol and alprenolol are known to exhibit "membrane stabilizing activity." Such activity comprises many diverse effects, including local anesthetic-like properties, ability to protect red blood cells from hemolysis, and inhibition of serotonin uptake and release by platelets, and appears to be related to the ability of some β-blockers to perturb membrane structure. However, all such effects have been reported to require antagonist concentrations of at least micromolar concentrations and are not stereoselective. In contrast, the decrease in receptor number that we observed following overnight incubation of cells with propranolol and alprenolol requires concentrations of these drugs in the 1–100 nM range, exhibits stereoselectivity, and is prevented by other β-blockers that do not exhibit this effect. The requirement for functional Gα for the antagonist-induced β-adrenergic receptor down-regulation is perhaps the most compelling evidence for a specific mechanism for this phenomenon. How this requirement for Gα contributes to antagonist-induced receptor loss is unknown. Nevertheless, it does point to some kind of functional interaction between the receptor and Gα, driven by antagonist, that causes the receptor loss. This in turn suggests that certain antagonists may be able to induce a conformational change in receptors that in some way mimics that induced by agonists. This action would suggest that antagonists are able to drive some of the responses to receptor occupation that have hitherto been ascribed solely to agonists.

In contrast to our observations, Reynolds and Molinoff observed no down-regulation of β-adrenergic receptors in S49 cells by propranolol, which in their hands was able to prevent the down-regulation induced by another β-blocker, pindolol. We are unable to explain this discrepancy between our results and those of Reynolds and Molinoff, although differences in batches of cells, sera, or other technical considerations may have contributed to the different results.

The concentrations of alprenolol and propranolol that we found to be effective in decreasing β-adrenergic receptor number are similar to those achieved clinically in patients receiving these drugs. Thus, it is conceivable that some β-adrenergic receptor antagonists can alter response to endogenous catecholamines by at least two mechanisms: a rapidly appearing competitive blockade and a decrease in β-adrenergic receptor number that we describe here. It should prove of interest to assess effects of other β-adrenergic antagonists and other target cells for the frequency with which this latter phenomenon occurs. Depending on the particular β-blocker, this decrease in β-adrenergic receptor number may be nonselective, rapid or slowly appearing, as described in this report.

Figure 6. Blockade by ICI 118,551 and role of Gα in antagonist-mediated down-regulation of S49 cells β-receptors. Wild-type S49 and Gα-deficient cyc−S49 cells were incubated for 16 hours with no drugs (control, open bar); 20 μM ICI 118,551 (ICI, dotted bars); 100 nM (−)-alprenolol (alp, hatched bars); or both drugs together (+, solid bars). The cells were washed and receptor density was estimated by binding of 0.2 nM [3H]ICYP was measured. The data shown is the mean±SEM of three experiments.

The mechanism whereby propranolol and alprenolol decrease β-receptor number is not known. One possible mechanism is through long-lived occupation of the receptor. However, the calculated dissociation rate constant for (−)-propranolol on S49 cells (1.0/min at 37°C) corresponds to a half-life of receptor occupancy of 0.7 minute, a time that would be incompatible with long-lived occupation of the receptor by this drug. Since effective concentrations of β-blockers that elicit decreases in β-adrenergic receptor number are many times greater than those that cause half-maximal occupation of receptors, this disparity in effective concentrations argues against a receptor-mediated mechanism. However, other observations, such as stereoselectivity, blockade of down-regulation by ICI 118,551, requirement for the guanine nucleotide-binding protein (Gα), failure to alter α1-adrenergic receptor concentration and effects on cyclic AMP accumulation argue in favor of a receptor-mediated mechanism. Neither alprenolol nor propranolol, in the 1–100 nM range, measurably elevates intracellular cyclic AMP levels in S49 cells (data not shown), making it unlikely that the down-regulation is mediated by elevated levels of cyclic AMP in these cells.

Propranolol and alprenolol are known to exhibit "membrane stabilizing activity." Such activity comprises many diverse effects, including local anesthetic-like properties, ability to protect red blood cells from hemolysis, and inhibition of serotonin uptake and release by platelets, and appears to be related to the ability of some β-blockers to perturb membrane structure. However, all such effects have been reported to require antagonist concentrations of at least micromolar concentrations and are not stereoselective. In contrast, the decrease in receptor number that we observed following overnight incubation of cells with propranolol and alprenolol requires concentrations of these drugs in the 1–100 nM range, exhibits stereoselectivity, and is prevented by other β-blockers that do not exhibit this effect. The requirement for functional Gα for the antagonist-induced β-adrenergic receptor down-regulation is perhaps the most compelling evidence for a specific mechanism for this phenomenon. How this requirement for Gα contributes to antagonist-induced receptor loss is unknown. Nevertheless, it does point to some kind of functional interaction between the receptor and Gα, driven by antagonist, that causes the receptor loss. This in turn suggests that certain antagonists may be able to induce a conformational change in receptors that in some way mimics that induced by agonists. This action would suggest that antagonists are able to drive some of the responses to receptor occupation that have hitherto been ascribed solely to agonists.

In contrast to our observations, Reynolds and Molinoff observed no down-regulation of β-adrenergic receptors in S49 cells by propranolol, which in their hands was able to prevent the down-regulation induced by another β-blocker, pindolol. We are unable to explain this discrepancy between our results and those of Reynolds and Molinoff, although differences in batches of cells, sera, or other technical considerations may have contributed to the different results.

The concentrations of alprenolol and propranolol that we found to be effective in decreasing β-adrenergic receptor number are similar to those achieved clinically in patients receiving these drugs. Thus, it is conceivable that some β-adrenergic receptor antagonists can alter response to endogenous catecholamines by at least two mechanisms: a rapidly appearing competitive blockade and a decrease in β-adrenergic receptor number that we describe here. It should prove of interest to assess effects of other β-adrenergic antagonists and other target cells for the frequency with which this latter phenomenon occurs. Depending on the particular β-blocker, this decrease in β-adrenergic receptor number may be nonselective, rapid or slowly appearing, as described in this report.
References

Key Words • beta-receptors • alprenolol • propranolol
Certain beta-blockers can decrease beta-adrenergic receptor number: II. Down-regulation of receptor number by alprenolol and propranolol in cultured lymphoma and muscle cells. R J Hughes, L C Mahan and P A Insel

doi: 10.1161/01.RES.63.2.279

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1988 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/63/2/279

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/