Pharmacologic Treatment of Hyperlipidemia Reduces Glomerular Injury in Rat 5/6 Nephrectomy Model of Chronic Renal Failure

Bertram L. Kasiske, Michael P. O’Donnell, William J. Garvis, and William F. Keane

The role of lipid abnormalities in the pathogenesis of focal glomerulosclerosis was investigated in the rat remnant kidney model of chronic renal failure. Rats subjected to right nephrectomy and two-thirds segmental infarction of the left kidney (5/6 nephrectomy) were treated for 10 weeks with the lipid-lowering agent clofibric acid. Both serum cholesterol and urine albumin excretion were significantly reduced by clofibric acid. At 10 weeks, the percent of glomeruli with focal glomerulosclerosis was 5 ± 2% in clofibric acid–treated and 24 ± 5% in untreated 5/6 nephrectomy rats (p<0.01). Inulin clearance was greater in clofibric acid–treated than in untreated 5/6 nephrectomy rats (0.28 ± 0.02 versus 0.22 ± 0.02 ml/min 100 g body wt, p<0.05). Body weight, kidney weight, and systemic blood pressure were not significantly altered by clofibric acid. Micropuncture studies, performed in separate groups of clofibric acid–treated and untreated 5/6 nephrectomy rats, demonstrated elevated single nephron glomerular filtration rates and glomerular capillary pressures 4 weeks after surgery. However, clofibric acid did not significantly alter single nephron glomerular filtration rates (95 ± 2.1 nl/min in treated versus 97.0 ± 6.2 nl/min in untreated, p>0.05) or glomerular capillary pressures (56.6 ± 1.5 mm Hg in treated versus 57.8 ± 0.8 mm Hg in untreated, p>0.05) in 5/6 nephrectomy rats. In a separate set of experiments, 5/6 nephrectomy rats were treated with the specific cholesterol synthesis inhibitor, mevinolin. Mevinolin improved serum lipid levels and reduced albuminuria in 5/6 nephrectomy rats without causing significant alterations in blood pressure. Focal glomerulosclerosis was also reduced by mevinolin (11 ± 2% versus 30 ± 3%, p<0.01). These results suggest that lipid abnormalities may be important in the pathogenesis of focal glomerulosclerosis in the rat 5/6 nephrectomy model of chronic renal failure. (Circulation Research 1988;62:367–374)
Experiments, group 1 (n = 10) consisted of rats subjected to 5/6 nephrectomy (see below). Group 2 (n = 11) rats were subjected to 5/6 nephrectomy and were treated with clofibric acid (Sigma Chemical, St. Louis, Missouri). Clofibric acid dissolved in propylene glycol (50-125 mg/ml) was injected subcutaneously. Rats in group 2 received 50 mg clofibric acid/kg body wt daily for 3 weeks, followed by 125 mg/kg body wt daily for the remainder of the study period. These doses of clofibric acid were chosen to parallel anticipated changes in renal elimination of the drug. Six normal, two-kidney rats served as a third untreated control group (group 3) for this first set of experiments.

In the second set of experiments, micropuncture was performed in six additional untreated (group 4) and six clofibric acid–treated (group 5) 5/6 nephrectomy rats. Micropuncture studies were carried out 4 weeks after surgery in both groups. Micropuncture studies were also carried out in eight two-kidney controls matched for body weight (group 6).

In the third set of experiments, an additional group of 13 5/6 nephrectomy rats (group 7) were injected with vehicle and compared with 15 5/6 nephrectomy rats (group 8) treated with mevinolin (Merck Sharp & Dohme, West Point, Pennsylvania). Using propylene glycol as the vehicle, 4 mg mevinolin/kg body wt was injected subcutaneously each day. To examine the possibility that differences in food intake could account for some of the observed effects of mevinolin, one half of the rats in groups 7 and 8 were pair fed. An additional group of eight ad libitum–fed, two-kidney, untreated rats were also used as controls (group 9).

In all of these investigations, renal ablation (5/6 nephrectomy) was carried out using the same technique. The surgical procedure included isolation of the left renal artery branches and ligation of the inferior and superior branches, leaving only the posterior branch intact. The right kidney was removed simultaneously.

All rats were fed standard laboratory chow (Ralston Purina, St. Louis, Missouri) and were allowed free access to water. Pair-fed mevinolin–treated and untreated rats from groups 7 and 8 were housed individually. All other rats were housed two per cage and were fed ad libitum.
group to which the rat belonged. A semiquantitative scoring system was used to assess the amount of mesangial matrix expansion as previously described. In each tissue specimen, a minimum of 50 glomeruli were examined. For each glomerulus, the amount of mesangial matrix expansion was graded from 0 to 4+ according to the percent of the glomerular tuft involved. A semiangential expansion score was obtained for each tissue specimen by multiplying the degree of mesangial expansion (0–4+) by the percent of glomeruli with the same degree of injury. The amount of mesangial expansion for the specimen was then obtained by the addition of these scores. In addition, the percent of glomeruli with focal glomerulosclerosis was determined for each tissue specimen by dividing the number of glomeruli with any focal glomerulosclerosis by the total number of nephrons in the specimen.

The extent of tubular dilation, tubular epithelial cell flattening, and interstitial fibrosis was qualitatively assessed. A score of 0–4+ was assigned to reflect the severity of these tubulointerstitial changes for each specimen.

Single Nephron Function Studies

Rats were not fasted prior to micropuncture. Studies were carried out on euolemic rats using techniques previously described. Briefly, rats were anesthetized with sodium pentobarbital (50 mg/kg body wt) and placed on a heated table to maintain body temperature between 36.5° and 37.5° C. A tracheostomy was performed, the left femoral vein was cannulated with PE-50 tubing, and MAP was monitored with a digital display pressure transducer (model 911, Western Laboratories, Morrison, Colorado). A PE-50 catheter was placed in the bladder. The remnant kidney was exposed by a subcostal incision, dissected free of perirenal tissue, immobilized in a plastic holder, and continuously bathed with mineral oil at 37° C. After a 45-minute stabilization period, urine was collected under mineral oil in preweighed tubes for a period of 20–30 minutes. During this interval, three timed (2–3-minute) proximal tubular fluid collections were obtained from superficial nephrons using sharpened glass pipettes (tip diameter 8–10 μm) filled with Sudan black-colored mineral oil. These collections were made just proximal to an oil column of several tubular diameters in length. Arterial blood samples were also collected during this period. Urine volumes were determined gravimetrically. Samples of urine, plasma, and tubular fluid were added to 10-ml scintillation cocktail (SCINT-A, Packard, Downers Grove, Illinois), and radioactivity of the samples was measured in a liquid scintillation spectrometer (model LS230, Beckman Instruments, Fullerton, California).

P, was measured under free-flow conditions in one group of tubules and after blockage of the tubular lumen (P,) with Sudan black-colored mineral oil in a different group of tubules. P, was determined in randomly selected efferent vascular welling points, or “star” vessels. All pressure measurements were performed with a servo-nulling micropressure system (W-P Instruments, New Haven, Connecticut) and micropipettes (o.d. 5–8 μm) filled with 2.0 M NaCl. P, was estimated by the stop-flow technique with measurements of P, in first surface convolutions distal to Bowman’s space. During these measurements, an arterial blood sample was obtained for total protein determination and calculation of P,, using the Landis-Pappenheimer equation. Blood samples were taken from efferent vascular welling points and were analyzed, together with an arterial sample, for total protein content using the micro-Lowry technique. Measurements of glomerular pressures (P,, P,), arterial and efferent arteriolar protein concentrations, and SNGFR were all performed on each rat. In all cases, filtration pressure equilibrium was not attained, and unique values for K, were calculated as previously described.

Statistical Analysis

Results

Results are expressed as mean ± SEM. The statistical significance of differences between group means was assessed using analysis of variance with the Bonferroni method for comparing multiple groups. Nonparametric data were analyzed using the Kruskal-Wallis method. Differences were considered significant for p < 0.05.

Results

General Characteristics of Experimental Groups

After surgery, all rats gained weight. Although two-kidney control rats weighed more than 5/6 nephrectomy rats, clofibric acid–treated rats weighed the same as untreated 5/6 nephrectomy rats at all times throughout the study (Table 1). Mevinolin–treated 5/6 nephrectomy rats had a modest (8.5%), but statistically significant, reduction in body weight (Table 2). This reduction in body weight could not be attributed to altered food intake because the difference in body weight between mevinolin–treated and untreated 5/6 nephrectomy rats was comparable in pair-fed (379 ± 6 versus 409 ± 12 g) and ad libitum–fed rats (393 ± 12 versus 439 ± 11 g). Kidney weight was not significantly altered by either clofibric acid or mevinolin (Tables 1 and 2).

Blood Pressure

Tail-cuff blood pressures were elevated in all 5/6 nephrectomy rats compared with two-kidney controls (Tables 1 and 2). Neither clofibric acid nor mevinolin had any statistically significant effects on blood pressure (Tables 1 and 2).

Triglycerides and Cholesterol

Fasting serum triglyceride levels tended to be elevated in 5/6 nephrectomy rats compared with controls (Tables 1 and 2). Only mevinolin caused a substantial reduction in triglyceride levels (Table 2). Both clofibric acid and mevinolin caused significant reductions in the
Table 1. Effects of Clofibric Acid on 5/6 Nephrectomy Rats

<table>
<thead>
<tr>
<th></th>
<th>Group 1 5/6 nephrectomy (n=10)</th>
<th>Group 2 5/6 nephrectomy clofibric acid (n=11)</th>
<th>Group 3 two-kidney controls (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>401 ±15*</td>
<td>416 ±16*</td>
<td>484 ±20†</td>
</tr>
<tr>
<td>Left kidney weight (g)</td>
<td>2.03 ±0.08*</td>
<td>1.88 ±0.12*</td>
<td>1.47 ±0.06†</td>
</tr>
<tr>
<td>Blood pressure, early (mm Hg)</td>
<td>197 ±10*</td>
<td>183 ±7*</td>
<td>142 ±2†</td>
</tr>
<tr>
<td>Triglycerides, early (mg/dl)</td>
<td>71 ±6*</td>
<td>77 ±6*</td>
<td>52 ±12*</td>
</tr>
<tr>
<td>Cholesterol, early (mg/dl)</td>
<td>76 ±4*</td>
<td>45 ±3†</td>
<td>40 ±2†</td>
</tr>
<tr>
<td>Cholesterol, late (mg/dl)</td>
<td>94 ±7*</td>
<td>53 ±6†</td>
<td>43 ±3†</td>
</tr>
<tr>
<td>Albuminuria, early (mg/24 hr)</td>
<td>28.0 ±7*</td>
<td>3.3 ±0.8†</td>
<td>0.8 ±0.2†</td>
</tr>
<tr>
<td>Albuminuria, late (mg/24 hr)</td>
<td>62.5 ±10*</td>
<td>11.0 ±4.0†</td>
<td>0.6 ±0.1†</td>
</tr>
</tbody>
</table>

*Mean ±SEM; shared superscripts indicate p>0.05.

Urine Albumin Excretion

Both clofibric acid and mevinolin caused significant reductions in urine albumin excretion (Tables 1 and 2). The reduced albuminuria was evident both early and late in the experimental periods.

Renal Function

Five weeks after surgery, mean serum creatinine in group 1 and group 2 5/6 nephrectomy rats was approximately twice that of normal group 3 rats (Table 3). Creatinine levels were similar in untreated group 1 and clofibric acid–treated group 2 rats at 5 weeks (Table 3). By 10 weeks, however, serum creatinine had decreased in the treated rats. As a result, at 10 weeks serum creatinine was significantly less in clofibric acid–treated rats (group 2) compared with untreated (group 1) 5/6 nephrectomy rats (Table 3).

Results of Cma measurements paralleled changes in serum creatinine. Ten weeks after 5/6 nephrectomy, Cma of clofibric acid–treated group 2 rats was greater than that of untreated group 1 rats (Table 3), but this difference was of borderline significance (p = 0.056). When Cma was normalized for body weight, however, Cma/100 g body wt in the clofibric acid–treated rats was significantly greater than that of untreated 5/6 nephrectomy rats (Table 3).

Histology

Clofibric acid caused a fourfold reduction in the percent of glomeruli with sclerosis (Figure 1). Similarly, the extent of mesangial matrix expansion was markedly reduced by treatment with clofibric acid. The mesangial matrix score in group 1 untreated 5/6 nephrectomy rats was 175 ± 14 compared with 89 ± 11 in group 2 clofibric acid–treated rats (p<0.05) and 32 ± 3 in group 3 two-kidney controls (p<0.05 versus groups 1 and 2). Tubulointerstitial injury paralleled the degree of glomerular damage. Mean tubulointerstitial injury scores were 2.6 ± 0.3 and 0.7 ± 0.2 for groups 1 and 2, respectively (p<0.05). No tubulointerstitial damage was seen in group 3 two-kidney controls.

Mevinolin caused a reduction in glomerular injury comparable to that seen in clofibric acid–treated 5/6 nephrectomy rats. Focal glomerulosclerosis, for example, was reduced by more than 50% in mevinolin-treated 5/6 nephrectomy rats (Figure 1). Similar reductions in mesangial matrix and tubulointerstitial injury were seen in mevinolin-treated rats.

Superficial Nephron Function

No statistically significant differences in body weight, kidney weight, or blood pressure were ob-

Table 2. Effects of Mevinolin on 5/6 Nephrectomy Rats

<table>
<thead>
<tr>
<th></th>
<th>Group 7 5/6 nephrectomy (n=13)</th>
<th>Group 8 5/6 nephrectomy mevinolin (n=15)</th>
<th>Group 9 two-kidney controls (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>422 ±8*</td>
<td>386 ±9†</td>
<td>487 ±16‡</td>
</tr>
<tr>
<td>Left kidney weight (g)</td>
<td>1.80 ±0.1*</td>
<td>1.72 ±0.05*†</td>
<td>1.51 ±0.2†</td>
</tr>
<tr>
<td>Blood pressure, early (mm Hg)</td>
<td>185 ±5*</td>
<td>169 ±7*†</td>
<td>114 ±6†</td>
</tr>
<tr>
<td>Triglycerides, early (mg/dl)</td>
<td>130 ±9*</td>
<td>97 ±7†</td>
<td>85 ±11†</td>
</tr>
<tr>
<td>Cholesterol, early (mg/dl)</td>
<td>132 ±6*</td>
<td>89 ±5†</td>
<td>66 ±10†</td>
</tr>
<tr>
<td>Cholesterol, late (mg/dl)</td>
<td>138 ±8*</td>
<td>92 ±8†</td>
<td>56 ±11†</td>
</tr>
<tr>
<td>Albuminuria, early (mg/24 hr)</td>
<td>37.9 ±8.1*</td>
<td>13.8 ±3†</td>
<td>0.5 ±0.3†</td>
</tr>
<tr>
<td>Albuminuria, late (mg/24 hr)</td>
<td>83.8 ±8.6*</td>
<td>43.6 ±7†</td>
<td>0.8 ±0.6†</td>
</tr>
</tbody>
</table>

*Mean ±SEM; shared superscripts indicate p>0.05.
Table 3. Renal Function in Untreated and Clofibrate–Treated 5/6 Nephrectomy Rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Renal Function</th>
<th>Mean arterial pressure (anesthesia) (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 5/6 nephrectomy (n=10)</td>
<td>Serum creatinine at 5 weeks (mg/dl)</td>
<td>1.11 ± 0.03*</td>
</tr>
<tr>
<td></td>
<td>Serum creatinine at 10 weeks (mg/dl)</td>
<td>1.09 ± 0.13*</td>
</tr>
<tr>
<td></td>
<td>Inulin clearance at 10 weeks (ml/min)</td>
<td>0.90 ± 0.09*</td>
</tr>
<tr>
<td></td>
<td>Inulin clearance per 100 grams body weight (ml/min/100 g body wt)</td>
<td>0.22 ± 0.02*</td>
</tr>
<tr>
<td>2: 5/6 nephrectomy + clofibrate acid (n=11)</td>
<td></td>
<td>157 ± 11*</td>
</tr>
<tr>
<td></td>
<td>Serum creatinine at 5 weeks (mg/dl)</td>
<td>0.99 ± 0.05*</td>
</tr>
<tr>
<td></td>
<td>Serum creatinine at 10 weeks (mg/dl)</td>
<td>0.76 ± 0.04†</td>
</tr>
<tr>
<td></td>
<td>Inulin clearance at 10 weeks (ml/min)</td>
<td>1.20 ± 0.11*</td>
</tr>
<tr>
<td></td>
<td>Inulin clearance per 100 grams body weight (ml/min/100 g body wt)</td>
<td>0.28 ± 0.02†</td>
</tr>
<tr>
<td>3: two-kidney controls (n=6)</td>
<td></td>
<td>151 ± 12*</td>
</tr>
</tbody>
</table>

*Mean ± SEM; shared superscripts indicate p > 0.05.

Served between untreated (group 4) and clofibrate acid–treated (group 5) rats subjected to micropuncture 4 weeks after 5/6 nephrectomy (Table 4). Serum cholesterol was reduced by 20% in group 5 compared with group 4 rats (75.7 ± 6.8 versus 94.5 ± 6.5 mg/dl, p = 0.07). Compared with control (0.5 ± 0.1 mg/24 hr), urine albumin excretion was only modestly elevated in group 4 (7.6 ± 3.2 mg/24 hr) and group 5 (6.8 ± 1.4 mg/24 hr) rats. Focal glomerulosclerosis was minimal at this age. In both groups, less than 5% of glomeruli exhibited focal glomerulosclerosis. Thus, 3 weeks after surgery, there was minimal glomerular injury in both 5/6 nephrectomy micropuncture groups. Compared with normal rats (group 6), both group 4 and group 5 rats demonstrated marked increases in SNGFR and SNPF (Table 4). Moreover, P and ΔP were significantly increased in group 4 and group 5 5/6 nephrectomy rats (Table 4). These functional alterations in the Sprague-Dawley remnant kidney were similar to those documented in the Munich-Wistar rat.3 However, the increased K, that characterized the Sprague-Dawley remnant kidney was not observed in the Munich-Wistar rat.2,3 This difference in K response to renal ablation could be due to differences in these two strains of rats. Nevertheless, clofibrate acid did not alter SNGFR, SNPF, or intraglomerular hydraulic pressures in this remnant kidney model (Table 4).

Discussion

Clofibrate acid is the pharmacologically active form of the lipid-lowering agent clofibrate.13 Clofibrate acid inhibits hepatic release of lipoproteins, interferes with albumin binding of free fatty acids, inhibits cholesterol biosynthesis, improves fatty acid metabolism, and enhances lipoprotein lipase activity.13 In the present study, clofibrate acid substantially reduced the marked glomerular, tubulointerstitial, and vascular injury that

![Figure 1. Percent of glomeruli with focal glomerulosclerosis in groups 1, 2, 7, and 8. p<0.01 group 1 versus 2 and group 7 versus 8.](http://circres.ahajournals.org/article/371/1/371)
Prostaglandin production may be resulted from alterations in glomerular capillary pressure and function in the 5/6 nephrectomy model. It is unlikely that the beneficial effects of clofibric acid treatment were specifically related to improved lipid metabolism, a separate set of experiments was carried out using a structurally unrelated lipid-lowering agent. Mevinolin is a specific inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. Mevinolin has been shown to lower serum cholesterol and increase low-density lipoprotein receptors. These results tend to suggest that alterations in serum triglycerides, increased by 27% in untreated 5/6 nephrectomy rats, are less closely associated with glomerular injury in the 5/6 nephrectomy model than cholesterol may be more closely associated with glomerular injury in this model of renal disease.

Recent studies in the 5/6 nephrectomy model have shown that dietary and pharmacologic maneuvers that lower glomerular capillary pressure retard the development of focal glomerulosclerosis. Indeed, normalization of glomerular capillary pressure with the angiotensin-converting enzyme inhibitor enalapril reduced glomerular size and diminished renal injury in this model. In the present study, glomerular area was reduced, but glomerular capillary pressures were unaltered by clofibric acid in 5/6 nephrectomy rats. Thus, it is unlikely that the beneficial effects of clofibric acid resulted from alterations in glomerular capillary pressures.

Similarly, experimental maneuvers that alter prostaglandin metabolism appear to preserve renal structure and function in the 5/6 nephrectomy model. The specific thromboxane synthesis inhibitor, OKY 1581, increased glomerular filtration rate and ameliorated glomerular injury. Also, a linoleic acid–enriched diet augmented renal production of vasodilatory prostaglandins, ameliorated proteinuria, and reduced focal glomerulosclerosis. Prostaglandin production may be affected by alterations in cholesterol and triglyceride metabolism. Whether the protective effects of clofibric acid seen in the present study were related to alterations in prostaglandin synthesis is unknown.

To further investigate the possibility that the reduction in glomerular injury associated with clofibric acid treatment was specifically related to improved lipid metabolism, a separate set of experiments was carried out using a structurally unrelated lipid-lowering agent. Mevinolin is a specific inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. Mevinolin has been shown to lower serum cholesterol and increase low-density lipoprotein receptors. In the present studies, mevinolin caused significant reductions in both cholesterol and triglycerides in 5/6 nephrectomy rats (Table 2). Mevinolin also decreased urine albumin excretion and reduced the amount of glomerulosclerosis. The reduction in glomerulosclerosis appeared to be somewhat less with mevinolin than with clofibric acid. There was 5 ± 2% sclerosis in clofibric acid–treated 5/6 nephrectomy rats compared with 11 ± 2% in the mevinolin-treated rats. However, the substantial variability in the amount of glomerulosclerosis within each group and the fact that the two sets of experiments were not carried out at the same time make it difficult to conclude that the protective effect of clofibric acid was greater than that of mevinolin.

From the results of the present studies, it is also difficult to determine the relative importance of altered cholesterol and triglyceride metabolism in the pathogenesis of glomerular injury. Serum lipids were uniformly higher in the 5/6 nephrectomy and two-kidney control rats in the mevinolin experiments compared with corresponding groups of rats in the clofibric acid experiments (Tables 1 and 2). Nevertheless, cholesterol was increased by 100% in untreated 5/6 nephrectomy rats compared with two-kidney controls in both sets of experiments, and serum cholesterol levels were reduced by both mevinolin (−33%) and clofibric acid (−41%). In the first set of experiments, serum triglycerides, increased by 27% in untreated 5/6 nephrectomy rats compared with two-kidney controls (p > 0.05), were unaffected by clofibric acid. In the second set of experiments, serum triglyceride levels, increased by 35% in untreated 5/6 nephrectomy rats (p < 0.05), were significantly reduced by mevinolin. These results tend to suggest that alterations in serum cholesterol may be more closely associated with glomerular injury in the 5/6 nephrectomy model than alterations in triglycerides. However, it is possible that
there were important changes in triglyceride metabolism that were not detected by measuring fasting triglyceride levels.

Clofibric acid and mevinolin may have reduced renal injury by decreasing the amount of lipid deposition in remnant nephrons. Altered cholesterol and/or triglyceride metabolism have been shown to influence the development and progression of focal glomerulosclerosis in a number of animal models. Dietary cholesterol supplementation, for example, exacerbated the extent and severity of age-associated focal glomerulosclerosis in rats, rabbits, and guinea pigs. Although the mechanism of injury is unknown, increased levels of cholesterol in renal tissue have been measured, and glomerular lipid deposits have been observed.

Investigations using the puromycin aminonucleoside rat model of the nephrotic syndrome have also suggested a potential role for lipids in the pathogenesis of focal glomerulosclerosis. Rats given multiple injections of puromycin aminonucleoside developed proteinuria, focal glomerulosclerosis, and a significant deposition of lipids in the mesangial. Halofenate, a clofibric acid analogue, reduced focal glomerulosclerosis in puromycin aminonucleoside–treated rats fed a lipogenic diet. The results of these and other studies are consistent with the hypothesis that alterations in lipid metabolism may have an important role in the development and progression of renal injury in animal models of focal glomerulosclerosis.

Results of experiments using the remnant kidney model suggest that several factors may be important in the pathogenesis of glomerular injury in chronic renal failure. These mechanisms are not necessarily mutually exclusive. It is possible that increased glomerular capillary pressure, coagulation factors, and lipid abnormalities interact synergistically in the pathogenesis of focal glomerulosclerosis. Indeed, a similar relation between these factors has been shown to be important in the development of atherosclerosis. The glomerulus has many structural features that resemble arteries commonly involved in atherosclerosis. Mesangial cells, for example, are structurally similar to arterial smooth muscle cells important in the pathogenesis of atherosclerosis. Lipid-laden macrophages are frequently found in both early atherosclerosis lesions and focal glomerulosclerosis. Thus, factors important in the pathogenesis of focal glomerulosclerosis may be similar to those that influence the development of atherosclerosis. The results of the present study suggest lipid abnormalities, together with increased glomerular capillary pressure and coagulation factors, may be important in the pathogenesis of focal glomerulosclerosis.

Acknowledgments

The authors wish to express their appreciation to Frank X. Daniels for technical assistance and Ms. Donna Boehmer for her help in preparing this manuscript.

References

11. Meffin PJ, Zilm DM, Veenendaal JR: Reduced clofibracid acid clearance in renal dysfunction is due to a futile cycle. J Pharmacol Exp Ther 1979;227:739–742
20. Tobert JA, Bell GD, Birtwell IJ, Kukovetz JS, Pryor JS, Buntix A, Holmes IB, Chao Y-S, Bolognese JA: Cholesterol-lower-
ing effect of mevinolin, an inhibitor of 3-hydroxy-3-
methylglutaryl-coenzyme A reductase, in healthy volunteers.
J Clin Invest 1982;69:913-919

22. Patrick TS, Gil G, Sudhof TC, Bilheimer DW, Goldstein JL,
Brown MS: Mevinolin, an inhibitor of cholesterol synthesis,
induced mRNA for low density lipoprotein receptor in livers
of hamsters and rabbits. Proc Natl Acad Sci USA 1986;83:
8370-8374

23. Traber MG, Kayden HJ: Inhibition of cholesterol synthesis by
mevinolin stimulates low density lipoprotein receptor activity
in human monocyte-derived macrophages. Atherosclerosis
1984;52:1-11

24. Peric-Golia L, Peric-Golia M: Aortic and renal lesions in
hypercholesterolemic adult, male, virgin Sprague-Dawley rats.
Atherosclerosis 1983;46:57-65

25. Wellman KF, Volk BW: Renal changes in experimental
hypercholesterolemia in normal and in subdiabetic rabbits. Lab
Invest 1970;22:144-155

26. French SW, Yamanaka W: Dietary induced glomerulosclerosis
in the guinea pig. Arch Pathol 1967;83:204-210

glomerulosclerosis: Effects of hyperlipemia and halofenate

28. Grond J, Weening JJ, Elema JD: Glomerular sclerosis in
nephrotic rats: Comparison of the long-term effects of adriamyci-
cin and aminonucleoside. Lab Invest 1984;51:277-285

30. de Martino C, Natali PG, Zamboni L, Accinni L: Ultrastructural
study of mesangial cells and their relationship to smooth
muscle cells of glomerular arterioles. Contrib Nephrol 1976;2:
17-24

31. Hyman LR, Burckholder PM: Focal sclerosing glomerulone-
phropathy with segmental hyalinosis: A clinicopathologic
analysis. Lab Invest 1973;28:533-544

32. Yamauchi Y, Hoff HF: Apolipoprotein B accumulation and
development of foam cell lesions in coronary arteries of
hypercholesterolemic swine. Lab Invest 1984;51:325-342

KEY WORDS • clofibrate • clofibric acid • mevinolin • focal
glomerulosclerosis • remnant kidney • hyperlipidemia
Pharmacologic treatment of hyperlipidemia reduces glomerular injury in rat 5/6 nephrectomy model of chronic renal failure.
B L Kasiske, M P O'Donnell, W J Garvis and W F Keane

doi: 10.1161/01.RES.62.2.367

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1988 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/62/2/367

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/