Identification and Characterization of Guinea Pig Angiotensin II Ventricular and Atrial Receptors: Coupling to Inositol Phosphate Production

Kenneth M. Baker and Harold A. Singer

Angiotensin II (All) elicits a receptor-mediated positive inotropic response in cardiac tissue from most mammalian species. The data strongly suggest that the positive inotropic response to All is mediated by activation of the voltage-sensitive slow Ca\(^{2+}\) channels. It has also been demonstrated that the All-induced positive inotropic response that occurs in cardiac tissue is a direct effect independent of the \(\beta\)-adrenergic system and cyclic AMP (cAMP) accumulation. However, in guinea pig, we and others have been unable to demonstrate any positive inotropic response of cardiac muscle to All. In electrophysiological studies, it was demonstrated that All did not induce any increase in slow calcium inward current in guinea pig ventricle. The lack of a positive inotropic response in guinea pig heart may be due to the absence of the \(\beta\)-adrenergic system and cyclic AMP (cAMP) accumulation.

Angiotensin II elicits a receptor-mediated positive inotropic response in cardiac tissue from most mammalian species by activating voltage-sensitive slow Ca\(^{2+}\) channels. In the guinea pig, we confirm there is no in vitro contractile force development in bioassay systems using isolated hearts or left atrial tissue in response to angiotensin peptides. However, un-angiotensin II binding sites that have the characteristics of a membrane receptor were identified in ventricular (myocardial) and atrial membrane preparations from guinea pigs. In ventricles, saturation-binding data yielded an optimal fit to a two-site model with a high-affinity site \(K_d = 3.6 \pm 0.7 \text{ nM}\) and a low-affinity site \(K_d = 433 \pm 126 \text{ nM}\) and binding capacities of 66 ± 10 and 821 ± 49 fmol/mg protein, respectively. In atria, saturation binding data yielded an optimal fit to a two-site model with a high-affinity site \(K_d = 1.6 \text{ nM}\) and a low-affinity site \(K_d = 300 \text{ nM}\) and capacities of 145 and 752 fmol/mg protein, respectively. The ventricular binding of \(^{125}\text{I}-\text{angiotensin II}\) was stimulated twofold in the presence of the divalent cations calcium and magnesium (10 mM). Nonhydrolyzable analogues of guanosine triphosphate increased the dissociation rate of the bound \(^{125}\text{I}-\text{angiotensin II}\) and decreased hormone binding to the receptor at equilibrium. Competition for \(^{125}\text{I}-\text{angiotensin II}\) binding by an agonist-antagonist analogue series correlated with previous studies obtained in the rabbit, a mammal in which inotropic responses to angiotensin II were demonstrated. The data indicate the presence of angiotensin II myocardial and atrial receptors and a G-type coupling protein in guinea pig. Although this species lacks an inotropic response to angiotensin peptides, there is a dose-dependent increase in inositol-1-phosphate production in response to angiotensin II, and this response is blocked by the selective angiotensin II antagonist \([\text{Sar}^1,\text{Ile}^2]\text{angiotensin II}]. This species may provide the opportunity to study the angiotensin II-induced phosphoinositide response and potential physiological sequelae (i.e., hypertrophy) in isolation from Ca\(^{2+}\) channel activation and resultant mechanical responses. (Circulation Research 1988;62:896–904)
The purposes of the present study were to determine if All-binding sites were present in guinea pig ventricle and atrium, species that does not exhibit an inotropic response to the peptide, and to determine if All elicits other myocardial responses in this species, specifically activation of phosphoinositide breakdown and inositol phosphate accumulation. We report the identification of 125I-All-binding sites in ventricular and atrial membrane preparations from guinea pigs that have the characteristics of a membrane receptor. We confirm the apparent lack of coupling between the ventricular and atrial binding sites and inotropic response in this species. However, All was found to stimulate accumulation of water-soluble polyphosphoinositides in a dose-dependent manner that was antagonized by specific All-receptor antagonists. These findings indicate that the lack of inotropic response to All in guinea pig hearts in vitro is not due to absence of All-receptor sites but apparently reflects a lack of coupling to membrane calcium channels. Although in guinea pig the All ventricular and atrial receptors do not couple to inotropic activities, they do couple to phosphoinositide turnover.

Materials and Methods

Angiotensin I (AI), All, and angiotensin III (AlII) were obtained from the United States Biochemical Corporation, Cleveland, Ohio. 125I-All (specific activity 1,880 μCi/μg) and myo-[2-H]-inositol (specific activity 17.1 μCi/mmol) were obtained from New England Nuclear, Boston, Massachusetts. Other chemicals and reagents were obtained from Fischer Scientific Corporation, King of Prussia, Pennsylvania, and Sigma Chemical, St. Louis, Missouri. Number 30 glass fiber filters were purchased from Schleicher and Schuell, Keene, New Hampshire. The anion-exchange resin (formate form) and column were obtained from Bio-Rad, Richmond, California, and Kontes, Vineland, New Jersey, respectively.

Tissues were obtained from male Dunkin-Hartley guinea pigs (300–350 g). The animals were anesthetized with sodium pentobarbital (30 mg/kg i.p.). The heart was rapidly removed, and the left atrium dissected free. Left atria were prepared for isometric studies by the method of Blumberg et al. The point-stimulated preparations were paced electrically at 1 Hz and at twice-threshold voltage (~2 V). Atria were connected to FT03C force displacement transducers (Grass Instruments, Quincy, Massachusetts) and allowed to contract isometrically. Each preparation was maintained at optimal length for active force development, which corresponded to 3.0-g resting tension. The incubation buffer (10 ml) contained (mM) NaCl 119, CaCl$_2$ 2.54, KCl 4.7, NaH$_2$PO$_4$ 1.18, MgCl$_2$ 0.5, NaHCO$_3$ 25, and glucose 5.5. Bath temperatures were maintained at 37°C, and the buffer was equilibrated with 95% O$_2$-5% CO$_2$. The measured atrial contractions were displayed on a Model 7 Grass polygraph. Tissues were allowed to equilibrate for 90 minutes before experiments were begun.

Isolated perfused hearts were prepared for inotropic studies by the method of Neely and Rovetto. Guinea pigs were killed as described above, and the hearts were rapidly excised and placed in ice-cold modified Krebs-Henseleit buffer containing (mM) NaCl 119, CaCl$_2$ 1.9 plus 0.5 to balance EDTA; Na$_2$EDTA 0.5, NaH$_2$PO$_4$ 1.18, MgCl$_2$ 1.18, NaHCO$_3$ 25, KCl 5, and glucose 11.1. The aorta was cannulated and back-perfused with buffer at 80 mm Hg at a flow rate of 30 ml/min. The buffer was maintained at 37°C and equilibrated with 95% O$_2$-5% CO$_2$. A balloon-tipped catheter coupled to a P23 pressure transducer (Gould, Cleveland, Ohio) was placed in the left ventricular cavity via the mitral orifice, and left ventricular pressure was displayed on a Model 7 Grass polygraph. Following a 30-minute equilibration period, agonist compounds were infused into the spontaneously beating hearts (via the aortic cannula) for 5 minutes at each concentration.

Guinea pig ventricular (myocardial) membranes were prepared from the left ventricles and atria by previously described methods. The methods are a modification of the original protocol of Harigaya and Schwartz as described by Jones et al. The left ventricles or atria were removed from the hearts and cut into 2–3-mm pieces. A homogenate of the tissue (20% wt/vol) was prepared in 0.25 M sucrose, 25 mM Tris, at pH 7.5 (on ice), with a Brinkman Polytron (Westbury, New York) using a PT-20 probe at a setting of 5.5 for two 30-second periods. Following centrifugation of the homogenate at 10,000g for 20 minutes, the supernatant was decanted and sedimented at 45,000g for 30 minutes. The 45,000g pellet was resuspended in 10 ml of 0.6 M KCl and 30 mM histidine, pH 7.0, and resedimented at 45,000g for 30 minutes to yield a fraction of crude membrane vesicles. All centrifugations were performed at 5°C. The pellets obtained from the final centrifugation were washed three times and resuspended in binding buffer of 50 mM Tris, 10 mM MgCl$_2$, 10 μg/ml bacitracin, 5 × 10$^{-4}$ M diisthiothreitol, and 0.2% crystalline bovine serum albumin (BSA), pH 7.5. The membranes were used immediately in binding assays. Protein determinations were performed by the protein dye binding method of Bradford.

The concentration of 125I-All used in the binding experiments was ~0.30 nM. The binding reaction was initiated by the addition of the ventricular or atrial membrane fraction to All (40 μl, 1.5 mg of protein/ml, final concentration) and incubated in a total volume of 0.1 ml of assay buffer for 45 minutes at 18°C in 12 × 75 mm polypolyethylene tubes. Following incubation, 4 ml ice-cold 50 mM Tris solution, pH 7.5, was added to each assay tube. Bound hormone was trapped by vacuum filtration using glass fiber filters that had been presoaked in 0.2% solution of fraction V BSA. This was followed by a 4-ml rinse of the incubation tube and 2 × 4 ml rinse of the filters with Tris (50 mM, 4°C). The filters were dried in room air, and bound radioactivity was determined by counting in a Beckman Biogamma Counter (Fullerton, California) with an efficiency for 125I-All of 70%. Saturable binding is defined as that portion of total binding displaced by...
10⁻⁵ M unlabeled ligand. Experimental results for the competition studies by the peptides are expressed as ¹²⁵I-AlI bound (B/B₀ × 100) where B and B₀ are the binding of labeled All in the presence and absence, respectively, of the unlabeled peptides.

Metabolism of ¹²⁵I-AlI during the binding assays was assessed by thin layer chromatography (TLC). ¹²⁵I-AlI (0.35 nM) was incubated with membranes (total volume 100 μl, membranes 40 μg) at a concentration of 1.5 mg protein/ml for 60 minutes at 18° C. Bound and free ligand were separated by centrifugation. The bound hormone was solubilized by adding 100 μl of 50% glacial acetic acid to the pellet, followed by incubation in a boiling water bath for 5 minutes. The free and bound hormones were spotted on Eastman Kodak plastic-backed cellulose TLC plates and developed in a solvent of n-butyl alcohol: acetic acid: pyridine: water (15:3:10:12). The plates were cut into 1-cm² strips and counted in a Beckman Biogamma Counter. The TLC standard on each chromatogram was the native ¹²⁵I-AlI.

Incubation of the tissue and analysis of inositol-1-phosphate was performed by modifications of the procedures of Berridge et al³³ and Brown and Brown.³⁴ The guinea pigs were anesthetized with sodium pentobarbital (30 mg/kg i.p.). Hearts were quickly excised, the left ventricles or atria isolated within 30 seconds, blotted to remove excess blood, washed in oxygenated (95% O₂-5% CO₂) Krebs-Henseleit buffer (4° C), and wet weights determined. The tissues were transferred to polystyrene tubes containing continuously oxygenated buffer (37° C) and equilibrated for 20 minutes with the drug or control solutions, the tissues were blotted and rinsed with ice-cold buffer. The tissues were transferred to a Pyrex tissue grinder (13 x 100 mm) containing 1.3 ml H₂O to remove myo[2-³H]inositol. Labeled mesh, formate form). The column was washed with 20 ml ice-cold CHCl₃: MeOH: H₂O (5:10:4) and homogenized for 1 minute. Two phases were obtained with the addition of CHCl₃ and H₂O to make the solution CHCl₃: MeOH: H₂O (10:10:5). Samples were centrifuged at 1,600g for 20 minutes at 4° C. The water-soluble extract (upper aqueous phase, 650 μl) was removed and transferred to a column containing 180 mg anion exchange resin (Bio-Rad, AG 1-x 8, 100-200 mesh, formate form). The column was washed with 20 ml H₂O to remove myo[2-³H]inositol. Labeled myo-inositol-1-phosphate was eluted with 10 ml of 0.1 M formic acid, 0.2 M ammonium formate and counted in an equal volume of Scinti Verse E (Fisher) in an LKB Rackbeta LS counter (Gaithersberg, Maryland).

The affinities and number of binding sites for the saturation binding isotherms were determined using a nonlinear least-squares curve-fitting program to fit the data to a one- or two-site model.³⁵ Data were also transformed according to Scatchard.³⁶ Data are expressed as mean ± SEM. When comparing two groups, statistical significance was determined using an unpaired Student’s t test. More than two means were compared by ANOVA and the Newman-Keuls test. In both cases, p < 0.05 was considered statistically significant.

Results

The binding of ¹²⁵I-AlI to the 45,000g myocardial particulate fraction of guinea pig left ventricle increased linearly with protein concentrations between 25 and 150 μg/100 μl. The rate of association and maximal binding of ¹²⁵I-AlI were dependent on time and temperature. At 18° C, binding remained stable from 45 to 90 minutes. Chromatography of ¹²⁵I-AlI bound and labeled peptide(s) in the medium demonstrated that degradation of the radioligand was prevented or attenuated in the binding buffer used for the experiments (data not shown).

The concentration-dependent binding of ¹²⁵I-AlI to the guinea pig ventricular particulate fraction is shown in Figure 1A. The binding isotherm spans more than four orders of magnitude with a threshold concentration of 10⁻⁸ M AlI and saturation of sites occurring at 10⁻⁵ M All. When the data were transformed according to Scatchard, the plot suggested the

![Figure 1](http://circres.ahajournals.org/lookup/suppl/doi:10.1161/01.RES.62.5.898/-/DC1)

Figure 1. Saturation binding isotherm of ¹²⁵I-AlI to guinea pig ventricular membranes. Panel A: ¹²⁵I-AlI and varying amounts of unlabeled All were incubated in duplicate with guinea pig ventricular membranes (1.5 mg/ml) in total volume of 100 μl for 45 minutes at 18° C in buffer containing 50 mM Tris, 10 mM MgCl₂, 10 μg/ml bacitracin, 5 x 10⁻⁴ M dithiothreitol, and 0.2% crystalline bovine serum albumin, pH 7.5. Log-dose response curve was analyzed by means of nonlinear least-squares curve-fitting program. Kᵦₑ = 3.6 ± 0.7 nM and (nₛ) = 66 ± 10 fmol/mg protein; Kᵦₑ = 433 ± 126 nM and (nₛ) = 821 ± 49 fmol/mg protein. This figure is representative of seven such experimental preparations, each performed in duplicate. Panel B: Data were transformed according to Scatchard. This figure is representative of seven such experimental preparations, each performed in duplicate.
presence of two classes of binding sites (Figure 1B). Computer analysis of the saturation-binding data yielded an optimal fit to a two-site model with a high-affinity site \(K_d = 3.6 \pm 0.7 \) nM and a low-affinity site \(K_d = 433.4 \pm 126 \) nM and capacities of 66 \(\pm 10 \) and 821 \(\pm 49 \) fmol/mg protein, respectively. Competition by angiotensin peptides with \(^{125}\)I-AII binding to the guinea pig ventricular membrane fraction is shown in Figure 2. The displacement curve for [Sar',Ile']AII was shifted to the left of [Ile']AII by approximately fivefold. [Sar',Thr']AII was equipotent with [Ile']AII in displacing \(^{125}\)I-AII. Angiotensin I and III were 1% and 2%, respectively, as potent as [Ile']AII in inhibiting the binding of \(^{125}\)I-AII.

The binding of \(^{125}\)I-AII to the guinea pig ventricular membrane fraction was determined in the presence of various cations. These experiments were performed with a particulate fraction prepared and washed several times in binding buffer that contained 50 mM Tris, \(10^{-4} \) M EDTA, 10 \(\mu \)g/ml bacitracin, 5 \(\times 10^{-4} \) M dithiothreitol, and 0.2% crystalline BSA, pH 7.5. At concentrations of 10 mM free ion, the divalent cations \(Mg^{2+} \) and \(Ca^{2+} \) stimulated maximal \(^{125}\)I-AII binding approximately twofold over control levels (\(-270\%\) stimulation in the presence of \(Mg^{2+} \)). The binding of \(^{125}\)I-AII was decreased (\(-80\%\)) in the presence of monovalent cations, \(K^+ \) and \(Na^+ \) (Figure 3).

Guanine nucleotides accelerate the dissociation rate of many agonists from their membrane receptors. As shown in Figure 4, 10 mM Gpp(NH)p increased the dissociation rate of \(^{125}\)I-AII by unlabeled AII from the binding sites in a preparation of guinea pig ventricular membranes. The divalent cation dependence of the GTP effect is shown in the inset (Figure 4). In the absence of added \(Mg^{2+} \), Gpp(NH)p does not increase the dissociation rate of the \(^{125}\)I-AII by unlabeled AII from the ventricular binding sites. The GTP effects on \(^{125}\)I-AII binding in ventricle at equilibrium are shown in Figure 5A. Gpp(NH)p shifts the competition displacement curve of \(^{125}\)I-AII by [Ile']AII to the right in the ventricular membrane fraction. Competition by [Ile']AII with \(^{125}\)I-AII binding to the guinea pig atrial particulate fraction is shown in Figure 5B. Computer analysis of the saturation-binding data from a representative experiment yielded an optimal fit to a two-site model with a high-affinity site \(K_d = 1.6 \) nM and a low-affinity site \(K_d = 300 \) nM and capacities of 145 and 752 fmol/mg protein, respectively. The [Ile']AII competition curve in the atrial particulate fraction is shifted >1 log to the right in the presence of 10 mM Gpp(NH)p (Figure 5B).

In an isolated perfused heart preparation, no significant inotropic responses were demonstrated with AII (Figure 6). The \(\beta \)-adrenergic agonist isoproterenol and the muscarinic agonist carbachol produced significant positive (\(-70\%\) increase) and negative (\(-35\%\) decrease) inotropic responses, respectively, demonstrating the viability of these preparations. Biological activities for AII and the \(\beta \)-adrenergic agonist isoproterenol on atrial contractions are shown in Figure 7. The responsiveness to isoproterenol was used as an indicator of the integrity of the tissues. We were unable to demonstrate positive inotropic responses to AII in the guinea pig atria over the expected dose range (\(10^{-10} \) to \(10^{-4} \) M) estimated from the binding data. In addition, angiotensin pretreatment had no significant effect on the isoproterenol cumulative concentration-response relation (data not shown). No inotropic responses were obtained with any angiotensin analogues studied, including AI, AIII, and [Sar',Ile']AII (\(10^{-10} \) to \(10^{-4} \) M). It should be noted that in vascular preparations (aortic rings) from the guinea pig, AII elicits dose-dependent contractile responses, indicating intact vascular smooth muscle AII receptors and coupling mechanisms in this species (data not shown).

The concentration-response for all stimulation of phosphoinositide hydrolysis in guinea pig ventricle is shown in Figure 8A. Threshold for the AII-mediated response in ventricle approximates \(10^{-8} \) M in this species. The AII responses were significantly greater than control but only 17% of the response observed.
with 100 μM carbachol (Figure 8B). The carbachol (100 μM)-stimulated increase in inositol-1-phosphate (IP₁) production in guinea pig ventricle (Figure 8B) confirms previous observations in rat and chicken heart. Both the All- and cholinergic-induced IP₁ responses were blocked by the specific receptor antagonists [Sar₈,Ile₈]All (Figure 8A) and atropine (Figure 8B), respectively. The All-induced IP₁ response was not blocked by the α-adrenergic antagonist phenoxybenzamine or the β-adrenergic antagonist nadolol (Figure 8B).

Carbachol and All produced a similar stimulation (when compared with the ventricle) of phospholipid hydrolysis in guinea pig atria (Figure 9). These responses were also blocked by the specific receptor antagonists (Figures 9A and 9B). The All-induced IP₁ response was not blocked by phenoxybenzamine or nadolol (Figure 9B). As in ventricle, the threshold for the All-mediated response in atria approximates 10⁻⁹ M in this species.

Discussion

In this study, we have characterized the binding of ¹²⁵I-All in a particulate fraction of plasma membrane and sarcoplasmic reticulum of guinea pig left ventricle and atria and provided evidence that these binding sites are the putative receptors that mediate the All-stimulated production of inositol-1-phosphate in this species. The binding of ¹²⁵I-All in this preparation was saturable (Figure 1), reversible (Figure 4), specific...
Effects of All (○) and isoproterenol with (●) and without (□) propranolol (10^-7 M) on guinea pig atrial contractility. Isolated left atria were maintained at 37°C and paced by point stimulation at 60 beats/min with twice-threshold voltage. Isometric contractions were recorded from base of about 3.0 g resting tension (maximum length-tension). Results are mean of eight experiments.

(Figure 2), and of both high- and low-affinity (Figure 1B). Two classes of All-binding sites have previously been demonstrated in rabbit heart,38 rat cardiocytes,39 adrenal gland,41 liver,41 and kidney.42 A single class of All-binding sites has previously been identified in rabbit12 and bovine heart,43 vascular smooth muscle,44 and brain.45 Some variability with respect to the one-12-43 versus two-site38-39 models of ^125I-AII binding reported for cardiac tissue may be expected based on methodological and species differences. In the guinea pig, using the present methodology, the best computer fit was with the two-site model in both the ventricular and atrial particulate fractions. The two-component exponential displacement curve of ^125I-AII in the presence of All is consistent with this model (Figure 4) as are the GTP effects on agonist binding (Figure 5).

The high-affinity binding site for ^125I-AII that we have identified in the guinea pig is very similar to that identified in rabbit myocardium.12 The major distinction between rabbit heart compared with the guinea pig is the difference in physiological responsiveness. Specifically, guinea pigs lack the mechanical changes (contractility) in response to All in both ventricles and atria (Figures 6 and 7). These results confirm previous studies. Using isolated guinea pig papillary muscles, Iven and Zetler13 and Iven et al46 were unable to demonstrate any effect of All on action potential duration, dv/dtmax, half-life of recovery of dv/dtmax, or refractory period. In a Langendorff preparation of guinea pig heart, All produced a small decrease in mechanical (contractile) activity, which was most likely secondary to the vasoconstrictive effects of All on the coronary arteries.44 In field-stimulated guinea pig left atria, All produced a slight increase in contractility, while in point-stimulated atria, there was no response to All up to 1 μmol/L.46 The slight increase in contractility in the field-stimulated preparation was most likely secondary to noradrenaline release from intramural neurons.

In cardiac tissue, the inotropic response to All when present is related to an increase in the permeability of the cell membrane to Ca2+ during the action potential.6 This receptor-mediated coupling with the voltage-sensitive Ca2+ channel is present in rabbit and avian cardiac muscle.6 In rabbit right atria, All (10^-10 M) rapidly restored both electrical and mechanical activity during K+ (22 mM) depolarization.4 Consistent with the lack of a mechanical response, All at concentrations as high as 10^-5 M did not restore electrical activity in guinea pig atria.6 [Sar^II]All and [des-Asp^II]All yielded the same negative result as did All in the guinea pig atrium.6 These results suggest that in guinea pig, the angiotensin receptor is uncoupled from the voltage-sensitive slow Ca2+ channel. There is evidence that in guinea pig ventricles, phosphorylation of phospholamban occurred predominately by cyclic AMP (cAMP)-dependent phosphorylation. Interventions that increased Ca2+ concentrations by non-cAMP-dependent mechanisms did not stimulate ^32P incorporation into phospholamban.47 Because in cardiac tissue All-mediated actions are via cAMP-independent mechanisms, it is possible that in this species it is the failure...
A principal finding in the present study is the demonstration of a significant AII-stimulated increase in inositol-1-phosphate production in isolated guinea pig ventricular (Figure 8A) and atrial (Figure 9A) tissue. The response to AII was not blocked by \(\alpha \)- or \(\beta \)-adrenergic receptor antagonists in either ventricular (Figure 8B) or atrial (Figure 9B) tissue. Similar AII responses were observed in rat, rabbit, and chick myocardium (data not shown). This response to AII in the heart appears to be specific in that it is blocked by \(\beta \)-adrenergic receptor antagonists in either ventricular or atrial tissue. The response to AII was not blocked by \(\alpha \)- or \(\beta \)-adrenergic receptor antagonists in either ventricular tissue (Figures 8 and 9). We have also demonstrated a GTP analogue effect on the dissociation of \(^{32} \text{P} \)-AII from the receptor (i.e., increased acceleration of the labeled agonist [K.M. Baker and H.A. Singer, unpublished data]). There is evidence that GTP-binding proteins are involved in the coupling of various \(Ca^{2+} \)-mobilizing receptors to phosphatidylinositol 4,5-bisphosphate hydrolysis and \(Ca^{2+} \) mobilization and that GTP analogues potentiate hormonal stimulation of phospholipase C.13 The specific G-protein that couples to the AII myocardial receptor has not been identified; however, hepatic AII receptors have been shown to negatively couple to adenylate cyclase through \(\mathrm{N} \).14 It should be noted that in cardiac tissue, for all species studied, there is no evidence that AII affects adenylate cyclase activity or the accumulation of cAMP, either positively or negatively.12 There is recently published evidence suggesting that \(\mathrm{G}_{\text{N}} \) is involved in the functional coupling of opiate receptors to neuronal voltage-dependent calcium channels.13 Direct activation of mammalian atrial muscarinic potassium channels by a guanine nucleotide regulatory protein was recently reported. These channels were in isolated inside-out patches of membranes from atrial cells and were activated by a G-protein that was a substrate for pertussis toxin, with an \(\alpha \)-subunit of 40 kDa.14 In several mammalian or avian species, muscarinic stimulation of inositol phospholipid hydrolysis has been demonstrated in atrial and ventricular tissue and in isolated cardiocytes.16,34,37,38 In this study, we have demonstrated the AII and also the muscarinic stimulation of inositol phospholipid hydrolysis in guinea pig ventricular and atrial tissue (Figures 8 and 9). We have observed similar responses in rat and avian heart (K.M. Baker and H.A. Singer, unpublished data). However, the physiological consequences of AII or muscarinic stimulation of phosphoinositide hydrolysis in cardiac tissue are unclear. In skinned guinea pig myocardium, IP \(_{3} \) was reported to have no direct effect on calcium sensitivity or maximum force generated by the contractile apparatus. But IP \(_{3} \) did appear to modulate excitation-contraction coupling by enhancing the calcium-induced release of calcium from the sarcoplasmic reticulum.15 The AII-induced phosphoinositide hydrolysis demonstrated in the guinea pig would appear not to be coupled to \(Ca^{2+} \) release based on the lack of a contractile effect to the peptide.

Observations have been made regarding the involvement of phosphoinositides in cell growth and proliferation.16 Phosphorylation of a 40-s ribosomal protein in chicken embryo fibroblasts or C127 murine cells was temporally correlated with protein synthesis.32 In rat heart, there is a reported effect of AII on myocardial protein synthesis, including localization of \(^{32} \text{P} \)-AII in the nuclei of cardiac muscle cells.33 Chronic (6 days) infusion of AII into male Sprague-Dawley rats increased protein content, heart weight, and RNA concentration and content. The \(\beta \)-adrenergic antagonist propranolol did not prevent the increase in heart weight following administration of AII, suggesting that the response was not mediated by catecholamines.17 It seems possible that the AII myocardial receptors...
described here may be linked to phosphoinositide hydrolysis, which ultimately may account for the stimulation of protein synthesis and cardiac hypertrophy that has been described in response to AII.

In conclusion, data describing the binding of 125I-AII to guinea pig ventricular and atrial membranes have been presented. These binding sites exhibited the properties expected of a hormonal receptor and likely represent the receptors that interact with AII to mediate the stimulation of inositol phospholipid hydrolysis. The physiological implications of this response are unknown but may be related to protein synthesis. The guinea pig is remarkably different from other mammals in that there is an absence of a cardiac contractile response to AII in ventricular and atrial tissue, which is not due to an absence of AII ventricular or atrial receptors. Perhaps the absence of a contractile response is related to the uncoupling of the receptor(s) from the Ca2+ channel or the absence of the G-protein that may couple the AII receptor to the voltage-sensitive slow Ca2+ channels. This species may provide a unique model in which to study the coupling of the AII myocardial receptor to inositol phospholipid hydrolysis independent of coupling to the voltage-sensitive slow Ca2+ channels.

Acknowledgments

We thank Donna Wood, Beth Letcher, Kathleen Aurand, and Hui-Quan Han for their excellent technical assistance, Dr. Michael Peach for critical discussion, and Debbie McCaffery for typing the manuscript.

References

KEY WORDS • angiotensin II • hormone receptors • guanine nucleotide • polyphosphoinositides • myocardium • ventricle • atrium • cell membrane
Identification and characterization of guinea pig angiotensin II ventricular and atrial receptors: coupling to inositol phosphate production.

K M Baker and H A Singer

doi: 10.1161/01.RES.62.5.896

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1988 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/62/5/896

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/