Hypoxic Vasoconstriction Increases With Postnatal Age in Lungs From Newborn Rabbits

Candice D. Fike and Thomas N. Hansen

Previous studies on the pressor response of the newborn pulmonary circulation to hypoxia have used intact animals and have reported conflicting results. Some have found an increase in responsiveness with increasing age; others have found a decrease. To circumvent many problems inherent in studies of pulmonary vascular reactivity in intact animals, we have developed methods for studying isolated, blood-perfused lungs from newborn rabbits. These methods have been used to study the influence of postnatal age on hypoxic pulmonary vasoconstriction. Two sets of experiments were performed. In the first, a stimulus-response curve for hypoxic pulmonary vasoconstriction was constructed, using lungs from 19 rabbit pups that were 3-8 days old. At a constant blood flow, pulmonary artery pressure increased progressively as alveolar oxygen tension decreased so that the maximum increase from baseline (29.4 ± 4.7%) occurred at P,O, = 0. The pressor response to hypoxia was highly reproducible, and the entire system remained stable for over 2-3 hours. In the second set of experiments, we compared the pulmonary vascular response to hypoxia obtained using lungs from an additional 21 pups that were 3-8 days old with that obtained using lungs from 23 pups that were 10-14 days old. In response to the same hypoxic stimulus, pulmonary artery pressure increased more in lungs from older rabbit pups (56 ± 4%) than in lungs from younger rabbit pups (34 ± 7%) (p < 0.001). We conclude that isolated perfused lungs from newborn rabbits exhibit a reproducible pressor response to alveolar hypoxia and that this response increases as a function of postnatal age. (Circulation Research 1987;60:297-303)

Materials and Methods

This study consists of 2 sets of experiments. In Set 1, methods were developed for studying isolated, blood-perfused lungs from newborn rabbits, and a stimulus-response curve for hypoxic pulmonary vasoconstriction for 3-8-day-old New Zealand white rabbit pups was generated. In Set 2, the effects of postnatal age on the strength of the pressor response to hypoxia were studied.

Animals

Three- to five-day-old New Zealand white rabbit pups and their mothers were obtained from the Ray Nichols Rabbitry, Beaumont, Tex., and housed together until the pups reached the age for study. The mothers were subsequently used as blood donors for the perfusate.

Surgical preparation. The techniques for preparation and perfusion of the rabbit lungs were similar to those described by Owen-Thomas and Reeves,1 Olson et al., and Marshall and Marshall.6 First, the rabbit pups were anesthetized with pentobarbital (30-50 mg/kg i.p.) and a tracheostomy performed using a 5-mm length of Tygon tubing (1 mm i.d., 1.75 mm o.d.) (Norton Plastics, Akron, Ohio) as an endotracheal tube. Then the lungs were ventilated using a piston-type rodent respirator (Harvard Apparatus Inc., South Natick, Mass.) at a tidal volume of 3-3.5 ml, a rate of 60/min, and an end-expiratory pressure of 1 cm H,O maintained by exhausting the ventilator to an under-water seal. The inspired gases were mixed in Mylar bags so that the initial P,O, was 150 mm Hg and P,CO, was 38-42 mm Hg. The chest wall was then opened by midline sternotomy and 200 U of heparin was injected into the left ventricle. Without damaging the lung, the
Perfusion Circuit

At the completion of surgery, the lungs were connected to the perfusion circuit shown in Figure 1 and the flow adjusted to 0.07 ml/g body wt/min. In this circuit, perfusate was pumped from a reservoir, using a rotary pump (Cole-Parmer Co., Chicago, Ill., Masterflex) through a bubble trap and blood filter (International Inc., San Antonio, Texas, Hemo-nate) into one limb of a t-connector attached to the pulmonary artery catheter, through the lungs into the left atrial catheter, and then allowed to drip back into the reservoir. The other end of the t-connector was used to measure pulmonary artery pressure. The tip of the left atrial catheter was exposed to atmospheric pressure at the base of the lungs. The perfusate was maintained at a constant temperature of 37.5°-39.0° C by suspending the reservoir in a water bath. The entire circuit, with the exception of the rotary pump, was enclosed in an air-filled isolette (Air Shields Inc., Hatboro, Penn.), with the temperature maintained at 37°-38° C. Humidification was provided by a steam generator.

Perfusate

The perfusate consisted of a mixture of equal parts of heparinized blood (10-20 U/ml), obtained fresh daily from adult female donor rabbits, and physiologic salt-albumin solution prepared by mixing 50 ml of a physiologic salt solution with 1.5 g bovine albumin and 0.5 g dextrose. The final hematocrit of the perfusate was 19-21%. A total volume of 30-40 ml of perfusate was required to prime the perfusion circuit and perform 1 experiment. The perfusate was added to the circuit and allowed to equilibrate for 20-30 minutes before being used to perfuse the lungs. At the end of the experiment, the perfusate was discarded, and the perfusion circuit meticulously cleaned.

Measurements

The pulmonary artery pressure was measured using a vascular pressure transducer (Gould Instruments, Hato Rey, PR, Model P23 Db) connected to the t-connector leading into the pulmonary artery. Airway pressure was measured using a differential pressure transducer (Gould Instruments, Hato Rey, PR, Model PM131 TC) connected to an 18-gauge needle inserted in the inspiratory limb of the ventilator circuit. Pressures were recorded on a 4-channel Grass polygraph recorder (Grass Instruments, Quincy, Mass., Model 5). Zero reference for the pulmonary artery was the level of the left atrium; zero reference for the airway pressure was atmospheric. Blood was collected anerobically from the left atrial catheter for measurement of blood gas tensions using a Radiometer Blood Gas Analyzer (Radiometer Inc., Copenhagen, Denmark, Model PHM 27).

Before beginning experiments, the perfusate pH was adjusted to 7.33-7.40, if necessary, by adding a small amount of NaHCO₃ to the perfusate, and the system was allowed to equilibrate for 30-45 minutes.

Study 1 — Hypoxic Dose Response Curve

Stability of the Response

To ensure that the response to hypoxia would remain stable, lungs from 9 newborn rabbit pups (postnatal ages 3-11 days) were exposed to repeated 6-minute periods of the same hypoxic mixture (P₀₂ = 0 mm Hg, P₉CO₂ = 38-42 mm Hg) alternating with 6-minute recovery periods (P₀₂ = 150 mm Hg, P₉CO₂ = 38-42 mm Hg). In this set of experiments, the lungs were exposed to repeated 6-minute periods of the same hypoxic mixture (P₀₂ = 0 mm Hg, P₉CO₂ = 38-42 mm Hg) alternating with 6-minute recovery periods (P₀₂ = 150 mm Hg, P₉CO₂ = 38-42 mm Hg). In this set of experiments, the lungs were maintained at 37.5°-39.0° C by suspending reservoir in water bath, and entire circuit, with exception of rotary pump, in heated humidified Plexiglas chamber. Lungs are ventilated using rodent ventilator with mixtures of various inspired gases contained in mylar bags.
Hypoxic Pulmonary Vasconstriction — Influence of Postnatal Age on

Hypoxic dose response curve. Lungs from 19 3—8-day-old newborn New Zealand white rabbit pups (average weight 92.6 ± 1.2 g) were prepared as described above. After demonstrating consistent responses to 2—3 hypoxic challenges (P O 2 = 0 mm Hg, P CO 2 = 38—42 mm Hg), the lungs were ventilated with bags of gases in which the inspired CO 2 remained constant at 38—42 mm Hg while the inspired P O 2 was altered randomly between the following values: P O 2 = 0 mm Hg, P O 2 = 10—20 mm Hg, P O 2 = 21—30 mm Hg, P O 2 = 41—50 mm Hg, or P O 2 = 81—100 mm Hg.

The duration of each hypoxic challenge was 6 minutes, and each was followed by a 6-minute recovery period (P O 2 = 150 mm Hg and P CO 2 = 38—42 mm Hg). Blood gases were obtained from the cannula in the left atrium during the hypoxic challenges and recovery periods. A single set of lungs was exposed to a maximum of 5 different hypoxic mixtures. Throughout the studies, the lungs were retested with previously described above. After demonstrating consistent responses to 2—3 hypoxic challenges (P O 2 = 0 mm Hg, P O 2 = 150 mm Hg, P CO 2 = 38—42 mm Hg), the lungs were ventilated alternating with 6-minute recovery periods (P O 2 = 0 mm Hg, P CO 2 = 38—42 mm Hg), or P O 2 = 150 mm Hg, P CO 2 = 38—42 mm Hg). The same premixed hypoxic mixture was used for each stimulus for all the lungs. Blood gases were obtained during the hypoxic exposures and recovery periods. The hypoxic response was noted to increase with the first 2—4 challenges, so the maximal elicited response was used to calculate the absolute change in pulmonary artery pressure and the percent change for each lung. The lungs were carefully observed throughout the experiment, and the study was terminated if airway fluid was present or if airway pressure increased. The duration of perfusion for this set of experiments was 1.5—2.0 hours.

Statistical Analysis
All data are expressed as the mean ± 1 standard error of the mean. The data obtained for the dose-response curve was analyzed using analysis of variance and the Student-Newman-Keuls test. The absolute increase in pulmonary artery pressure and the percent change from baseline for the 2 age groups and the paired-litter mate subgroups were compared using a two-tailed unpaired Student's t test.

Results
Stability of the Response
Ventilation of the lungs with an hypoxic gas mixture resulted in a consistent increase in pulmonary artery pressure (Table 1, Figure 2) that after the first response was stable for up to 7 repetitions over 2.5—3 hours (Table 1, Figure 3). During ventilation with the hypoxic gas mixture, the P a o 2 averaged 36 ± 2 mm Hg and varied little from exposure to exposure. In our system, after 3—4 hours of perfusion, the airway

| Study 2 — Influence of Postnatal Age on Hypoxic Pulmonary Vasconstriction |
| Two different age groups were used for this study: 3—8 postnatal days (young) and 10—14 postnatal days (old). A total of 21 young pups (mean wt = 107 ± 1 g) and 23 old pups (mean wt = 191 ± 2 g) were studied. All pups remained housed with their mothers until attaining the appropriate postnatal age. Of the total, 7 young pups and 11 old pups were from litters in which all pups were studied at the same age (5 random litters). To control for variability between litters, experiments were performed in which pups from the same litter were studied at each of the 2 postnatal ages (4 matched litters). There were 14 young pups and 12 old pups included in these experiments. In all, pups from 9 different litters were used. After initial stabilization, the lungs were exposed repeatedly for 6-minute periods to the same hypoxic mixture (P O 2 = 0 mm Hg, P CO 2 = 38—42 mm Hg), alternating with 6-minute recovery periods (P O 2 = 150 mm Hg, P CO 2 = 38—42 mm Hg). The same premixed hypoxic mixture was used for each stimulus for all the lungs. Blood gases were obtained during the hypoxic exposures and recovery periods. The hypoxic response was noted to increase with the first 2—4 challenges, so the maximal elicited response was used to calculate the absolute change in pulmonary artery pressure and the percent change for each lung. The lungs were carefully observed throughout the experiment, and the study was terminated if airway fluid was present or if airway pressure increased. The duration of perfusion for this set of experiments was 1.5-2.0 hours.

Table 1. Baseline Measurements and Response to Hypoxia in Nine 3—11-Day-Old Rabbit Pups

<table>
<thead>
<tr>
<th>Hypoxic response number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline pulmonary artery pressure (Ppa) (cm H 2 O)</td>
<td>8.4 ± 0.7</td>
<td>8.4 ± 0.7</td>
<td>8.3 ± 0.8</td>
<td>9.2 ± 0.8</td>
<td>9.8 ± 0.9</td>
<td>10.1 ± 0.9</td>
<td>10.5 ± 0.9</td>
</tr>
<tr>
<td>Increase in Ppa (cm H 2 O)</td>
<td>1.7 ± 0.9</td>
<td>3.3 ± 0.6</td>
<td>3.6 ± 0.6</td>
<td>4.0 ± 0.6</td>
<td>3.8 ± 0.5</td>
<td>3.4 ± 0.5</td>
<td>3.3 ± 0.6</td>
</tr>
<tr>
<td>% Increase in Ppa</td>
<td>20.2 ± 7.8</td>
<td>39.5 ± 7.5</td>
<td>44.7 ± 7.5</td>
<td>43.4 ± 6.1</td>
<td>39.0 ± 5.6</td>
<td>34.0 ± 5.6</td>
<td>32.0 ± 7.3</td>
</tr>
</tbody>
</table>

Mean ± 1 one standard error.
pressure tended to increase and fluid appeared in the airways, suggesting that the lungs had become edematous.6,10

Stimulus Response Curve to Hypoxia in 3–8-Day-Old Newborn Rabbit Pups

During the baseline period, the peak airway pressure was 8.3 ± 0.2 cm H$_2$O, the mean Pco$_2$ of the effluent was 40 ± 1 mm Hg, and the perfusion rate was 0.07 ml/g body wt/min. None of these variables changed during the remainder of the experiment. Ventilation of the lungs with progressively increasing hypoxic gas mixtures resulted in a progressive increase in pulmonary artery pressure and progressive decrease in the Po$_2$ of the effluent blood (Table 2, Figure 4). The pH of the effluent blood decreased slightly throughout the experiments from 7.38 ± 0.03 to a final pH = 7.35 ± 0.01, while the baseline pulmonary artery pressure increased by 0.7 ± 0.1 cm H$_2$O.

Influence of Postnatal Age on Hypoxic Pulmonary Vasoconstriction

During the baseline period, values for pH, Po$_2$, and Pco$_2$ of effluent blood and peak airway pressures were identical for both age groups of rabbit pups (Table 3). The perfusion rate of 0.07 ml/g body wt/min resulted in flow rates of 7.5 ± 0.4 ml/min (range 5–11 ml/min) in the younger animals and 13 ± 0.6 ml/min (range 9–16 ml/min) in the older animals. In addition, the baseline pulmonary artery pressure in the old rabbits was significantly higher than in the young rabbits (older vs. younger: 11.9 ± 1.2 vs. 8.6 ± 0.5 cm H$_2$O for rabbits from random litters and 12.2 ± 0.7 vs. 9.0 ± 0.5 cm H$_2$O for pups from matched litters).

The increase in pulmonary artery pressure in response to the hypoxic stimulus (Po$_2$ = 0 mm Hg, Pco$_2$ = 38–42 mm Hg) was significantly greater (p < 0.05) in the old pups than in the young pups for rabbits from random litters (6.7 ± 0.7 vs. 3.0 ± 0.4 cm H$_2$O) and for pups from matched litters (7.3 ± 0.7 vs. 3.2 ± 0.6 cm H$_2$O) (Figure 5). Because there was a wide range of weights at each postnatal age, there was some overlap in flow rates and baseline pulmonary artery pressures between the 2 groups, making it possible to compare subsets of rabbits from each group that had similar baseline pulmonary artery pressures and blood flows (Figure 6). When rabbits were matched for similar baseline pulmonary artery pressures (10.1 ± 0.2 cm H$_2$O in 6 old pups vs. 9.8 ± 0.3 cm H$_2$O in 5 young pups), the pressor response to the hypoxic stimulus was still greater in the old pups (p < 0.05). Similarly, when matched for similar rates of blood flow (9.5 ± 0.3 vs. 9.9 ± 0.2 ml/g body wt/min in 8 old vs. 8 young pups, respectively), the pressor response to hypoxia was still greater in the old pups (p < 0.05). The Po$_2$ of the effluent blood during alveolar hypoxia was similar for young and old pups (32.4 ± 1.2 and 33 ± 1.1, respectively). There was no change in pH, Pco$_2$, airway pressure, and perfusion rate during the hypoxic challenges.

Discussion

Isolated, perfused lungs have been used by numerous investigators to study the pulmonary circulation of adult animals. These studies have shown that the reactivity of the pulmonary vessels to hypoxia can be affected by alterations in temperature,11,12 pH and composition of perfusate,7,13,14 inspired Pco$_2$,12 mixed venous Po$_2$,6,15 and length of time between death of the animal and onset of perfusion.11 These factors were all considered in establishing the perfusion system for this study. The environment was maintained at 37–38°C and was well humidified. The perfusate, a mixture of 50% blood and 50% physiologic saline albumin solution, was maintained at a temperature of 37.5–39.0°C and a pH of 7.38 ± 0.08. The lungs were continuously ventilated at a constant inspired Pco$_2$, surgical time was limited to 15–25 minutes, and time between loss of the rabbit's own circulation and onset of perfusion was 5–10 minutes. Under these conditions, the lungs from the rabbit pups consistently developed a pressor response to alveolar hypoxia.

The response to hypoxia elicited in these experiments was similar to that described by other investigators using lungs obtained from adult animals.5,7,11–16 The magnitude of the pressor response increased after
I want to receive my personal copy of *Circulation Research* every month!

In U.S.A.

<table>
<thead>
<tr>
<th></th>
<th>For rates in</th>
<th>Elsewhere</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year</td>
<td>$90</td>
<td>$115</td>
</tr>
<tr>
<td>2 years</td>
<td>$160</td>
<td>$195</td>
</tr>
</tbody>
</table>

PLEASE PRINT

Name ___________________________ Phone ___________________________

Address __

City ___________________ State _______ Zip _______ Country _______

My specialty ___________________________

Please send my subscription beginning with the __________________ issue.

Advance payment required before copies are sent.

___ Send bill

___ (Outside of Europe and Japan) Check enclosed, payable in U.S. dollars to the American Heart Association.

___ This is a renewal. My account number is ___________________.

Offer Ends November 1, 1987

50% Discount

Letter from department chairman stating post held and completion date is required.

I am a:

- [] Resident
- [] Intern
- [] Research Fellow

___ U.S.A. $45

___ Canada and Mexico $55

Downloaded from http://circres.ahajournals.org/ by guest on July 11, 2017
American Heart Association
National Center
Circulation Research Subscriptions
7320 Greenville Avenue
DALLAS TX 75231-9986

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

American Heart Association
National Center
Circulation Research Subscriptions
7320 Greenville Avenue
DALLAS TX 75231-9986

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

American Heart Association
National Center
Circulation Research Subscriptions
7320 Greenville Avenue
DALLAS TX 75231-9986

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES
the first hypoxic challenge and then remained relatively constant until the final 2.5–3.0 hours of perfusion. Examination of the stimulus response curve constructed for the 3–8-day-old pups showed that the magnitude of the pressor response was inversely proportional to the inspired Po2 so that the maximum increase in pulmonary artery pressure occurred at an inspired Po2 = 0 mm Hg. It should be pointed out that short (6-minute) exposures to hypoxia were used to generate this stimulus response curve. Sylvester et al 17 have shown that the shape of the stimulus-response curve is dependent on the duration of the hypoxic challenge. Using lungs from adult pigs, they showed that prolonged exposures (50–60 minutes) to very low levels of inspired oxygen actually resulted in pulmonary vasodilatation, hence, a biphasic stimulus-response curve, while shorter exposures (10-minute) resulted in a monophasic curve similar to the one in the present experiments.

Other investigators have also noted that the response of the pulmonary circulation to hypoxia varies at different prenatal and postnatal ages. In studies using chronically instrumented fetal lambs, Lewis et al 18 found that the ability of the pulmonary vascular bed to constrict in response to hypoxia increased with increasing gestational age. Similarly, in experiments where the left lung was isolated and perfused in situ, Tyler et al 19 showed that the pulmonary vessels in the lungs of term, newborn goats constricted more in response to alveolar hypoxia than those from preterm goats. Newborn calves, on the other hand, demonstrated a decrease in the pulmonary vascular reactivity to alveolar hypoxia with increasing postnatal age from <12 hours to 4 weeks, 1 while piglets showed an increase with advancing postnatal age. 4 In studies using isolated perfused lungs from newborn rabbits, Owen-Thomas and Reeves 3 found that pulmonary vascular reactivity to alveolar hypoxia increased with advancing postnatal age (no change at 1 day, 6% increase at 2–3 days, 14% at 4–7 days, and 16% at 9–11 days). The magnitude of the pressor response to hypoxia in their study was small, however, and the evidence for maturation of the response between 4 and 11 days was not strong. The magnitude of the pressor response in the current study was considerably greater and strongly supports the hypothesis that the pressor response to hypoxia in the newborn rabbit increases with advancing postnatal age.

It is unlikely that the difference between the 2 age groups in our study was related to perfusion technique, since the only difference between the 2 groups was the absolute rate of flow of the perfusate. Flow was based on body weight (0.07 ml/g body wt/min), so the older group had a higher mean perfusion rate and higher pulmonary artery pressure. However, when subsets from the 2 groups that had comparable flow rates and pulmonary artery pressures were compared, the older group still had a greater pressor response to hypoxia. In addition, most evidence in the literature suggests that vessels exposed to higher pressures and flows have a decrease in the pulmonary vascular reactivity to alveolar hypoxia with increasing postnatal age from <12 hours to 4 weeks, 1 while piglets showed an increase with advancing postnatal age. 4 In studies using isolated perfused lungs from newborn rabbits, Owen-Thomas and Reeves 3 found that pulmonary vascular reactivity to alveolar hypoxia increased with advancing postnatal age (no change at 1 day, 6% increase at 2–3 days, 14% at 4–7 days, and 16% at 9–11 days). The magnitude of the pressor response to hypoxia in their study was small, however, and the evidence for maturation of the response between 4 and 11 days was not strong. The magnitude of the pressor response in the current study was considerably greater and strongly supports the hypothesis that the pressor response to hypoxia in the newborn rabbit increases with advancing postnatal age.

It is unlikely that the difference between the 2 age groups in our study was related to perfusion technique, since the only difference between the 2 groups was the absolute rate of flow of the perfusate. Flow was based on body weight (0.07 ml/g body wt/min), so the older group had a higher mean perfusion rate and higher pulmonary artery pressure. However, when subsets from the 2 groups that had comparable flow rates and pulmonary artery pressures were compared, the older group still had a greater pressor response to hypoxia. In addition, most evidence in the literature suggests that vessels exposed to higher pressures and flows have

Table 2. Stimulus Response Data for 3–8-Day-Old Rabbit Pups

<table>
<thead>
<tr>
<th>Inspired Po2 (mm Hg)</th>
<th>150</th>
<th>100–80</th>
<th>50–40</th>
<th>30–20</th>
<th>20–10</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial Po2 (mm Hg)</td>
<td>156 ± 2</td>
<td>114 ± 4</td>
<td>77 ± 4</td>
<td>51 ± 2</td>
<td>43 ± 1</td>
<td>35 ± 2</td>
</tr>
<tr>
<td>Baseline pulmonary artery pressure (cm H2O)</td>
<td>8.5 ± 0.5</td>
<td>9.0 ± 0.9</td>
<td>9.2 ± 0.7</td>
<td>9.0 ± 0.8</td>
<td>8.7 ± 0.5</td>
<td>8.8 ± 0.6</td>
</tr>
<tr>
<td>Increase in pulmonary artery pressure (cm H2O)</td>
<td>0</td>
<td>0.10 ± 0.12</td>
<td>0.62 ± 0.21</td>
<td>1.20 ± 0.23</td>
<td>1.80 ± 0.25†</td>
<td>2.60 ± 0.41</td>
</tr>
<tr>
<td>% increase in pulmonary artery pressure from baseline</td>
<td>0</td>
<td>1.1 ± 1.0</td>
<td>6.7 ± 2.0</td>
<td>13.3 ± 2.5</td>
<td>20 ± 3.0†</td>
<td>29.5 ± 4.7*</td>
</tr>
<tr>
<td>Total number</td>
<td>19</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

Mean ± one standard error.
*Greater than the response at 20–30 mm Hg, p < 0.05.
†Greater than the response at 40–50 mm Hg, p < 0.05.

Table 3. Baseline Measurements of Effluent Blood Gas Tensions and Airway Pressure in 3–8 and 10–14-Day-Old Rabbit Pups

<table>
<thead>
<tr>
<th>Postnatal age (days)</th>
<th>pH</th>
<th>Po2 (mm Hg)</th>
<th>Pco2 (mm Hg)</th>
<th>Peak airway pressure (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–8 day</td>
<td>7.38 ± 0.01</td>
<td>155 ± 2</td>
<td>40 ± 1</td>
<td>8.3 ± 0.3</td>
</tr>
<tr>
<td>10–14 day</td>
<td>7.38 ± 0.01</td>
<td>155 ± 1</td>
<td>40 ± 1</td>
<td>7.7 ± 0.2</td>
</tr>
</tbody>
</table>

Mean ± one standard error.
a blunted response to hypoxia. Tucker and Rodenbro20 showed that pulmonary artery pressure increased in a linear fashion as blood flow increased in isolated perfused rat lungs and that the magnitude of the pressor response to hypoxia was inversely related to the rate of blood flow. Similarly, Benumof and Wahrenbrock21 showed that pulmonary artery pressure increased as a blunted response to hypoxia. Tucker and Rodeghero21 found that when they increased pressures in lung vessels by infusion of volume or by inflation of a balloon in the left atrium, the pressor response to hypoxia decreased. Therefore, we predict that the effect of the increased pulmonary artery pressure and flow, if any, would be to blunt the pressor response in the 10–14-day-old pups, not enhance it.

Data provided by other investigators allow us to speculate why the pulmonary circulation of the older rabbits was more responsive to hypoxia. The pressor response to hypoxia in the pulmonary circulation results from contraction of smooth muscle in the vessel walls. Morphometric studies in rats, pigs, and humans22–27 have shown that the smooth muscle of pulmonary vessels changes with postnatal growth. There is an initial decrease in the thickness of the muscle in small arteries of the lungs during the first hours and days of life, with an increase in vessel diameter and possibly a decrease in ability of the vessel to constrict in response to hypoxia. On the other hand, at birth, muscular arteries are found only at the level of the terminal and respiratory bronchioles while in older animals muscle can be found in vessel walls at the level of the alveoli. Thus, the potential for reactivity of the peripheral part of the vascular bed may actually increase with postnatal age as new muscle appears. This extension of muscle could explain the difference in responsiveness seen in the 2 age groups of rabbit pups examined in this study.

Other maturational changes in the pulmonary vascular bed may also have contributed to the difference in responsiveness. Recent studies have shown that lungs from fetal and neonatal rabbits produce predominately vasodilatory prostaglandins26,27 and have a diminished ability to metabolize circulating mediators that may result in vasodilatation.28 It is therefore possible that vasoconstriction may be blunted in the younger pups by a circulating or locally produced vasodilator. In support of this hypothesis, Tyler et al29 have shown that some of the difference in reactivity of the pulmonary vessels between preterm goats and term goats can be abolished by pretreatment with indomethacin. Redding et al30 recently found that administration of meclofenamate increases total pulmonary vascular resistance in piglets and that this effect diminishes with increasing postnatal age. In their study, however, reactivity of the pulmonary vascular bed to hypoxia was not affected by administration of meclofenamate at any postnatal age.

We conclude that isolated perfused lungs from newborn rabbits exhibit a consistent and highly reproducible pressor response to alveolar hypoxia. The strength of this response is inversely related to the inspired \(P_{\text{O}} \), and is greater in 10–14-day-old pups than in 3–8-day-old pups. The reason for the difference in responsiveness at different postnatal ages is unknown but may relate to morphologic or metabolic changes in the pulmonary circulation that occur with postnatal development.

Acknowledgments

The authors thank Mark Giesler and Harilyn Smith for their technical assistance and Melissa Rich for typing the manuscript.

References

4. Rendas A, Branhwaite M, Lennox S, Reid L: Response of the...

KEY WORDS • hypoxic pulmonary vasoconstriction • isolated perfused lungs • persistent pulmonary hypertension
Hypoxic vasoconstriction increases with postnatal age in lungs from newborn rabbits.
C D Fike and T N Hansen

Circ Res. 1987;60:297-303
doi: 10.1161/01.RES.60.2.297

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1987 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/60/2/297