Isolation and Characterization of Myosin Heavy Chain Isozymes of the Bovine Conduction System

Issei Komuro, Kazuomi Nomoto, Takao Sugiyama, Masahiko Kurabayashi, Fumimaro Takaku, and Yoshio Yazaki

To determine the characteristics of cardiac myosin in the conduction system, a pure Purkinje fiber preparation, consisting of atrioventricular nodes and the ventricular conduction system, was obtained from bovine hearts. Two types of myosin heavy chain isozymes, α-type and β-type, were fractionated by affinity chromatography using monoclonal antibodies CMA19 and HMC50, which are specific for the α-type heavy chain and β-type heavy chain, respectively. Competitive enzyme-linked immunosorbent assay demonstrated that the content of β-type in the atrioventricular node (30-40%) was higher than that in atrial ordinary myocardium (10-20%) and that of the α-type was 30-40% in the ventricular conduction system, which was much higher than that in the ventricular ordinary myocardium (less than 10%). By one- and two-dimensional electrophoresis of the peptides produced by partial and complete digestion, the peptide compositions of α-type and β-type in the conduction system were shown to be very similar to those of α-type and β-type in ordinary myocardium, respectively. The Ca²⁺-activated ATPase activity of myosin of the atrioventricular nodes was lower than that of ordinary atrial myosin (0.46 ± 0.03 versus 0.58 ± 0.02 μmol Pi/mg/min, mean ± SEM, p<0.05) and in contrast, that of ventricular specialized myocardium was higher than that of myosin in the ventricular ordinary working myocardium (0.32 ± 0.03 versus 0.22 ± 0.01 μmol Pi/mg/min, p<0.05). This was in good agreement with the relative proportion of myosin isozymes. We concluded that there were two distinctive myosin heavy chain isozymes in the conduction system and that they were closely related to heavy chain α and β of the ordinary working myocardium. (Circulation Research 1987;61:859-865)

Myosin is the major contractile protein and is composed of two heavy chains (HCs) and two pairs of low molecular weight light chains (LCs). Many studies have recently demonstrated the heterogeneity of cardiac myosin. There are two types of heavy chain isozymes (αHC and βHC) in cardiac myosin, and the differences between them have been demonstrated by peptide mapping,1-3 by immunologic properties,4-6 by measurement of ATPase activities,7-10 and by sequence analysis of cDNA.11-13 The isomyosins VI, V2, and V3, identified from their electrophoretic mobility in nondenaturing gels,14 correspond to homodimers of αHC, heterodimers of αHC and βHC, and homodimers of βHC, respectively. VI has a higher ATPase activity, and the change from VI to V3 is correlated with a decrease in the speed of muscle contraction and an increase in the economy of force generation.15,16 Isoforms of cardiac myosin HC are differentially expressed according to species.6,9

From the Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan.

Supported by a grant-in-aid for scientific research and developmental scientific research from the Ministry of Education, Science and Culture, a grant for cardiomyopathy from the Ministry of Health and Welfare, and a grant from the research program on cell calcium signals in the cardiovascular system, Japan.

Address for correspondence: Issei Komuro, The Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan.

Received January 6, 1987; accepted June 24, 1987.

Myosin Preparation

Using a dilution technique as previously described,7 myosin was extracted from bovine left atrial and ventricular free wall, atrioventricular (AV) nodes, and
the ventricular conduction system, consisting of the bundle of His, the right and left bundle branches, and false tendons. The LCs (I and II) were isolated from the myosin molecule by guanidine denaturation.20

Hybridoma Procedures and Screening Assay for Antimyosin Antibodies

Monoclonal antibodies were obtained from cloned hybridomas as previously described,24,29 essentially by the protocol of Köhler and Milstein.31 Antimyosin activity in a medium from hybridoma colonies was screened quantitatively by enzyme-linked immunosorbent assay (ELISA), essentially by the method of Guesdon et al.32 Antibodies from 2 hybridoma lines, CMA19 and HMC50, specific for αHC and βHC, respectively, were used in this study.

Competitive Enzyme-Linked Immunosorbent Assay

Competitive ELISA was performed according to the method of Engvall.33 In brief, bovine atrial αHC or ventricular βHC, isolated as described below (0.1 μg/ml in 0.1 M carbonate buffer, pH 9.6), was bound to each well of a 96-well microtiter plate, and 0.1 μg of CMA19 or HMC50 and 10⁻¹⁻⁻⁻~-~-~

Preparative Electrophoretic Elution and Proteolytic Digestion of Myosin Heavy Chain

Myosin isozymes were electrophoretically separated on preparative gels. The bands of myosin HC were cut from the gel, and HC was then eluted by electrophoresis. Limited proteolytic cleavage of myosin HC with α-chymotrypsin and Staphylococcus aureus V8 protease was performed according to the method of Cleveland et al.36 In brief, myosin (100 μg/ml) was cleaved with α-chymotrypsin and V8 protease in the presence of SDS at a myosin-to-protease ratio of 10:1 for 30 minutes at 37°C. The reaction was stopped by boiling for 3 minutes in the presence of 2% SDS and 6% mercaptoethanol. The samples were electrophoretically separated on 14% acrylamide slab gels, using the Laemmli's buffer system at 10 mA constant for 12 hours. The polypeptides were stained with silver according to the method of Morrissey.37 For cyanogen bromide (CNBr) cleavage, myosin was dissolved in 70% formic acid and treated with solid CNBr in amounts 200 times greater than methionine residues for 18 hours at 25°C. The peptides were diluted with distilled water and lyophilized. Amino acid analysis indicated a 90–95% completion after the digestion. Two-dimensional gels were run according to the method of O’Farrell.38

Determination of ATPase Activities

ATPase activities were assayed as previously described.3 In brief, Ca²⁺-activated ATPase activities were assayed in 10 mM CaCl₂, 5 mM ATP, and 0.05 M Tris-HCl (pH 7.5), and K⁺-EDTA-activated ATPase activities were assayed in 0.6 M KCl, 1 mM EDTA, 5 mM ATP, and 0.05 M Tris-HCl (pH 7.5). Myosin (100 μg) in 0.1 ml column buffer was added to 1.9 ml of the above reaction mixture and incubated for 5 minutes at 25°C. The reaction was stopped by the addition of 1 ml of 20% trichloroacetic acid, and the precipitated protein was removed by centrifugation at 4°C. ATPase activity was determined by measuring the liberation of inorganic phosphate according to the method of Youngberg and Youngberg.39 Protein was determined by the method of Lowry et al., using crystalline bovine serum albumin as a standard.

Results

Figure 1 shows the competitive ELISA analysis. The reactivity of the myosin of ordinary atrium with CMA19 was one order of magnitude less than that of the ordinary atrium, and those of the AV nodes and ventricular conduction system were intermediate between those of the ventricle and atrium. The apparent affinity of HMC50 decreased in the order of ordinary ventricular myosin, myosin of ventricular conduction system, myosin of AV nodes, and atrial myosin. The relative affinity for each of these myosins was quantified from the concentration required to inhibit 50%
Competing Myosin

FIGURE 1. Competitive enzyme-linked immunosorbent assay analysis of bovine cardiac myosins with anti-αHC (A) and anti-βHC (B) monoclonal antibodies. Competitive enzyme-linked immunosorbent assay was conducted using four different preparations of cardiac myosin from atrium (●), AV node (▲), ventricular conduction system (▼), ordinary ventricle (○), and affinity-purified αHC (●) and βHC (▲). All points represent the average of four analyses.

binding of the atrial αHC to CMA19 or the ventricular βHC to HMC50. As shown in Figure 1 and Table 1, these differences in reactivity with CMA19 and HMC50 between the myosin of ordinary myocardium and that of the specialized myocardium indicated that ventricular specialized myocardium contained much more αHC than ventricular ordinary myocardium, and that βHC was more highly expressed in the AV nodes than in the atrial ordinary myocardium.

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that affinity-purified myosin isozymes were very pure and did not contain any actin or regulatory proteins (Figure 2A). Since the isozymes were eluted from the affinity column with 4 M guanidine, some LCs were dissociated, but 3 LCs were expressed in the conduction system. The LC1', which is known to be identical with atrial LC1, was present in both the αHC and βHC of the conduction system but not in the myosin of ordinary ventricular myocardium, while ventricular LC1 existed in both αHC and βHC of the AV nodes as well as in the ventricular conduction system.

Immunoblot analyses were performed to confirm the purity of affinity-fractionated isozymes. αHC of both ordinary myocardium and specialized myocardium purified by the affinity chromatocolumn coupled with CMA19 reacted with CMA19 but not with HMC50, while βHC purified by affinity chromatography using HMC50 reacted only with HMC50 (Figure 2B). In the affinity chromatography, all myosin bound to either CMA19 affinity column or HMC50 affinity column (data not shown). Based on the reactivity of the isozymes with CMA19 and HMC50, there were at least two immunologically distinctive isozymes in the myosin of the conduction system.

To elucidate the peptide composition of the myosin HC of the specialized myocardium, we isolated HC by preparative electrophoretic elution and compared the polypeptide fragments produced by proteolytic digestion. Figure 3 demonstrates the representative one-dimensional peptide maps of the αHC and βHC of the AV nodes, ventricular conduction system, and ordinary ventricle produced by digestion with α-chymotrypsin and Staphylococcus aureus V8 protease. Although there was a marked difference between the αHC and βHC maps, the peptide maps of the αHC of ordinary myocardium and specialized myocardium were indistinguishable, as was the βHC of these myocardia. In the two-dimensional analysis of the peptides produced by complete CNBr digestion, the peptide maps of αHC showed a great difference from those of βHC. On the contrary, although several peptides varied in intensity or identity, the αHC and βHC of the ventricular conduction system were very similar to the αHC and βHC of ventricular ordinary myocardium, respectively (Figure 4).

To determine the enzymatic properties of the myosin of the conduction system, we assayed the Ca²⁺- and K⁺-EDTA-activated ATPase activities (Table 2). The Ca²⁺-activated ATPase activity was highest in the atrial myosin (0.58 ± 0.02 μmol Pi/mg/min, mean ± SEM) and lowest in the ventricular ordinary myosin (0.22 ± 0.01 μmol Pi/mg/min). The activity of the myosin of the AV nodes and that of the ventricular conduction system were intermediate (0.46 ± 0.03 and 0.32 ± 0.03 μmol Pi/mg/min, respectively). This was in good agreement with the proportion of myosin isoforms in each myocardium.

Discussion

As previously reported from our laboratory, there are two distinctive myosin isoforms, α-type and β-type, in the conduction system. We purified the two types of HC isozymes from the bovine conduction system.
FIGURE 2. Analysis of purified myosin isozymes by SDS-poly-
acrylamide gel electrophoresis (A) and immunological charac-
terization of myosin isozymes by immunoblot technique (B). A:
About 5 μg of each myosin isozyme, affinity-purified ventric-
ular αHC (a), βHC (b), αHC (c), and βHC (d) of AV node and αHC
(e) and βHC (f) of ventricular conduction system, was applied
on a 10% slab gel, electrophoresed at a 10 mA constant current
for 8 hours, and stained with silver. The positions of the heavy
chain subunits (HC) and of light chain subunits of ventricular my-
osin (VLC1 and VLC2) and of light chain subunit of myosin of
conduction system (LC1') are indicated. B: Affinity-purified myo-
sin isozymes, ventricular αHC (a) and βHC (b), αHC (c) and βHC
(d) of AV node, and αHC (e) and βHC (f) of ventricular conduction
system, were electrophoresed, transferred from the polyacryla-
mide gels to nitrocellulose sheets, and stained immunologically with
monoclonal antibodies (CMA19 and HMC50).

A variety of biochemical, structural, and immuno-
logical studies have shown that muscle cells of the
Purkinje fiber system contain special features distinct
from ordinary working myocytes.2843 With the excep-
tion of LCs, there were only limited studies concerning
the myosin in the conduction system. Sartore et al4 and
Gonzalez-Sanchez and Bader44 demonstrated in
chicken that the myosin of Purkinje fibers differs from
that of ordinary working myofibrils in its immunochemical
properties and peptide composition. Recently, Gorza et
al45 found a distinct type of HC in the central portions
of the sinoatrial and atrioventricular nodes immuno-
histochemically, using a polyclonal antibody directed
against bovine fetal skeletal myosin. In the present
study, since peptide composition and enzymatic ac-
tivities of the isozymes of the conduction system were
very similar to those of the ordinary working myocardium,
these isozymes might be the products of the same

Table 2. Comparison of ATPase Activities of Myosin of
Ordinary Myocardia and of Specialized Myocardia

<table>
<thead>
<tr>
<th>Tissue type</th>
<th>Ca^{2+}-</th>
<th>K^{+}-EDTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrium</td>
<td>0.58 ± 0.02</td>
<td>0.68 ± 0.03</td>
</tr>
<tr>
<td>AV node</td>
<td>0.46 ± 0.03</td>
<td>0.70 ± 0.04</td>
</tr>
<tr>
<td>Specialized ventricle</td>
<td>0.32 ± 0.03</td>
<td>0.63 ± 0.05</td>
</tr>
<tr>
<td>Ordinary ventricle</td>
<td>0.22 ± 0.01</td>
<td>0.65 ± 0.03</td>
</tr>
</tbody>
</table>

The assay solutions for Ca^{2+}- and K^{+}-EDTA-activated ATPase
activities are those described in "Materials and Methods." Values
are mean ± SEM for 4 experiments.
gene. In the two-dimensional peptide maps, however, there were some variations in intensity or identity between isozymes of the conduction system and those of the ordinary myocardium. These differences might indicate some conduction system–specific peptides. In either case, compared with the distinctive differences between the maps of αHC and those of βHC, of which homology at nucleotide sequence level was very high (more than 90%), the differences between isozymes of the conduction system and those of the ordinary myocardium were so little that α-type and β-type HC in the conduction system should be closely related to αHC and βHC in the ordinary myocardium, respectively. Schiaffino et al stated that nodal-myosin HC appears to be antigenically similar but not identical to the myosin HCs present in fetal skeletal muscle. Whether a distinctive myosin gene is expressed in nodal tissue needs further investigation.

The Ca2+-activated ATPase activity of the myosin of the ventricular conduction system was higher than that of ventricular ordinary myocardium, which is consistent with the observation of Tamura et al. Saito et al suggested the existence of a new type of cardiac myosin isozyme in specialized myocardium because of the different ATPase activities of myosins between ordinary myocardium and specialized myocardium. But there was also a different proportion of the two isozymes. αHC was more highly expressed in the ventricular conduction system than in ventricular ordinary myocardium. Considering the ATPase activity of the myosin of the conduction system and the relative proportion of the myosin isozymes, the ATPase activity of each isozyme in the conduction system was thought to be almost the same as that of the ordinary myocardium.

The myosin from bovine ventricular conduction tissue gave 3 bands of light chains in SDS-PAGE, which is consistent with the finding of Whalen et al and Saito et al. Although the AV node exists in the atrium,
ventricular LC1 was present in the AV nodal myosin. These findings indicate that in the conduction system, two types of LC1 are expressed in the atrium and the ventricle. Since αHC was predominant in the atrium, it is likely that LC1', which is identical with atrial LC1, expressed with the HCa in the conduction system, but in this study, LC1' was expressed not only with αHC but also with βHC (Figure 2A). This suggests that LC1' was expressed independently of αHC and βHC as well as other LCs.44,45 In crossreinnervation studies of skeletal muscle, the light and heavy chains of skeletal myosin always appear to be matched, i.e., the synthesis of fast light chains is accompanied by the synthesis of fast heavy chains, while slow light chains and slow heavy chains also appear synchronously.51,52 Of great interest is that in the cardiac myosin, the genes of HCs and LCs must be regulated independently, though the HCs and LCs construct the subunit of the myosin molecule and function together.

We have demonstrated the presence of two types of HC isoymes in the conduction system as observed in ordinary myocardium. Furthermore, the peptide maps and enzymatic activities of the individual isoymes in the conduction system were very similar to those in the ordinary myocardium. We speculate that the same genes coding for HCs and LCs are expressed in both specialized and ordinary myocardium, though the gene coding for αHC is more highly expressed in the ordinary myocardium. We speculate that the same genes coding for atrial and ventricular LC1 are expressed together in the specialized myocardium.

References

1. Flink IL, Rader JH, Morkin E: Thyroid hormone stimulates synthesis of a cardiac myosin isozyme: Comparison of the two-dimensional electrophoretic patterns of the cyanogen bromide peptides of cardiac myosin heavy chains from euthyroid and thyrotoxic rabbits. J Biol Chem 1979;254:3105–3110
43. Thornell LE, Sjostrom M, Anderson KE: The relationship between mechanical stress and myofibrillar organization in heart Purkinje fibers. *J Mol Cell Cardiol* 1976;8:689-695
44. Gonzalez-Sanchez A, Bader D: Characterization of a myosin heavy chain in the conductive system of the adult and developing chicken heart. *J Cell Biol* 1985;100:270-275

Key Words: myosin isoenzymes • cardiac conduction system • monoclonal antibody • peptide map • ATPase activity
Isolation and characterization of myosin heavy chain isozymes of the bovine conduction system.
I Komuro, K Nomoto, T Sugiyama, M Kurabayashi, F Takaku and Y Yazaki

Circ Res. 1987;61:859-865
doi: 10.1161/01.RES.61.6.859

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1987 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/61/6/859