Further Observations on the Effects of Thyroid Hormone Preparations on Cholesterolemia and Atherogenesis in Cholesterol-Fed Cockerels

By J. STAMLER, M.D., R. PICK, M.D., AND L. N. KATZ, M.D.

With the assistance of Mrs. D. Century and Mr. P. Johnson

Administration of large doses of thyroid hormone preparations (desiccated thyroid powder, thyroxine, triiodothyronine, diiodotyrosine) to cholesterol-fed chicks was associated with decreased rate of weight gain and partial inhibition of hypercholesterolemia. Consistent, definitive inhibition of aorta and coronary atherogenesis was not observed, despite partial suppression of hypercholesterolemia. Potassium iodide and thyroid-stimulating hormone of the anterior pituitary were essentially without effect.

PREVIOUS studies from this department indicated that thyroid hormone administration was partially effective in preventing hypercholesterolemia and atherogenesis in cholesterol-fed chicks. It was also shown that hypothyroidism counteracted the ability of estrogens to prevent coronary atherosclerosis in cholesterol-fed cockerels. The experiments described in the present report were undertaken to explore further the parameters of the effects of thyroid hormone. They included analyses of the influences of potassium iodide, thyroxine, diiodotyrosine, triiodothyronine, desiccated whole thyroid, and thyroid-stimulating hormone of the anterior pituitary (TSH).

METHODS

Six series of chronic experiments were accomplished in cockerels, varying in duration from 3 to 9 weeks. All studies were carried out on Hyline cockerels reared in a battery brooder in the laboratory from 1 day of age. The birds subsisted on a commercial chick starter mash until onset of the experiments. Each experimental group was made up of 9 to 18 birds. The nutritional, biochemical and pathologic procedures were in conformity with the established technic of atherosclerosis research of the department. In general, the experiments involved studying the influences of hormone administration in cockerels placed on a diet supplemented with cholesterol, with or without cottonseed oil. The detailed experimental designs, procedures, diets and hormonal regimens are presented in the tables with the findings.

RESULTS

The findings in the first 3 series of experiments, studying the effects of oral feeding of desiccated thyroid powder and parenteral administration of TSH, are presented in table 1. Additional observations on the effects of thyroid powder are also contained in tables 2 and 3, so that a total of 6 such experiments was carried out. TSH was without consistent effect on any of the parameters measured, including hypercholesterolemia and atherogenesis in the aorta and coronary arteries. This negative result was obtained with dosages as high as 25.0 mg./bird/day (S21).

Incorporation of desiccated thyroid powder at the 0.5 to 1.0 per cent level in cholesterol-fat-supplemented mash tended to result in an increase in feed intake, although this was not a consistent finding (tables 1 to 3). Thyroid-induced decrease in rate of weight gain and partial inhibition of diet-induced hypercholesterolemia were almost invariable observations. Findings on atherogenesis in these thyroid-fed cockerels were much less definitive. In some experiments no effects of thyroid ad-
ministration on aorta lesions were observed; in others slight, questionably significant decreases in incidence and/or grade were noted; in still others there seemed to be an actual hormone-induced intensification of aorta atherogenesis. Similarly, antiatherogenic effects of thyroid on the coronary vessels were observed in some experiments, but not others (tables 1 to 3). These variable effects of thyroid on atherogenesis could not be correlated with presence or absence of cottonseed oil in the cholesterol-supplemented mash (table 2), duration of the experiment, age of the cockerels, or season of the year (tables 1 to 3).

In series 29, the effects of potassium iodide in the drinking water were analyzed. In conformity with previous observations of potassium iodide in cholesterol-fed cockerels,\(^1\) this salt had no significant effect, tending to intensify, rather than lessen, hypercholesterolemia and atherogenesis.

In this experiment, the effects of various thyroid preparations were also studied (table 3). The dosages of each preparation used were such that the content of organic iodine received by each group of chicks was different. Thus, the desiccated thyroid group received 2.3 mg./bird/day of organic iodine; the thyroxine group, 3.9; the diiodotyrosine group, 2.1; the triiodothyronine group, 0.9.

Table 1. Effects of Desiccated Thyroid and TSH on Plasma Cholesterol Levels and Atherogenesis in Cockerels on High-Cholesterol, High-Fat Diets

<table>
<thead>
<tr>
<th>Series, date, age, duration</th>
<th>Group</th>
<th>Survival to end of experiment (%)</th>
<th>Feed intake (Gm./chick/day)</th>
<th>Terminal weight (Gm.)</th>
<th>Plasma total cholesterol (mg./100 Gm.)</th>
<th>Gross thoracic aorta atherogenesis incidence and grade</th>
<th>Microscopic coronary atherogenesis incidence and extent</th>
</tr>
</thead>
<tbody>
<tr>
<td>S9 4/51-7/51, 7-17 weeks</td>
<td>Thyroid††</td>
<td>92</td>
<td>133±12†</td>
<td>1712±89</td>
<td>574±62§</td>
<td>100% 2.2±0.3</td>
<td>—</td>
</tr>
<tr>
<td>S19 9/52-11/52, 7 weeks</td>
<td>Thyroid††</td>
<td>100</td>
<td>109±7</td>
<td>1950</td>
<td>577±41</td>
<td>100% 1.8±0.2</td>
<td>90% 24%±4</td>
</tr>
<tr>
<td>S21 10/52-1/53, 3+ weeks</td>
<td>Thyroid††</td>
<td>100</td>
<td>2188±278</td>
<td>517±42</td>
<td>100% 1.6±0.2</td>
<td>70% 17%±3</td>
<td></td>
</tr>
<tr>
<td>TSH*</td>
<td>75</td>
<td>115±6</td>
<td>1679</td>
<td>791±153</td>
<td>100% 1.8±0.2</td>
<td>100% 19%±7</td>
<td></td>
</tr>
</tbody>
</table>

*TSH was given as a single daily injection at dosage levels of 0.5-10.0 mg., 5.0-25.0 mg., and 25.0 mg. in S9, S19 and S21 respectively.

** 1 C-O is chick starter mash + 1% cholesterol + 5% cottonseed oil.

†Standard error of the mean.

††In S9, S19, and S21 the desiccated thyroid powder was mixed in the mash at the 0.5%, 1.0%, and 1.0% level respectively.

§In S9, S19, and S21, the cholesterol values are means of multiple bleedings at 1, 2, 4, 6 and 9 weeks on experiment; at 2 and 7 weeks; and at 1 and 3 weeks respectively.

*Incidence is the percent of birds with lesions.

#Grade is the mean grade for birds with lesions, i.e. exclusive of birds graded 0; the grading is on an arbitrary scale 0-4 (4).

‡Extent is evaluated based on a microscopic examination of 2 standard Sudan-stained heart sections on each bird; all arteries and arterioles in each section are counted, and the per cent demonstrating atherosclerotic plaques calculated. The values are the per cent of vessels with lesions in birds with lesions.
Table 2—Effects of Desiccated Thyroid on Plasma Lipids and Atherogenesis in Cockerels on High-Cholesterol Diets With and Without Supplementary Cottonseed Oil

<table>
<thead>
<tr>
<th>Series, date, age duration</th>
<th>Group</th>
<th>Survival to end of experiment (%)</th>
<th>Feed intake (Gm./chick/day)</th>
<th>Terminal weight (Gms.)</th>
<th>Plasma total cholesterol (mg. %)</th>
<th>C/P ratio</th>
<th>Gross thoracic aorta atherogenesis incidence and grade</th>
<th>Microscopic coronary atherogenesis incidence and extent</th>
</tr>
</thead>
<tbody>
<tr>
<td>S23</td>
<td>1-2 C</td>
<td>90</td>
<td>174±12</td>
<td>1875</td>
<td>151±9†</td>
<td>—</td>
<td>11% ±0.5±0.0</td>
<td>56% ±12% ±3</td>
</tr>
<tr>
<td>3/53-5/53</td>
<td>Thyroid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S37</td>
<td>1-2 C</td>
<td>100</td>
<td>174±12</td>
<td>1381</td>
<td>136±4†</td>
<td>—</td>
<td>50% ±0.9±0.4</td>
<td>78% ±13% ±4</td>
</tr>
<tr>
<td>1/53-3/55</td>
<td>Thyroid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-19 weeks</td>
<td>2 C</td>
<td>100</td>
<td>160±7</td>
<td>1376</td>
<td>450±62‡</td>
<td>1.18±0.12</td>
<td>50% ±0.4±0.2</td>
<td>100% ±13% ±2</td>
</tr>
<tr>
<td>5 weeks</td>
<td>2 C-O</td>
<td>100</td>
<td>130±11</td>
<td>1230</td>
<td>261±28‡</td>
<td>1.22±0.07</td>
<td>60% ±0.8±0.2</td>
<td>90% ±15% ±3</td>
</tr>
<tr>
<td></td>
<td>Thyroid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Thyroid dosage: S23, 1%; S37, 1% for the first week, 1% thereafter.
†Mean of 2 bleedings during first 5 weeks of experiment on diet of 1% cholesterol (1C).
**Mean of 3 bleedings during last 6 weeks of experiment on diet of 2% cholesterol (2C).
‡Mean of 2 bleedings at experimental weeks 2 and 5.

Table 3—Effects of Various Thyroid Preparations on Plasma Lipids and Atherogenesis in Cockerels on High-Cholesterol, High-Fat Diets

<table>
<thead>
<tr>
<th>Group</th>
<th>Survival to end of experiment (%)</th>
<th>Feed intake (Gm./chick/day)</th>
<th>Terminal weight (Gms.)</th>
<th>Plasma total cholesterol (mg. %)</th>
<th>C/P ratio</th>
<th>Gross thoracic aorta atherogenesis incidence and grade</th>
<th>Microscopic coronary atherogenesis incidence and extent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 C-O</td>
<td>100</td>
<td>107±12</td>
<td>1683±69</td>
<td>234±56</td>
<td>1.31±0.19</td>
<td>90% ±1.0±0.2</td>
<td>100% ±15% ±2</td>
</tr>
<tr>
<td>Thyroid</td>
<td>90†#</td>
<td>119±16</td>
<td>1303±33</td>
<td>287±27</td>
<td>1.58±0.15</td>
<td>67% ±0.8±0.2</td>
<td>33% ±10% ±1</td>
</tr>
<tr>
<td>1 C-O</td>
<td>60†</td>
<td>144±29</td>
<td>—</td>
<td>191±11</td>
<td>—</td>
<td>83% ±0.5±0.1</td>
<td>83% ±12% ±5</td>
</tr>
<tr>
<td>Thyroxine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 C-O</td>
<td>100</td>
<td>107±11</td>
<td>1218±50</td>
<td>248±15</td>
<td>1.01±0.09</td>
<td>70% ±0.8±0.3</td>
<td>100% ±10% ±2</td>
</tr>
<tr>
<td>Diiodotyrosine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 C-O</td>
<td>90</td>
<td>110±10</td>
<td>1348±63</td>
<td>337±35</td>
<td>1.36±0.07</td>
<td>89% ±0.8±0.2</td>
<td>100% ±10% ±2</td>
</tr>
<tr>
<td>Triiodothyronine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 C-O</td>
<td>90</td>
<td>110±15</td>
<td>1484±40</td>
<td>529±38</td>
<td>1.35±0.09</td>
<td>100% ±1.6±0.2</td>
<td>100% ±22% ±5</td>
</tr>
<tr>
<td>KI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 Data from 2 bleedings at 2 and 3 weeks on experiment, except for thyroxine group, which was bled at 2 weeks only.
†Six additional birds died 1 day before termination of the experiment.
‡Data from final bleeding only.
†Dosages: desiccated thyroid powder, 1.0% orally in the mash or 1,190 mg./bird/day, or 2.3 mg. organic iodine daily; thyroxine, 6 mg./chick/day or 3.9 mg. organic iodine daily; diiodotyrosine, 3.5 cc. of a special preparation (RESH) parenterally, containing 2.1 mg. organic iodine daily; triiodothyronine, 1.5 mg. daily, or 0.9 mg. organic iodine; KI, 100 mg./ 200 cc. drinking water.
†Three additional birds died 1 day before termination of the experiment.
In the 2 groups on highest dosage (desiccated thyroid and thyroxine), several birds died spontaneously 1 day prior to termination of the experiment. All hormone-treated groups exhibited decreased rate of weight gain. All except the triiodothyronine-treated birds (on lowest dosage of organic iodine) had partial inhibition of hypercholesterolemia (table 3). No group manifested significant suppression of atherogenesis.

DISCUSSION

The most impressive aspect of these experiments is the virtual absence of a consistent effect of thyroid hormone preparations on atherogenesis. This lack of a clearent antiatherogenic influence was noted, despite moderate, partial inhibition of hypercholesterolemia by thyroid hormones. This dissociation of findings with respect to hypercholesterolemia and atherogenesis forcefully poses the problem of the reasons for the apparent lack of thyroid antiatherogenesis.

The data of the present experiments do not serve to clarify this problem. However, certain suggestions may be entertained, particularly in relation to findings cited in the older literature. Thus, the dosages of thyroid hormones were large in these experiments. It is an old observation that thyroid hormones in large doses are capable of producing vascular damage (arteriosclerosis, not atherosclerosis) in animals on their usual diets (without an atherogenic supplement of cholesterol and fat).

It is also known from previous work that large doses of thyroid hormones may produce arterial injury and intensified atherogenesis in rabbits on high-fat, high-cholesterol diets.

Based on these observations, it may be suggested that the findings with large doses of thyroid hormones in the present experiments may represent the end result of 2 opposing processes—thyroid-induced partial inhibition of hypercholesterolemia, tending to suppress atherogenesis, and thyroid-induced vascular damage, tending to intensify atherogenesis in animals with the prerequisite nutritional-metabolic derangement. In actuality, the interrelationships are probably even more complex.

SUMMARY

1. Administration of large doses of thyroid hormone preparations (desiccated thyroid powder, thyroxine, triiodothyronine, diiodotyrosine) to cholesterol-fed chicks was associated with decreased rate of weight gain and partial inhibition of hypercholesterolemia.

2. Consistent, definitive inhibition of aorta and coronary atherogenesis was not observed, despite partial suppression of hypercholesterolemia.

3. Potassium iodide and thyroid-stimulating hormone of the anterior pituitary were essentially without effect.

ACKNOWLEDGMENTS

The Armour Laboratories kindly made available the thyroid preparations used in these experiments. These studies were accomplished by virtue of the fine cooperation of the department's experimental atherosclerosis research team, Mrs. Christine Bolene-Williams (Deborah V. Dauber research assistant), Mrs. Weldon B. Davis, Miss Marilyn Dudley (deceased), Mrs. Eva Levinson, Miss Mildred Michael, Mrs. Eva W. Miller, Mrs. Charlene Thompson, Mrs. Montez Vankinsecott and Mr. Grady Crowley.

SUMMARIO IN INTERLINGUA

1. Le administration de grande doses de preparatos de hormon thyroide—palvere de thyroide desiccate, thyroxina, tri-iodothyronina, di-iodotyrosina—a gallettos tractate con cholesterol dietari esseva associate con relementation del ganio de peso e un inhibition partial del hypercholesterolemia.

2. Non esseva observate un inhibition uniforme e definitive de atherogenesis aortica e coronari, in despecto del partial suppression de hypercholesterolemia.

3. Ioduro de kalium e hormon thyroide-stimulatori de pituitario anterior esseva essentialemente sin effecto.

REFERENCES

Further Observations on the Effects of Thyroid Hormone Preparations on Cholesterolemia and Atherogenesis in Cholesterol-Fed Cockerels
J. STAMLER, R. PICK and L. N. KATZ

Circ Res. 1958;6:825-829
doi: 10.1161/01.RES.6.6.825

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1958 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/6/6/825

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/