Changes in Myosin Isoenzymes, ATPase Activity, and Contraction Duration in Rat Cardiac Muscle With Aging Can Be Modulated by Thyroxine

Mark B. Effron, Gopal M. Bhatnagar, Harold A. Spurgeon, Gualberto Ruano-Arroyo, and Edward G. Lakatta

To determine whether the relative decline in cardiac myosin isoenzyme V1 with maturation continues progressively into senescence and whether thyroxine could reverse age-associated changes in the myosin isoenzyme profile and contraction, rats 2, 8, and 24 months old were treated with thyroxine, 6.4 mg/kg, for 7 days. Myosin isoenzymes, Ca2+-myosin ATPase activities, and isometric contractile function were measured in cardiac preparations from thyroxine-treated animals and age-matched controls. Right ventricular hypertrophy did not occur with aging in controls. Thyroxine increased right ventricular weight in each age group compared to the control group. Body weight decreased by 10% in all thyroxine-treated rats. The relative right ventricular V1 isoenzyme content progressively decreased from 75 ± 1% to 54 ± 1% and 14 ± 1% in controls at 2, 8, and 24 months, respectively, and was associated with a reciprocal increase in V3 myosin isoenzyme. Ca2+-myosin ATPase activity also progressively declined monotonically with age in the control rats from 854 ± 28 nmol Pi/mg prot/min at 2 months to 529 ± 28 nmol Pi/mg prot/min at 24 months. Thyroxine administration increased right ventricular V1 at each age to 97 ± 2%, 73 ± 2%, and 59 ± 2% at 2, 8, and 24 months, respectively. A thyroxine induced increase in the Ca2+-myosin ATPase activity could be detected only in the 24-month-old animals. Isometric contraction duration in thin right ventricular papillary muscles increased with age from 172 ± 4 to 180 ± 5 to 225 ± 8 ms at 2, 8, and 24 months, respectively, and was markedly shortened (p < 0.001) by thyroxine at each age so that the 24-month thyroxine value was less than the 2-month control. The maximum rate of force production did not change with age in controls and was increased by thyroxine at all ages. Thus, with aging from maturation to senescence, even in the absence of right ventricular hypertrophy, there is a profound monotonous decrease in percent right ventricular V1 that is paralleled by a decline in Ca2+-myosin ATPase activity. Also, neither the change in genetic expression of myosin protein synthesis nor prolonged contraction duration that occurs with aging is irreversible. Both can be modulated by thyroxine. (Circulation Research 1987;60:238-245)

The biochemistry and function of myocardial tissue has been shown to be markedly dependent on thyroid status.1-10 The hyperthyroid myocardium is characterized by a longer repolarization time of the transmembrane action potential,11-13 an increased sarcoplasmic reticulum (SR) Ca2+ pumping rate,14-17 an increased shortening velocity,14 a decrease in the isometric time to peak tension and relaxation time,14 elevated actin and Ca2+-myosin ATPase activities,15-18 an increased sarcoplasmic reticulum (SR) Ca2+ pumping rate,15-18 an increased shortening velocity,15-18 an increased shortening velocity,15-18 a decreased shortening velocity,19-30 a reduced SR Ca2+ pumping rate,19-30 a reduced SR Ca2+ pumping rate,19-30 a reduced SR Ca2+ pumping rate,19-30 elevated actin and Ca2+-myosin ATPase activities,19-30 elevated actin and Ca2+-myosin ATPase activities,19-30 elevated actin and Ca2+-myosin ATPase activities,19-30 and a high percentage of myosin isoenzyme V3, the "fast" form of the enzyme.15-18 Conversely, hypothyroid myocardium is characterized by prolonged contraction time,19-30 a decreased shortening velocity,19-30 a reduced SR Ca2+ pumping rate,19-30 a reduced SR Ca2+ pumping rate,19-30 and this shift is accompanied by a decrease in the ATPase activity.19-30 An increase in percent V3, the "slow" isoenzyme,19-30 The myocardium of the relatively young, i.e., maturation (approximately 200 g), euthyroid rat has a high percent of V1,19-30 and a high level of ATPase activity.19-30 Thyroxine (T4) treatment of the young euthyroid rat has been shown not to increase the Ca2+-ATPase activity19-30 and its effect on the myosin isoenzyme distribution has not been studied. Rather, most studies that have examined the effect of exogenous T4 administration on myocardial properties have utilized relatively young hypothyroid rats and have avoided using the rat in favor of other species that already exhibit a low percent of V3, and relatively low ATPase activities in the euthyroid state.19-30

As the euthyroid rat matures, the percent of V3 decreases while the percent of V1 increases,19-30 and this shift is accompanied by a decrease in the ATPase ac-
tivities in a variety of myofilament preparations. With further adult aging into senescence, the ATPase activity in some but not all myofilament preparations continues to decline and the contraction duration becomes prolonged. It is unknown to what extent the percent V_i myosin isoenzymes declines in the senescent rat. Furthermore, it is unknown to what extent the age-related change in the genetic expression of protein synthesis that underlies the shift in isoenzymes can be reversed. Therefore, it is unclear whether any change in the isoenzyme profile and ATPase activity that occur with aging can be reversed with thyroxine, which is effective in reversing similar ATPase activity that occur with aging can be reversed.

It is unknown to what extent "zymes become prolonged. With further adult aging into senescence, the ATPase activities in a variety of myofilament preparations. Furthermore, it is unknown to what extent the age-related change in the genetic expression of protein synthesis that underlies the shift in isoenzymes can be reversed. Therefore, it is unclear whether any change in the isoenzyme profile and ATPase activity that occur with aging can be reversed with thyroxine, which is effective in reversing similar changes in the relative isoenzyme content that result from the hypothyroid state in young rats. Similarly, it is not known whether the prolonged contraction duration with aging can be modified by T_4. These present studies determined 1) whether the decline in the percent V_i that begins early in the rat continues progressively into senescence, 2) whether T_4 could reverse age-related alterations in isoenzyme pattern and Ca$^{2+}$-myosin ATPase activity, and 3) whether twitch contractile parameters that vary with age can be modulated by T_4, and if so, whether this could be correlated with the changes in the isoenzyme profile and ATPase activity that occur with aging or with induction of the hyperthyroid state.

Materials and Methods

Maturational (2-month), adult (8-month), and senescent (24-month), male Wistar rats obtained from the Gerontology Research Center colony were injected intramuscularly with thyroxine (Sigma Chemical Co., St. Louis, Mo.), 6.4 mg/kg initial body weight/day for 7 days. This protocol has previously been shown to induce a marked hyperthyroid (H) state. Analogous protocols were used to induce a hyperthyroid (H) state, and the contraction duration continued to decline. Similarly, it is not known whether the prolonged contraction duration associated with aging can be modified by T_4.

In studies examining isoenzyme distribution in selected areas of the heart, a small amount of myocardial tissue (1–10 mg) was used to obtain myosin by first placing the tissue in 50% glycerol, 1 mM sodium pyrophosphate buffer, 1 mM EDTA, 1% 2-mercaptoethanol, and 5 mM DT T at pH 8.8 for 4 hours at 0° C and then extracting the tissue overnight at 0° C in 200 µl of 50% glycerol, 50 mM sodium pyrophosphate buffer, 1 mM EDTA, 1% 2-mercaptoethanol, and 5 mM DT T at pH 8.8. The myosin-containing extract was then analyzed by electrophoresis for isoenzymes as described below.

MYSIN ISENOZYME DETERMINATION. Myosin isoenzymes were separated on polyacrylamide gel using nondissociating conditions as described previously. A Pharmacia GE4 Electrophoresis unit was used in which the electrophoresis buffer (10% glycerol, 20 mM sodium pyrophosphate, 1 mM EDTA, 0.1% 2-mercaptoethanol at pH 8.8) was recirculated between the lower and upper chambers. The temperature in the lower chamber of the electrophoresis unit was maintained at 25° C. Myosin samples (2–4 µg) were loaded onto gel tubes containing 4% polyacrylamide. Electrophoresis was carried out for 18 hours at a voltage gradient of 14 V/cm. Following electrophoresis, gels were stained with Coomassie Blue R (0.04% in 3.5% perchloric acid) and destained with 25% 2-propanol and 7.0% acetic acid. The destained gels were scanned on a Kratos (Schoeffel Instrument) spectrophotometer at 560 nm. The relative isoenzyme content was then determined by weighing the paper under the curve of the isoenzyme of interest and comparing it to the weight of the total curve of the isoenzymes. The amount of the heterodimer V_2 was divided equally between V_1 and V_3. MYSIN ATPase ACTIVITY DETERMINATION. Myosin K$^+$-Ca$^{2+}$-ATPase assays were carried out in a final volume of 2 ml containing 50 mM imidazole, 500 mM KCl, 5 mM ATP, 10 mM CaCl$_2$, and 10 mM NaN$_3$ at pH 7.0. Following a 10-minute incubation at 25° C the reaction was terminated by the addition of 0.5 ml (10% (w/v) trichloroacetic acid (TCA) solution. The assay mixture was kept on ice for 10 minutes and then centrifuged at 2,000g in a clinical centrifuge. Inorganic phosphate in the supernatant in the steady state was measured according to the method of Taussky and Short. Protein concentrations were determined by the method of...
Lowry et al. using bovine serum albumin as the standard.

Contractile Studies

A right ventricular papillary muscle was placed horizontally in an isometric superfused muscle chamber as previously described. One muscle from each of 4 animals could be studied simultaneously in 4 muscle chambers in parallel. Right ventricular muscles were used because they were thin, discrete muscles that tolerate a superfused bath well and exhibit characteristic age changes in contractile function. The muscles were bathed at 29°C in a modified Krebs solution with a mM concentration of NaCl 119, KCl 5.0, NaHCO3 25, KH2PO4 1.2, MgSO4 1.2, CaCl2 1.0, and dextrose 10 bubbled with 95% O2 and 5% CO2, resulting in pH 7.4 as previously described. The muscles were stimulated 24/min by pulses of 0.5-millisecond duration immediately prior to sacrifice (crosshatched bar = control, open bar = hyperthyroid). T4 vs. control at any age, p < 0.001; 2- vs. 8- or 24-month control, p < 0.005; 8- vs. 24-month control, p = NS.

Representative pyrophosphate gels and densitometric scans of myosin from RV at each age and thyroid status are shown in Figure 2. A marked decrease in the relative content of V1 occurred with increasing age in untreated animals (Figure 3A). The average percent RV V1 declined progressively with age from 75 ± 1% in 2-month-old animals to 54 ± 1% in 8-month-old animals. Treatment with hyperthyroid hormone at the time of sacrifice resulted in a positive response in 2-month animals without significant effect in 8- or 24-month animals. 2-month control, 8-month control, and 24-month control were all significantly different from each other, p < 0.005; 2- vs. 8- or 24-month control, p < 0.005; 8- vs. 24-month control, p < 0.005; 2- vs. 8-month control, p < 0.05.

Statistics

All results are expressed as mean ± standard error of n muscles in the control and treated groups. The statistical significance of age and thyroid status was determined by a least-squares means analysis of variance and linear regression analysis. The level of statistical significance was taken as p < 0.05.

Table 1. Body and Heart Weights From Rats of Different Ages and Thyroid Status

<table>
<thead>
<tr>
<th>Age (mo)</th>
<th>TS</th>
<th>N</th>
<th>BW (gm)</th>
<th>LVS (mg)</th>
<th>RV (mg)</th>
<th>LVS/BW (mg/gm)</th>
<th>RV/BW (mg/gm)</th>
<th>CSA (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 C</td>
<td>22</td>
<td>299 ± 11*</td>
<td>147 ± 6*</td>
<td>40 ± 2†</td>
<td>0.493 ± 0.016</td>
<td>0.136 ± 0.005</td>
<td>0.31 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>2 T</td>
<td>17</td>
<td>273 ± 14‡</td>
<td>187 ± 7†</td>
<td>60 ± 2‡</td>
<td>0.690 ± 0.012‡</td>
<td>0.224 ± 0.008‡</td>
<td>0.38 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>8 C</td>
<td>17</td>
<td>580 ± 13</td>
<td>247 ± 68</td>
<td>64 ± 2</td>
<td>0.428 ± 0.011</td>
<td>0.110 ± 0.003</td>
<td>0.37 ± 0.02</td>
<td></td>
</tr>
<tr>
<td>8 T</td>
<td>18</td>
<td>518 ± 12‡</td>
<td>333 ± 24‡</td>
<td>76 ± 34</td>
<td>0.638 ± 0.037‡</td>
<td>0.148 ± 0.006‡</td>
<td>0.42 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>24 C</td>
<td>13</td>
<td>545 ± 26</td>
<td>290 ± 1</td>
<td>66 ± 3</td>
<td>0.523 ± 0.042</td>
<td>0.124 ± 0.010</td>
<td>0.42 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>24 T</td>
<td>18</td>
<td>492 ± 21‡</td>
<td>338 ± 77‡</td>
<td>96 ± 17‡</td>
<td>0.705 ± 0.029‡</td>
<td>0.197 ± 0.035‡</td>
<td>0.49 ± 0.04</td>
<td></td>
</tr>
</tbody>
</table>

TS = thyroid status, C = control, T = hyperthyroid, N = number, BW = body weight, LVS = left ventricle + septum weight, RV = right ventricle weight, and CSA = papillary muscle cross-sectional area.

* p < 0.001 C vs. 8C or 24C; †p < 0.02 C vs. 8C or 24C; ‡p < 0.001 T vs. C; §p < 0.05 8C vs. 24C; ||p < 0.005 8C vs. 24C.

Figure 1. Plasma thyroxine (T4) concentration obtained immediately prior to sacrifice (crosshatched bar = control, open bar = hyperthyroid). T4 vs. control at any age, p < 0.001; 2- vs. 8- or 24-month control, p < 0.005; 8- vs. 24-month control, p < 0.002; 8- vs. 24-month control, p = NS.
animals to 14 ± 1% at 24 months. Because the values of \(V_1 \) and \(V_3 \) were derived by adding half of the value of \(V_2 \) to each, the increase in \(V_1 \) with age was the reciprocal of the decrease in \(V_3 \) (results not shown). No differences were observed in the percentage of \(V_1 \) among the right ventricular free wall, left ventricular free wall, right ventricular papillary muscle, or left ventricular papillary muscle within an age group (Figure 4).

With \(T_4 \) treatment, the percent of \(V_1 \) increased significantly at all ages (Figure 3A) with a simultaneous decrease in percent of \(V_3 \) (not shown). The resulting percent \(V_1 \) with \(T_4 \) treatment at each age reached the control level of the preceding younger age group. Thus, within the \(T_4 \)-treated animals, while the percent \(V_1 \) still differs in 2 vs. 8 months and 8 vs. 24 months (\(p < 0.001 \)), the magnitude of the difference between 8 and 24 months is substantially reduced compared to controls, and when considered across the entire age span, the monotonic decline with age was no longer statistically significant (Figure 3 legend).

The \(Ca^{2+} \)-myosin ATPase activity in control animals showed a progressive monotonic decrease with increasing age (Figure 3B). The magnitude of this decline (38%) from 2 to 24 months was substantially less than the shift in the \(V_1 \) isoenzyme measured over the same age range. \(T_4 \) reversed the age related decrease in ATPase activity in hearts from the 24-month animals which, in the controls, showed the largest \(Ca^{2+} \)-myosin ATPase activity decrement due to age (Figure 3B). However, \(T_4 \) did not appreciably increase \(Ca^{2+} \)-myosin ATPase activity in the younger age hearts and actually decreased it slightly (9%) in the 2-month hearts. Thus, the monotonic age-related decline in \(Ca^{2+} \)-ATPase activity in controls was not maintained after treatment with \(T_4 \). Rather, in the \(T_4 \) hearts the \(Ca^{2+} \)-ATPase activity remained fairly constant across age (Figure 3B).

The isometric contraction parameters of right ventricular papillary muscles are shown in Table 2. Resting tension did not significantly differ among groups. \(dT/dt \) in the control animals did not change with age. DT increased slightly from 2 to 24 months although this change did not reach statistical significance. However, TPT (Figure 3C) and CD significantly increased with age in the control animals and RT increased between 8 and 24 months. \(T_4 \) treatment increased \(dT/dt \) at each age and the magnitude of this change was least in the 2-month group (25% vs. 50% in 8- or 24-month animals). The most impressive contractile changes...
with T₄ occurred in the twitch duration parameters. TPT, RT₄, and CD all decreased to values less than that of the 2-month-old control rats, which had the shortest contraction times of the control animals (Figure 3C and Table 2). Among the T₄ groups, prolongation of the twitch duration with age was abolished except for TPT (Figure 3C), which still exhibited a small but significant increase with age.

Discussion

The present results demonstrate a profound reduction of the percent V₁ myosin isoenzyme from 75% at 2 months to 14% in the 24-month-old rat. This marked shift to the predominantly V₂ myosin form is similar to that which is present in other animals early in life and is also comparable to that in myocardium of young rats with induced hypothyroidism or diabetes. The magnitude of the decline in V₁ in senescence in the present study, however, is substantially greater than that reported to occur secondary to pressure overload of the ventricle in younger rats.

While it may be argued that the 24-month-old rat may have hypothyroidism, the difference in the plasma T₄ between 8 and 24 months is small and not significant although plasma T₄ decreased 50% between 2 and 8 months (Figure 1). Yet, a substantial difference in percent V₁, as well as in contractile properties, occurred between 8 and 24 months. Thus, the decrease in
The specific stimulus for the decrease in the percent V_1, at all ages studied, including the 2-month-old rat in which the response of isoenzymes to isoezyme V_1, did not increase to 854 ng/mg prot/min at 2 months to 529 ng/mg prot/min in the 24-month rat paralleled the decrease in actomyosin ATPase has been noted whatever their cause, are not fixed and may be reversed to some extent under certain circumstances. Although this has not yet been fully defined. The present study demonstrates that T_4 treatment in the control rat was able to increase the percent V_1, at all ages studied, including the 2-month-old rat in which the response of isoenzymes to T_4 treatment has not been previously reported in studies not concerned with aging. This result suggests the changes in genetic expression that occur with aging, treatment has not been previously reported in studies concerned with aging. This result suggests the changes in genetic expression that occur with aging, whatever their cause, are not fixed and may be reversed to some extent under certain circumstances.

In the present study, there was no difference in myosin isoenzyme distribution between the right and left ventricle (Figure 4). There appears to be no consensus as to whether a difference exists in the isoenzyme profile between the two chambers since some studies show identical profiles in the two ventricles, while others show V_1, greater in the LV than the RV. Distribution of isoenzymes between the ventricles were also shown to vary with the species studied.

The progressive decline in myosin Ca^{2+}-ATPase activity from 854 ng/mg prot/min at 2 months to 529 ng/mg prot/min in the 24-month rat paralleled the decline in percent V_1, (Figure 5A). Although an age related decrease in actomyosin ATPase has been noted previously, the extent to which myosin Ca^{2+}-ATPase activity declined in senescence has not been previously determined. The present results show that the magnitude of this depression in the 24-month-old control rat, like that of percent V_1, myosin isoenzyme, is comparable to that in hypothyroid and diabetic rats and diabetic rats and diabetic rats. Failure of T_4 to stimulate myosin ATPase in the 2-month-old rat is probably because the activity prior to treatment is near maximal. The apparent discrepancy between myosin ATPase activity and percent V_1, in younger animals (Figure 5A) might be due to the variability in the assay of the former, particularly since the activity is near maximal in younger animals, coupled with a rather sensitive assay of the isomyosin forms.

Changes in the isometric twitch parameters with age observed in the euthyroid animals in the present study are similar to those reported previously with aging over the broad age span. Whether T_4 could alter contractile function in rats as young as 2 months or as old as 24 months was previously unknown. The present results show that T_4 treatment decreased TPT, RT, and CD at each age to values less than that of the 2-month-old control group, which had the shortest time.

Table 2. Isometric Contraction Properties in Right Ventricular Papillary Muscles From Rats of Different Ages and Thyroid Status

<table>
<thead>
<tr>
<th>Age (mo)</th>
<th>TS</th>
<th>N</th>
<th>RT (nm/mm²)</th>
<th>DT (nm/mm²)</th>
<th>dT/dt (nm/mm²/sec)</th>
<th>TPT (ms)</th>
<th>CD (ms)</th>
<th>RT (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
<td>36</td>
<td>0.80±0.10</td>
<td>1.29±0.20</td>
<td>26.0±5.8</td>
<td>103±2</td>
<td>172±4</td>
<td>69±2</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>17</td>
<td>0.66±0.09</td>
<td>1.57±0.25</td>
<td>33.1±4.5†</td>
<td>75±3†</td>
<td>127±6†</td>
<td>52±3†</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>18</td>
<td>0.74±0.11</td>
<td>1.73±0.33</td>
<td>30.7±5.4</td>
<td>111±3</td>
<td>180±5</td>
<td>69±2</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>18</td>
<td>0.70±0.06</td>
<td>2.90±0.42$</td>
<td>63.3±8.8†</td>
<td>81±2‡</td>
<td>129±3‡</td>
<td>49±2‡</td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td>15</td>
<td>0.67±0.11</td>
<td>2.11±0.28</td>
<td>31.9±4.3</td>
<td>129±4</td>
<td>225±8</td>
<td>97±4‡</td>
</tr>
<tr>
<td>24</td>
<td>T</td>
<td>19</td>
<td>0.60±0.06</td>
<td>2.18±0.32</td>
<td>45.4±5.9†</td>
<td>88±32</td>
<td>148±6‡</td>
<td>60±3‡</td>
</tr>
</tbody>
</table>

TS = thyroid status, C = control, N = number, T = hyperthyroid, RT = rest tension, DT = developed tension, dT/dt = maximum rate of tension development, TPT = time to peak tension, CD = contraction duration, RT = time to half relaxation.

*p < 0.001 with age in control animals; †p < 0.005 T vs. C; ‡p < 0.01 8C vs. 8T; §p < 0.005 24C vs. 2C or 8C.

![Graph](image-url)
ing parameters of the control animals. \(T_a \) also increased \(dT/dt \) in each age group, with the most impressive changes occurring in the two older age groups.

Simultaneous comparison of the anatomic, biochemical, and functional measurements of the present study permit a perspective on the relationships among these variables. Since relative right ventricular mass did not increase with age in the control state and since, as measured in right ventricular tissue, the percent \(V_t \) markedly decreased and TPT increased with age, the cardiac mass per se cannot be a determinant of the age-related change of either parameter with age in the control group. In the control state, the myosin Ca\(^{2+}\)-ATPase activity varied inversely with TPT across the age span and paralleled the age-related decline in the percent \(V_t \) (Figure 5). This is in agreement with directionally similar changes observed in these properties among various previous studies\(^{8,12,25}\) as well as differences in the velocity of shortening in the isotonic twitch with adult aging.\(^9\) The inverse correlation between contraction duration parameters, i.e., TPT and CD, and Ca\(^{2+}\)-ATPase activity across the age span does not necessarily indicate a tight coupling between the two since the time course of myoplastic free [Ca\(^{2+}\)]\(_{SR}\),\(^{26}\) SR pumping rates,\(^{27}\) and the transmembrane action potential\(^{28,29}\) also vary with age. Similarly, the substantial increase in Ca\(^{2+}\)-ATPase activity in the 24-month-old animals accompanying the reduction in TPT in response to \(T_4 \), may not be solely attributable to changes in myosin ATPase activity as \(T_4 \) also modulates other cell mechanisms that determine these parameters, among which is modulation of Ca\(^{2+}\) transport at the sarcoplasmic reticulum (SR)\(^{30,31}\) and sarcoplemma.\(^32\)

While the present results demonstrate a correlation between the percent \(V_t \) and TPT across age in control and in \(T_4 \)-treated muscles (Figure 6), the \(T_4 \) groups do not lie on the same line relating the two parameters as do the control groups but are shifted downward. This downward shift may indicate \(T_4 \) modulation of other aspects of cell Ca\(^{2+}\) metabolism in addition to an effect at the myofilament level. Thus, it appears that when myosin isoenzymes in a given muscle type differ due to changes such as age or thyroid status, excitation-contraction coupling mechanisms also differ.\(^33\) In this regard, the cornerstone argument for the functional correlate of myosin ATPase, i.e., that the contraction duration (TPT in particular) among muscle types varies inversely and the velocity of shortening varies directly with the myosin ATPase activity,\(^1\) may require a caveat since recent evidence indicates that the rate of SR Ca\(^{2+}\) pumping, as well as myosin ATPase activity and isoenzyme profile, differs between fast and slow muscle types.\(^61\)

References

17. Suko J: The calcium pump of cardiac sarcoplasmic reticulum. Function alterations at different levels of thyroid state in rabbits. *J Physiol* 1973;228:563–582
18. Hoh JFY, McGrath PA, Hale PT: Electrophoretic analysis of multiple forms of rat cardiac myosin: Effects of hypophysec-

Figure 6. TPT as a function of percent \(V_t \). Symbols and lines as defined in Figure 3. Slopes of least-squares linear regression analyses of TPT on \(V_t \) were control = \(-0.43, r = 0.999, p < 0.01\); hyperthyroid = \(-0.21, r = 0.991, p < 0.01\).
Thyroxine Effect on Rat Myocardium

Effron et al

Thyroid hormone and thyroid hormone replacement. J Mol Cell Cardiol 1978;10:1053-1056.

Key Words: aging • Ca2+-myosin ATPase activity • cardiac muscle contraction • hyperthyroid state • myosin isoenzymes
Changes in myosin isoenzymes, ATPase activity, and contraction duration in rat cardiac muscle with aging can be modulated by thyroxine.
M B Effron, G M Bhatnagar, H A Spurgeon, G Ruaño-Arroyo and E G Lakatta

Circ Res. 1987;60:238-245
doi: 10.1161/01.RES.60.2.238

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1987 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/60/2/238

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation Research* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation Research* is online at:
http://circres.ahajournals.org/subscriptions/