Sitosterol Feeding
Chronic Animal and Clinical Toxicology and Tissue Analysis

By R. E. Shiple, M.D., R. R. Pfeiffer, Ph.D., M. M. Marsh, B.S.
and R. C. Anderson, Sc.D.

Sitosterol has previously been shown to block cholesterol absorption in both animals and man. Its clinical effectiveness in reducing hypercholesteremia has been repeatedly demonstrated. For periods exceeding 4 years, large amounts of sitosterol have been given daily for maintaining reduction of serum cholesterol concentration. The possibility of adverse side effects resulting from chronic administration has been considered. Long-term animal and clinical studies indicate that sitosterol has no detectable toxicity and does not accumulate or deposit in tissues.

In 1951 Peterson and his collaborators first reported that the addition of soy sterols to a cholesterol-containing diet fed to chicks largely prevented hypercholesteremia and cholesterol deposition in the liver and aorta. About the same time Pollak reported that soy sterols prevented hypercholesteremia in cholesterol-fed rabbits. In addition, Pollak fed crude soy sterols to human beings with elevated serum cholesterol levels and observed a reduction in hypercholesteremia.

Since Pollak's initial observations in man there have been many clinical reports confirming the effectiveness of sitosterol in reducing hypercholesteremia. The effect appears to be that of inhibiting absorption of cholesterol from the intestinal tract, thereby reducing or preventing hypercholesteremia. Proposed mechanisms of action of plant sterols include (1) formation of a relatively insoluble mixed crystal of sitosterol and cholesterol, (2) competition between sitosterol and cholesterol for esterification, a presumed requirement for the absorption of cholesterol, and (3) competition with cholesterol for acceptor sites on or within the cell membrane of the gut mucosa.

In contrast to cholesterol, sitosterol is very poorly absorbed from the intestine. In their classical experiments, Schoenheimer and associates found that the plant sterols were not absorbed to a detectable degree, did not accumulate in the animal's tissues, and that they were, for the most part, excreted unchanged in the feces, as might be expected of an inert substance.

Using more sensitive radioactive tracer methods, Gould has shown that measurable amounts of sitosterol are absorbed by experimental animals and man. The amounts are so small as to be indetectable by the most sensitive of Schoenheimer's chemical methods. Gould also confirmed Schoenheimer's observations that in contrast to cholesterol or dihydrocholesterol, sitosterols do not accumulate or deposit in tissues.

More recently, Curran and Costello have reported that feeding soy sterols for 4 weeks led to development of atheromatous plaques in the aorta of each of 4 rabbits. The livers and aortas of these rabbits contained material that they believed was neither cholesterol nor saturated sterol and therefore considered to be soy sterols. In a more recent review of the same experiments Curran reaffirms the opinion that soy sterols are "atherogenic" and that "the use of cholesterol absorption blocking agents such as soy sterols achieves nothing and is potentially hazardous."

Because of the widespread and increasing clinical use of sitosterols for reducing hypercholesteremia, the adverse implications drawn in Curran and Costello's reports have prompted the presentation of extensive evidence which indicates that β-sitosterols...
and soy sterols do not accumulate in the tissues as alleged and are not potentially hazardous.

Animal Toxicology Following Prolonged Administration

Before the plant sterols could be considered a safe medication for reducing hypercholesteremia in man, it was necessary to show that they were innocuous when administered to animals over a long period of time. Hence, the following chronic toxicity studies were made.

METHODS

Three series of 10 rats each were fed Harlan Rat Chow plus 5 per cent β-sitosterols derived from tall oil for periods of 8, 18 and 22 months respectively and 2 additional groups of 10 rats each were fed a comparable diet containing 5 per cent β-sitosterols derived from cottonseed oil for periods of 18 and 22 months respectively. There was no detectable alteration in growth, blood cell counts, blood urea nitrogen, serum proteins, or in gross or microscopic appearance of any organ or tissue.

Thirteen dogs were fed a basic diet of Friskies (Albers Milling Co.) plus β-sitosterols at doses of 0.5 and 1.0 Gm./Kg. for periods of 8 to 22 months (table 1). At monthly intervals each dog was weighed and hemoglobin, hematocrit, red blood count, white blood count, differential cell count, clotting time, clot retraction time, blood sugar, blood nonprotein nitrogen, urinary albumin and sugar tests were performed. At the time of sacrifice, a complete pathologic study was made, including gross and microscopic examination of heart, aorta, lungs, liver, spleen, kidneys, stomach, intestine, thymus, thyroid, adrenal glands and bone marrow. Blood was examined for serum concentration of total lipid, total sterols, lipid phosphorus, vitamin A level, total protein, albumin, globulin, A:G ratio and ultra-centrifugal lipoprotein pattern.

All dogs maintained weight and had normal values for serum composition and formed blood elements. No gross or microscopic pathologic changes attributable to sitosterol were observed in any dog. There were no gross or microscopic lesions in any of the aortas. Total liver lipids and free and total liver sterol levels determined by the method of Sperry and Webb were not significantly different from those of control dogs.

Six New Zealand white rabbits of both sexes were placed on a diet of Purina Rabbit Chow fortified with 3 per cent cottonseed oil and 4 per cent β-sitosterols derived from either tall oil or cottonseed oil. Each rabbit consumed approximately 100 Gm. of food/day. None of the rabbits showed any gross or microscopic abnormality of the blood vessels or other tissues including heart, thyroid, spleen, liver and intestine after consuming 4 Gm. of sitosterols/day for 348, 488, 593, 665, 842, and 842 days respectively. Total liver and aorta lipid concentration and free and total liver and aorta sterol concentrations were essentially the same as those observed in two control rabbits fed Purina Rabbit Chow only.

Six New Zealand white rabbits of both sexes were placed on a diet of Purina Rabbit Chow fortified with 3 per cent cottonseed oil and 4 per cent soy sterols (Distillation Products, Inc., lot number 11254). Three rabbits were sacrificed after

Table 1. Hepatic Sterol and Total Lipid Concentrations in Dogs Fed β-Sitosterols

<table>
<thead>
<tr>
<th>Wt. Kg.</th>
<th>β-sitosterol feeding</th>
<th>Total sitosterol consumed (Kg.)</th>
<th>Liver analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duration (months)</td>
<td>Daily dose (Gm./Kg.)</td>
<td>Total lipid (%)</td>
</tr>
<tr>
<td>17.8</td>
<td>—</td>
<td>—</td>
<td>Control</td>
</tr>
<tr>
<td>13.1</td>
<td>—</td>
<td>—</td>
<td>Control</td>
</tr>
<tr>
<td>12.8</td>
<td>8</td>
<td>1.0</td>
<td>3.1</td>
</tr>
<tr>
<td>10.8</td>
<td>8</td>
<td>1.0</td>
<td>2.6</td>
</tr>
<tr>
<td>9.7</td>
<td>8</td>
<td>1.0</td>
<td>2.3</td>
</tr>
<tr>
<td>10.1</td>
<td>19</td>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>8.2</td>
<td>19</td>
<td>0.5</td>
<td>2.3</td>
</tr>
<tr>
<td>9.8</td>
<td>19</td>
<td>0.5</td>
<td>2.8</td>
</tr>
<tr>
<td>8.8</td>
<td>19</td>
<td>1.0</td>
<td>5.3</td>
</tr>
<tr>
<td>7.8</td>
<td>19</td>
<td>1.0</td>
<td>4.4</td>
</tr>
<tr>
<td>10.5</td>
<td>19</td>
<td>1.0</td>
<td>6.0</td>
</tr>
<tr>
<td>7.0</td>
<td>19</td>
<td>1.0</td>
<td>4.2</td>
</tr>
</tbody>
</table>

* Method of Sperry and Webb.
TABLE 2.—Approximate Solubilities of Sterol Digitonides

<table>
<thead>
<tr>
<th>Sterol</th>
<th>Amount digitonide (mg.)</th>
<th>Solvent</th>
<th>Volume (ml.)</th>
<th>Insoluble residue (mg.)</th>
<th>Solubility (mg./ml.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol</td>
<td>54.5</td>
<td>1:1 Abs. EtOH: Me₂CO</td>
<td>10</td>
<td>38.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>59.7</td>
<td>1:1 Abs. EtOH: Me₂CO</td>
<td>10</td>
<td>44.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>49.8</td>
<td>1:1 95% EtOH: Me₂CO</td>
<td>10</td>
<td>47.5</td>
<td>0.23</td>
</tr>
<tr>
<td>Soy sterols (DPI control S9707)</td>
<td>49.2</td>
<td>1:1 Abs. EtOH: Me₂CO</td>
<td>10</td>
<td>34.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Soy sterols (DPI control S9707)</td>
<td>49.5</td>
<td>1:1 95% EtOH: Me₂CO</td>
<td>10</td>
<td>46.7</td>
<td>0.28</td>
</tr>
<tr>
<td>Soy sterols (DPI control 7349)</td>
<td>47.2</td>
<td>1:1 Abs. EtOH: Me₂CO</td>
<td>10</td>
<td>34.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Soy sterols (DPI control 7350)</td>
<td>50.8</td>
<td>1:1 Abs. EtOH: Me₂CO</td>
<td>10</td>
<td>34.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Soy sterols (DPI control 7350)</td>
<td>42.3</td>
<td>1:1 Abs. EtOH: Me₂CO</td>
<td>10</td>
<td>27.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

70 days and the remaining 3 after 212 days. None showed any gross or microscopic abnormality of the blood vessels or other tissues. Values for total liver and aorta lipids and free and total liver and aorta sterol concentrations were not significantly different from values obtained in 2 control rabbits fed Purina Rabbit Chow alone.

Although experiments in these laboratories, which have extended over a period of 4 years, have consistently indicated the safety and effectiveness of sitosterols, unequivocal evidence for the absence of accumulation could not be documented for want of a direct and reliable analytic method for detecting small amounts of sitosterol in the presence of cholesterol. Using a chromatographic method, Swell et al. showed the absence of gross sitosterol accumulation in tissues of rats fed soy sterols.

While we were searching for a satisfactory analytic method, the appearance of the paper by Curran and Costello claiming the accumulation of substantial amounts of sitosterol in the liver and aorta of soy sterol-fed rabbits prompted a critical examination and appraisal of the indirect method they used.

In the following paragraphs (1) the method employed by Curran and Costello is shown to be inadequate and inapplicable, (2) animal experiments are presented in which the observations reported by Curran and Costello are not confirmed, and (3) a new, direct method of analysis is described. Data obtained by this method indicate that the conclusions of Curran and Costello are erroneous.

Examination of the Analytic Method of Curran and Costello for Differentiation of Soy Bean Sterols and Cholesterol

Using a modification of the method of Pollak and Wadler, Curran and Costello analyzed the livers of 4 rabbits fed 9 Gm. of soy bean sterols/week for 4 weeks, and reported that soy sterols comprised 44, 36, 32 and 5 per cent of the total liver sterols, respectively, in each of 4 rabbits. Their method was based upon: 1. Their report that the Sperry-Webb procedure for cholesterol determination is inadequate for analysis of soybean sterols. The reason for the inadequacy is said to be the solubility of soy bean sterol-digitonin complex in 1:1 ethanolacetone. 2. Their assumption that the value for total digitonin-precipitable sterols (determined by the above modified procedure) minus the value for all Lieberman-Burchard (LB) positive sterols (as determined by the method of Sperry and Webb), and minus the average difference between the two values observed in non-soybean sterol-fed rabbits (assumed to be dihydrocholesterol) was a measure of the amount of soy sterols present.

We have conducted 2 types of experiments to examine the validity of methods and pro-
SHIPLEY, PFEIFFER, MARSH AND ANDERSON

Table 3.—Stanol Analysis of Soy Sterols, Serum and Liver by Three Different Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Soy sterols (mg.%)</th>
<th>Normal rabbit serum (mg.%)</th>
<th>Normal rabbit liver (mg./Gm.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperry-Webb</td>
<td>76.5</td>
<td>40.0</td>
<td>8.1</td>
</tr>
<tr>
<td>76.5</td>
<td>22.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.4</td>
<td>33.7</td>
<td></td>
<td>8.3</td>
</tr>
<tr>
<td>Ave. 77.8</td>
<td>33.7</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>Ave. 32.5</td>
<td></td>
<td>Ave. 8.2</td>
</tr>
<tr>
<td>Turbidimetric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ethanol-acetone)</td>
<td>77.7</td>
<td>34.6</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>33.8</td>
<td></td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>31.4</td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>33.5</td>
<td></td>
<td>8.0</td>
</tr>
<tr>
<td>Ave. 33.3</td>
<td>Ave. 8.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidimetric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(methanol-acetone)</td>
<td>78.8</td>
<td>28.0</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>28.0</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>27.6</td>
<td></td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>28.3</td>
<td></td>
<td>7.7</td>
</tr>
<tr>
<td>Ave. 28.2</td>
<td>Ave. 8.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Compared to cholesterol standard and corrected for molecular weight difference.

The next experiment was performed to determine the magnitude of difference among values for sterol content of normal rabbit serum, normal rabbit liver and a sample of soy sterol when extracted and analyzed by the Sperry-Webb method, the Pollak-Wadler procedure with ethanol-acetone and the Pollak-Wadler procedure employing methanol-acetone. The results in table 3 show that there is very little difference among values obtained by the 3 methods, indicating that both the Sperry-Webb and the Pollak-Wadler turbidimetric methods are sensitive and adequate for the determination of soy sterols, and that the modified Pollak-Wadler procedure employing methanol-acetone possesses no discernible advantage.

The reported finding of large amounts of soy sterols in the livers of rabbits fed these substances is based upon a calculation that assumes that all digitonin-precipitable sterols that are not LB positive by the method of Sperry and Webb are soy sterols or dihydrocholesterol. After subtracting the value of 0.5 mg. (for the amount of dihydrocholesterol estimated to be present) per gram of liver, the remainder (5 to 44 per cent) is considered to be a measure of the amount of soy sterols present.

The calculation cannot be accepted as a valid procedure, since soy sterols are LB positive and would be included and measured as LB positive material along with cholesterol by the method of Sperry and Webb.

Although the extraction and recovery were reported to be something less than complete (83 per cent), Curran and Costello showed that the Sperry-Webb procedure did measure soy sterols as LB positive material as shown in their table 1. The data presented in their tables 1 and 3 do not support the interpretation that large amounts of soy sterols were present in the livers of the soy sterol fed rabbits, but on the contrary, they indicate that there was little, if any, present. It is not apparent why Curran and Costello's modification of the Pollak-Wadler method gave appreciably higher values in 3 of the 4 rabbit livers they analyzed.
Animal Feeding Experiments

As stated earlier, none of the rabbits fed soy sterols and \(\beta \)-sitosterols for periods up to 7 months and for over 2 years respectively exhibited any evidence of deposition of these sterols grossly, microscopically, or by chemical analysis of tissues for total sterols by the method of Sperry and Webb. Following the report by Curran and Costello that atheromatous deposits were observed in 4 rabbits fed soy sterols for 4 weeks, an experiment was carried out duplicating as closely as possible the conditions of their study. Additional experiments were begun simultaneously in which larger amounts of soy sterols were fed on a continuous schedule for longer periods and to more animals. Terminally, the tissues were examined for pathologic changes and analyzed for sterol concentration.

Methods

New Zealand white rabbits of both sexes were used. Soy sterols (#S-11254) were supplied by Distillation Products Industries who state, "This product was made from similar material as S-9707* and differs primarily in having a few per cent less fatty acid esters." Purina Rabbit Chow was used as the control diet. The soy sterol diets were prepared by dissolving the soy sterols in cent less fatty acid esters. Purina Rabbit Chow in a rotary mixer. The food was placed in shallow trays and the chloroform was substituted for ether (used by Curran and Costello). Three groups of 6 rabbits each were matched with respect to weight and sex: Group A, 6 rabbits, fed plain Purina Rabbit Chow (controls) Group B, 6 rabbits, fed Purina Rabbit Chow fortified with 3 per cent soy sterols on Monday, Wednesday and Friday, and plain Purina Rabbit Chow on Tuesday, Thursday, Saturday and Sunday (according to the method of Curran and Costello). Group C, 6 rabbits, fed Purina Rabbit Chow 3 times/week and 3 times/week (method of Curran and Costello).

* One of the 2 lots used by Curran and Costello.

† Chloroform was substituted for ether (used by Curran and Costello).
Chow fortified with 4 per cent soy sterols and 3 per cent cottonseed oil ad lib.

The consumption of food per rabbit per day averaged approximately 100 Gm. for each of the 3 groups.

The results are presented in table 4. The absence of vascular deposits and the absence of accumulation of soy sterols in tissues confirmed the completely negative findings in previous experiments.

Curran and Costello state that all 4 rabbits to which soy sterols were fed for 4 weeks "had atheromatous lesions" of the aorta at autopsy and it was concluded that "soy sterols produced atherosclerosis in these animals." Since the extent of involvement and the nature of the lesions were not described, there is some question whether the aortic lesions resulted from the feeding of soy sterols or were present in the rabbits prior to the beginning of the experiment. The question is prompted by numerous observations that rabbits seldom develop gross atheromatous lesions with cholesterol feeding if the duration of the feeding is 4 weeks or less. This impression received further support from a separate experiment in which no atheromatous lesions were detectable, either grossly or microscopically when (1) cholesterol was fed to 4 rabbits for 4 weeks according to the regimen used by Curran and Costello for soy sterol feeding or (2) cholesterol was administered in capsules to 4 other rabbits in the amount of 3 Gm. 3 times a week for 4 weeks. Since even cholesterol was not manifestly atherogenic within a period of 4 weeks under the specified conditions, it is doubtful that the aortic lesions found by Curran and Costello were atheromatous deposits induced by the feeding of soy sterols for 4 weeks.

Clinical Toxicology

The requirement that every medication for human use be adequately tested for possible harmful effects before it can be made commercially available is particularly appropriate for the sitosterols, which are administered in large amounts for long periods of time. Chronic experiments in which relatively enormous amounts were fed to rats, dogs and rabbits over long periods consistently and repeatedly failed to reveal any alteration in function or composition of any organ or tissue in any animal. With continuous administration of sitosterols to human beings for periods that now exceed 4 years, during which the total amount of sitosterol consumed is, in many instances, greater than one-half the patient's body weight, there has been no evidence of any harmful effect as determined by laboratory tests of kidney and liver function, blood and urine composition, electrocardiogram, and gall bladder visualization. Also, there has not appeared any symptom or sign indicating that the sitosterols were contributing to the formation or progression of vascular lesions.

On the contrary, preliminary reports described objectively measured improvement in vascular status in 2 very small series of patients who received sitosterols continuously over an extended period. Although this improvement may not be attributed solely to the reduction of hypercholesteremia, these observations tend to negate the suggestion that sitosterols are potentially hazardous or harmful.

A more direct implication may be drawn from the work of Gould who studied the distribution of tritium-labeled sterol in the tissues of a terminal cancer patient 4 weeks after a single oral administration of tritium-labeled β-sitosterol. In all tissues examined (blood, liver, coronary artery, and aorta) very small amounts of tritium β-sitosterol were found, from which he concluded that "Tritium β-sitosterol can appear in tissue cells but it does not appear to have a predilection for any particular tissue."

Tissue Sterol Analysis: Phase Transition Endpoint Method

While tracer technics are ideally suited for short term experiments and are extremely sensitive for detection of small quantities of sitosterol, they were not feasible for use in

*Reversal of ischemic electrocardiograph pattern induced by measured effort, improved ballistocardiogram, increase in claudication time and increase in skin temperature.
the present long term studies. Accordingly, an extensive search was aimed toward development of a direct and reliable nontracer analytic procedure for detecting small amounts of sitosterol in the presence of relatively large amounts of cholesterol. After extensive but fruitless exploration of several different approaches, a method was developed that met the desired requirements for selectivity and sensitivity.

In the present study several series of mixtures ranging from pure cholesterol to 50 per cent cholesterol plus 50 per cent sitosterol were prepared dried from methanol solution for examination by x-ray powder diffraction methods. This composition range yields x-ray diffraction patterns of 3 distinct kinds: type A from 0 to 16 per cent sitosterol where the pattern is indistinguishable from that of pure cholesterol, type C a different pattern obtained from compositions close to that of 1:1 mixed crystals, and type B which has the strongest line of type C superimposed on the type A pattern. The change from type A to type B upon increasing the sitosterol content of the samples was noted to take place not only abruptly but also consistently at 16 per cent (± 1.5 per cent) sitosterol and 84 per cent cholesterol composition under controlled conditions of preparation. This abrupt transition in the nature of the x-ray patterns was regarded as a useful criterion for identifying cholesterol-sitosterol mixtures that had undergone the change in associated composition.

For the present study other series of mixtures were prepared in which sitosterol (derived from cottonseed oil) and cholesterol varied by 2 per cent increments from 0 to 20 per cent sitosterol, to 100 to 80 per cent cholesterol. Other series were made using soy sterols and sitosterols derived from tall oil. Another series was prepared employing sitosterol (derived from tall oil) and cholesterol (nonsaponifiable digitonin precipitable sterol) extracted from normal rabbit livers.

The x-ray diffraction pattern of the soy steroids, and of β-sitosterol derived from cottonseed oil and from tall oil were not detectably different. * Also, the pattern for cholesterol that had been repeatedly crystallized was not different from that of cholesterol extracted from normal rabbit livers. In each instance the phase transition occurred at sitosterol concentrations between 15 and 17 per cent.

The following procedure was used to determine the amount of sitosterol, if any, present in a sterol sample. Five milligram samples were dissolved in 10 ml of methanol. Evaporation of the solvent was carried out in an oven at 50 C. under 1/4 atmospheric pressure to a point of apparent dryness and then for an additional 2 hours at very low pressure. The crystalline residue was lightly ground in an agate mortar and approximately 0.3 mg packed into a cellulose-acetate capillary. The x-ray exposures were made in Norelco powder cameras using chromium K-alpha radiation for 2 hours duration at 35 Kv. at 10 ma.

If the pattern was an A type, it was evident that something less than 16 per cent sitosterol was present. To the second 5 mg. portion a volume of a methanol solution of sitosterol was added such that the concentration of sitosterol in the sterol mixture was increased by approximately 2 per cent. The entire procedure was repeated and the pattern again examined as many times as necessary to bring the concentration of sitosterol to the point where the type A pattern was replaced by the type B pattern.* Knowing the weight of the original sterol sample and the amount of sitosterol that was added to reach the transition end point, the concentration of sitosterol, if any, in the original sample could be calculated. If the original sample exhibited a pattern other than type A, it was evident that more than 16 per cent sitosterol was present and cholesterol would be added until the B-A transition was observed. The same calculation was made for determining original sitosterol concentration.

To check the validity of the method in practice, a series of cholesterol-sitosterol mixtures containing 0, 3, 7, 12, 15, 17 and 20 per cent sitosterol were prepared, identified only by code number and submitted for analysis by the phase transition end point method, again using approximately 2 per cent increments of added sitosterol (or cholesterol) if the initial pattern so indicated. The concentration of sitosterol was correctly identified in each instance within ± 2 per cent.

Next, sterols extracted and isolated as non-

*It has been assumed for many years that the major sterol component of soy sterols is γ-sitosterol rather than β-sitosterol. As pointed out in Elsevier's Encyclopedia of Organic Chemistry, Series III, Vol. 14 (suppl.) page 18028, this impression appears to have arisen from a misinterpretation of the work of Bonstedt who isolated a relatively pure γ-sitosterol fraction from soy sterols, the predominant sterol of which is β-sitosterol.

*In cases where the available sample of extracted sterol is insufficient to provide many 5 mg. portions, a portion so examined may be redissolved and sitosterol increments added repeatedly.
saponifiable digitonin precipitable material from the livers of normal rabbits and of rabbits that had been fed either soy sterols or \(\beta \)-sitosterols were examined for the presence of sitosterol by the above method. The sterol samples were from rabbits including one fed soy sterols, 3 Gm./day, 3 times a week for 4 weeks, 2 fed soy sterols 4 Gm. daily for 7 months, and 2 fed \(\beta \)-sitosterol, 4 Gm. daily for 348 and 842 days respectively. In all instances the amount of sitosterol that had to be added to the liver sterols to bring the concentration to the point at which the phase transition occurred was 16 per cent (±2 per cent) of the total. This demonstrates that the sterols from the livers of both normal rabbits and rabbits fed either soy sterols or \(\beta \)-sitosterol contained less than 2 per cent, if any, sitosterol.

Summary

Beta-sitosterols have been administered to human beings for periods exceeding 4 years without any adverse effects.

No evidence of toxicity was observed in rats, rabbits or dogs given large daily oral dietary supplements of \(\beta \)-sitosterols or soy sterols for periods up to 2 years. No gross or microscopic alterations of any tissue were observed. There was no histologic evidence of deposition of the plant sterols, and chemical analyses of aorta and liver showed no increase in sterol content.

A new analytic procedure using x-ray diffraction technic (phase transition end point method) is described and shown to be adequate and reliable for detecting small amounts of sitosterol in the presence of relatively large amounts of cholesterol. Employing this method, sterols extracted from the livers of rabbits that had received either soy sterols or \(\beta \)-sitosterols for long periods of time were found to contain no detectable plant sterols, within the limits of accuracy of the method (±1.5 per cent).

A recent report by Curran and Costello that substantial amounts of soy sterols accumulated in the tissues and also produced atherosclerotic lesions in rabbits fed these sterols for short periods of time was not confirmed.

Critical examination of the methods employed revealed inadequacies that could explain the apparent finding of accumulation.

Acknowledgments

Grateful acknowledgment is made to Dr. P. X. Harris, Pathologist, and to Dr. W. W. Davis, Director of Division of Physical Chemistry, for their contributions to this study and to O. A. Harvey, H. J. Henry and H. W. Turun for their technical assistance.

Summario in Interlingua

Sitosteroles beta ha essite administrate a humanos durante periodos de plus que 4 annos sin ulle effecto adverse.

Xulle signos de toxicitate esseva observate in ratus, conilios, o canes que receipeva grande diurne supplementos dietari oral de sitoste-roles beta o de steroles de soja durante periodos de usque a 2 annos. Xulle alterationes macro- o microscopico del histos esseva observa-te. Esseva trovate nulle indication de depo-sitos de steroles vegetal, e le analyse chimic de aorta e hepate monstrava null augmento del contento sterolic.

Es describite un nove methodo que utilisa un technica a roentgeno-diffraction e que se ha provate adequate e fidel pro le detection de micre quantitates de sitosterol in le presen-tia de relativemente grande quantitates de cholesterol. Per medio de iste methodo il esseva monstrate que le steroles extrahite ab le hepate de conilios alimentate durante longe periodos de tempore con supplementos de ster-roles de soja o de sitosteroles beta contineva—intra le limites del exactitude del methodo (±1.5 pro cento)—nulle detegibile amontas de steroles vegetal.

Le recente reporto de Curran e Costello que considerable quantitates de steroles de soja se accumulava in le histos de conilios e mesmo produceva lesiones atherosclerotice in ille ani-males post que illos habeva recipite tal ste-roles durante breve periodos de tempore non esseva confirmate. Un examine critic del methodos emplaeate per le autores mentionate revelava inadequitas que suffice forsan a explicar le constatation erronee de accumula-tiones de steroles vegetal.
REFERENCES

29. SHIPLEY, PFEIFFER, MARSH AND ANDERSON

Sitosterol Feeding: Chronic Animal and Clinical Toxicology and Tissue Analysis
R. E. SHIPLEY, R. R. PEEIFFER, M. M. MARSH and R. C. ANDERSON

Circ Res. 1958;6:373-382
doi: 10.1161/01.RES.6.3.373
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1958 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/6/3/373

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/