Sympathetic Innervation Alters Growth and Intrinsic Heart Rate of Fetal Rat Atria Maturing in Oculo

Diane C. Tucker and Richard Gist

The influence of sympathetic innervation on the growth and intrinsic rate of beating established by fetal rat heart was studied by culturing fetal atrial tissue in sympathetically innervated and denervated anterior eye chambers of adult Sprague-Dawley rats. One anterior eye chamber in each host rat was sympathetically denervated by removing the ipsilateral superior cervical ganglion. In oculo, atrial grafts were vascularized by blood vessels sprouting from the iris and innervated by sympathetic and parasympathetic fibers from the ground plexus of the iris. Innervation was assessed by light-activated effector nerve stimulation to the grafts that changed their rates of beating. The norepinephrine contents of 16 atria cultured for 2.5 months in sympathetically innervated and denervated eye chambers were 5.7 ± 1.1 ng/implant vs. 0.2 ± 0.07 ng/implant (mean ± SEM), indicating permanent sympathetic denervation of the anterior eye chamber and the implanted atria. By 8 weeks in oculo, atria maturing in sympathetically innervated anterior eye chambers were 86% larger than those in denervated eye chambers (2.22 ± 0.29 vs. 1.19 ± 0.13 mm²); the weight of innervated transplants was over 3 times that of noninnervated grafts (2.35 ± 0.75 vs. 0.76 ± 0.21 mg). After implanted atria had ceased growing rapidly (2.5 months in oculo), bipolar electrodes were implanted adjacent to the cornea to record impulses from atrial grafts while host rats were unanesthetized. The dark-adapted baseline heart rates of sympathetically innervated and noninnervated atria were virtually identical (289 vs. 290 bpm). Graft intrinsic heart rate was estimated by combined β-adrenergic and muscarinic receptor blockade with atenolol (1.0 mg/kg) and methylatropine (10 μg/kg). Sympathetically innervated transplants had lower intrinsic heart rates than noninnervated atria (134 ± 25 vs. 213 ± 12 bpm). These data suggest that sympathetic innervation of the developing heart influences both growth and intrinsic rate of beating. (Circulation Research 1986;59:534-544)

CONTROVERSY exists over the role of sympathetic stimulation in maturation of the heart. Individual differences in tonic sympathetic stimulation of the heart are observed in newborn animals and may contribute to subsequent differences in heart size and function (1-3) (and Clubb et al., unpublished manuscript). Since cardiac function and autonomic innervation each mature rapidly during fetal and perinatal development, it is difficult to separate inherent from innervation-induced changes in the heart. In vivo and in vitro experiments suggest that sympathetic stimulation exerts a trophic effect on the heart and alters its intrinsic pacemaker activity. However, other investigations argue against this hypothesis (10-18). Because sympathetic innervation of the heart occurs prior to birth, (19-21) resolution of this controversy requires a developmental model in which sympathetic innervation of the heart can be manipulated beginning early in cardiac development and in which direct consequences of sympathetic innervation can be observed. To this end, we compared the growth and intrinsic rate of beating of fetal rat heart tissue cultured in rat anterior eye chambers that were sympathetically innervated or denervated.

Sympathetic influences on cardiac growth depend on the developmental stage of the heart. In fetal and newborn rodents, increases in cell number contribute to cardiac growth. During the second postnatal week, cardiac cells stop dividing, become binucleated, and the heart begins to grow by cellular hypertrophy. The transition of the heart to growth by hypertrophy coincides with functional maturation of sympathetic cardiac innervation. β-Adrenergic receptor stimulation of newborn rat hearts through a bolus injection of isoproterenol inhibits further cell division and DNA synthesis, suggesting that catecholamine stimulation of the developing heart may influence its mechanism of growth. In hearts which have made the transition to growth by hypertrophy, isoproterenol treatment results in cardiac hypertrophy which is mediated by an increase in cell size. In young rabbits whose hearts are presumably postmitotic, chronic blockade of β-adrenergic receptors inhibited cardiac growth. In vitro, nondividing cells isolated from neonatal hearts showed hypertrophy when incubated with β-adrenergic or α-adrenergic receptor agonists. Sympathetic stimulation of developing heart is also reported to influence cardiac function. Nayler and colleagues found that prolonged β-adrenergic receptor blockade resulted in a faster pacemaker rate in young
rabbit hearts, as measured in vitro while perfusing with the Langendorff technique. Ishii and colleagues\(^5\) reported that immunological or chemical sympathectomy of neonatal rats caused postjunctional inotropic supersensitivity to norepinephrine in both atrial and ventricular myocardium. Beating of quiescent myocytes isolated from newborn rat ventricle was induced by combined \(\beta\)-adrenergic and \(\alpha\)-adrenergic receptor stimulation.\(^7\) Thus, in vivo and in vitro experiments suggest that sympathetic innervation may influence both the growth and function of the developing heart.

In contrast, other investigators suggest that inherent developmental processes determine the growth and functional characteristics of the young heart. Kirby and Stewart\(^4\) produced "sympathetically aneurmal hearts" by ablating the portion of the neural crest containing presumptive sympathetic neurons in embryonic chicks and observed normal cardiac morphology. Similarly, destruction of sympathetic innervation of the embryonic chick heart by injection of either reserpine or 6-hydroxydopamine in ovo altered neither the subsequent growth of the heart in ovo nor the developmental changes in its inotropic sensitivity to \(\beta\)-adrenergic receptor stimulation.\(^5\) Postnatal sympathectomy of rats with either 6-hydroxydopamine or antiserum to nerve growth factor did not prevent cardiac hypertrophy in two strains of genetically hypertensive rats (i.e., SHR,\(^16\)\(^,\)\(^17\) New Zealand GHR\(^16\)). These data argue against a role for sympathetic innervation in determining the growth of the young heart.

Developmental changes in intrinsic rate of beating have been argued to be inherent to the maturing heart. Heart rate increases gradually during fetal and early postnatal development.\(^10\)\(^,\)\(^11\) Because neither acute electrical nor pharmacological manipulations altered heart rate significantly during this period, Adolph\(^\) concluded that this gradual increase in the resting heart rate of fetal and neonatal rodents was due to changes to "intrinsic controls" rather than autonomic influences. Vlk and Vincenzi\(^3\) corroborated this observation through in vitro study of hearts isolated from newborn, 1-week-old and adult mammals (i.e., rats, guinea pigs, and rabbits). Wekstein\(^3\) reported that the baseline heart rate of 1-week-old rats was not altered by treatment with antiserum to nerve growth factor or by chronic blockade of sympathetic influences with reserpine. These data support the hypothesis that changes in the pacemaker rate of the heart during early development are independent of sympathetic stimulation.

Catecholamine fibers innervate the heart prior to birth. In the rat, catecholamine-synthesizing enzymes are first detected in the primordia of the thoracic sympathetic ganglia of rat embryos on the 11th day of gestation (i.e., 12 days postconception, 6-mm crown-to-rump length\(^2\)). Catecholamine-induced fluorescence was observed by de Champlain and colleagues\(^9\) in the stellate ganglia of 13-day postconception rat embryos and fluorescent axon bundles were visualized in the heart at 18 days after conception.\(^2\) Thus, the rat heart is not innervated by sympathetic neurons prior to 12-13 days after conception.

To test the hypothesis that sympathetic innervation influences the growth and intrinsic rate of beating of the developing mammalian heart, it is necessary to manipulate sympathetic innervation of the heart beginning in midgestation. We tested this hypothesis by culturing heart tissue dissected prior to innervation in situ in the anterior eye chamber of a host rat.

Culture of heart tissue in oculo has several advantages over alternative methods. While fetal hearts cultured in vitro steadily lose weight and are a "failing preparation,"\(^1\)\(^7\)\(^-\)\(^9\) embryonic or fetal hearts cultured in oculo become vascularized by vessels from the ground plexus of the iris, grow and continue to beat for over a year.\(^3\)\(^-\)\(^3\) Sympathetic and parasympathetic fibers that normally control pupil size sprout and innervate the transplanted fetal heart. One anterior eye chamber can be sympathetically denervated in host rats by ipsilateral superior cervical ganglionectomy. Using this procedure, we were able to compare the growth and controls of pacemaker activity of fetal hearts innervated by the sympathetic nervous system with those never innervated. As the in oculo heart does not pump against a pressure gradient, hemodynamic consequences of manipulating sympathetic innervation during development do not confound interpretation of the data.

The present study examined two questions. (1) Does sympathetic innervation exert a trophic effect on the growth of fetal heart tissue? (2) Does sympathetic innervation influence the intrinsic rate of beating established by the pacemaker of fetal heart tissue maturing in oculo?

Materials and Methods

Heart tissue was dissected from Sprague-Dawley rats at 12 days postconception. Dams and sires were purchased from Taconic Farms and mated in our laboratory. Successful mating (day 0 of gestation) was judged by the presence of a vaginal plug. Host rats were 34 4-week-old Sprague-Dawley males (Taconic Farms). All rats were maintained on a 12-hour light-dark cycle.

Sympathetic Denervation of the Anterior Eye Chamber. Two days prior to implantation of heart tissue, one anterior eye chamber of each host rat was sympathetically denervated by removal of the ipsilateral superior cervical ganglion (SCG). Both the preganglionic and postganglionic nerve trunks were severed and the entire ganglion was removed to prevent regrowth of sympathetic fibers into the anterior eye chamber. Other targets of the SCG receive bilateral innervation (e.g., pineal and thyroid glands) and unilateral superior cervical ganglionectomy does not compromise their function.\(^2\)

Dissection and Implantation of Atrial Tissue. At 12 days postconception, both uterine horns were removed aseptically from 8 ether-anesthetized dams. Dissections were done in a sterile Tris-Tyrode's solution (pH 7.40) at room temperature. The beating atria were dissected from each fetus (10-12 fetuses per dam) using an Aus Jena surgical microscope. Measurements of fetal crown-to-rump length, heart size,
and atrial size were made using a calibrated micrometer in the microscope eyepiece. Crown-to-rump length of fetuses from the 8 litters ranged from 5.9 to 8.4 mm (mean 6.3 ± 0.3 mm). Fetuses had both forelimb and hindlimb buds. Hearts were four-chambered and 1.6 ± 0.09 mm² in size; heart size was measured as the product of length and width.

Atria rather than whole fetal hearts were cultured to avoid confusing slow pacemaker activity by the sinoatrial node with rates controlled by the atrioventricular node. In a pilot study, 7 whole fetal hearts and 7 atria were cultured in the same host rats. While whole hearts were larger than atria after 6 weeks in oculo (3.61 ± 0.50 vs. 1.73 ± 0.22 mm²; mean ± SEM), the rate of beating did not differ (219 ± 45 vs. 270 ± 28 bpm), suggesting that chronotropic characteristics of atrial grafts reproduce those of the whole fetal heart grafts.

Prior to implantation of fetal atria, host rats were anesthetized with ether and the iris was constricted by topical application of methylatropine (1.0 mg/ml) to the cornea. Implantation was accomplished by gently drawing spontaneously beating atrial tissue into a beveled pipette and injecting it into the anterior eye chamber of a host rat through a small cut made in the cornea. Atrial tissue rapidly adhered to the iris over which it was positioned. Neosporin ophthalmic ointment was placed on the eye after surgery to prevent infection. Healing of the cornea began almost immediately, and no scar was evident within a week in most cases. The behavioral competence of the host rat was not compromised by the implantation of heart tissue into the anterior eye chamber and there was no evidence of chronic irritation (e.g., evidence of excessive grooming or scratching around the eyes).

Measurement of Transplant Growth. The size of transplants was measured weekly using a calibrated micrometer in the surgical microscope. In oculo, atria assume a round to oval shape. The two-dimensional area of transplants was calculated as the product of the longest dimension of the transplant and its width perpendicular to this axis. Atria cultured in the sympathetically innervated and denervated anterior eye chambers of 8 host rats were weighed after 3 months in oculo to determine differences in mass.

Measurement of Rate of Beating. During weekly size measurements, the rate of beating was counted by visual observation. Rate was calculated from the time required for 20 sequential contractions.

After 2.5 months in oculo, electrodes were implanted to allow recording of electrograms from implanted atria while the host was awake and freely moving. Specifically, two fine silver wires (0.003 in. diam. enamel-coated wire) were tunnelled through the conjunctiva and the bare tips positioned near the edge of the cornea on opposite sides of the beating atrial tissue. Neosporin ophthalmic ointment was applied to the conjunctiva and under the eyelid after surgery to prevent infection. Host rats adjusted well to these recording electrodes and gained weight at a normal rate. Evidence of irritation around the eye after implantation of recording electrodes was rare and easily corrected by repositioning of the tips of the wires. Prior to surgery the wires were soldered to male Amphenol microconnectors. The microconnectors were fixed in a plastic spacing bar which was anchored permanently to the animal's skull. Heart rate of the host was measured from two additional wires tunnelled under the skin of the back. Recordings of ECG from both implanted hearts and the host were made by attaching recording leads soldered to female Amphenol connectors and placing the unrestrained host into a light-shielded chamber. Signals were filtered and amplified using Grass P511 preamplifiers and high-impedence input probes and then fed into Beckman Dynograph (R511) cardiotachometers. Example recordings are presented in Figure 1.

Measurement of Autonomic Controls and Intrinsic Heart Rate. Table 1 presents the protocol for determining autonomic controls of in oculo heart rate, maximal and intrinsic heart rate. In preparation for testing, recording leads were attached, host rats were placed in an individual cage containing shavings from their home cage and then adapted to a darkened test chamber for 20 minutes. Baseline in oculo heart rates were collected from dark-adapted host animals. Heart rate responses to the onset and offset of a 5-second light stimulus (40-foot candles) were then measured. Pronounced bradycardia (greater than 150 bpm fall) in response to light onset was observed from in oculo atria but not from the host rat, verifying that the electrograms recorded from in oculo heart leads originated from the transplanted heart and not the host heart. The light stimulus was repeated once during the baseline period and during subsequent pharmacological treatments. Failure to observe light-induced bradycardia after methylatropine treatment confirmed successful blockade of muscarinic receptors. Drugs were administered via a subcutaneous catheter. The intrinsic heart rate recording protocol comprised sequential pharmacological blockade of parasympathetic influence with atropine methyl nitrate (10 µg/kg) and sympathetic influence with atenol (1.0 mg/kg). Dose-response curves were generated for each drug during preliminary studies; these doses were selected as the lowest which produced a maximal blockade to challenge with agonists.

Maximal heart rate response to β-adrenergic receptor stimulation was determined by administering isoproterenol sulfate (1.0 µg/kg). Determination of maximal heart rate was separated from the intrinsic heart rate protocol by 2–3 days to assure clearance of the receptor blockers from the host rat.

Catecholamine Content of Implanted Atria. To confirm prevention of sympathetic innervation of atria implanted into sympathetically denervated anterior eye chambers, norepinephrine (NE) and epinephrine (E) content of implanted atria were measured by high pressure liquid chromatography with electrochemical detection. Host rats were killed by decapitation and the eyes rapidly removed. The implanted atria were dissected from the anterior eye chamber in ice cold saline, the iris was trimmed from around the graft, and the
Implanted atria were placed in a microcentrifuge tube and frozen in liquid nitrogen. Implants from both eyes were dissected simultaneously.

Tissue samples were weighed on a Metler H54 AR analytical balance and placed in a microhomogenizer (Kontes Glassware, Vineland, N.J.). The tissue was homogenized in 400 μl of 0.1 M perchloric acid containing 0.5 mM glutathione as an antioxidant and 5 ng/ml 3,4-dihydroxybenzylamine (DHBA; Sigma Chemical, St. Louis, Mo.) as an internal standard. Protein determination was by a modification of the method of Bradford from 100 μl of the homogenate. The remaining homogenate was centrifuged at 12,000 rpm for 10 minutes in an Eppendorf 5414 centrifuge. Supernatant (200 μl) was added to 1 ml of 0.1 M phosphate buffer (pH 7.0) and 50 mg of washed alumina (BioAnalytical Systems, West Lafayette, Ind.). Tris buffer (1 ml of 1.5 M, pH 8.6) was added, the tubes were capped and shaken by hand for 10 minutes. After the alumina had settled, the liquid was aspirated off and the alumina was washed with distilled water three times. The alumina was transferred to micro-

<table>
<thead>
<tr>
<th>Table 1. Protocols for Determining Intrinsic and Maximal Heart Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
</tr>
<tr>
<td>Intrinsic</td>
</tr>
<tr>
<td>I. Dark-adapted baseline heart rate</td>
</tr>
<tr>
<td>Light stimulus (5-second pulse, repeated once)</td>
</tr>
<tr>
<td>II. Muscarinic receptor blockade (10 µg/kg methylatropine s.c.)</td>
</tr>
<tr>
<td>Light stimulus</td>
</tr>
<tr>
<td>III. β-adrenergic receptor blockade (1.0 mg/kg atenolol s.c.)</td>
</tr>
<tr>
<td>Light stimulus</td>
</tr>
<tr>
<td>Maximal</td>
</tr>
<tr>
<td>I. Dark-adapted baseline</td>
</tr>
<tr>
<td>II. Isoproterenol (1.0 µg/kg)</td>
</tr>
</tbody>
</table>
filters (BioAnalytical Systems) and centrifuged to remove the water. A new recovery cap was placed on the filter and 200 μl of 0.1 M perchloric acid added to the alumina and vortexed. The acid/alumina slurry was allowed to stand for 5 minutes, vortexed again and centrifuged at 3000 rpm for 5 minutes. A 50 μl sample of the acidic extract was injected into the HPLC system. The HPLC system consisted of an LDC mini-pump (Milton Roy, Rivera Beach, Fla.), an IBM C-18 column (IBM Instruments, Danbury, Conn.), LC4B electrochemical detector (BioAnalytic Systems) and a Hewlett Packard HP3390A integrator (Hewlett-Packard Instruments, Atlanta, Ga.). Mobile phase conditions were 0.02 M citrate/0.02 M Na2HPO4/acetonitrile (650:300:40) pH 3.75 with 1.5 mM TEA and octyle sodium sulfate 115 mg/L. All chemicals were analytical grade (Sigma Chemical, St. Louis, Mo.).

DATA ANALYSIS. Developmental changes in the transplant size and rate were analyzed using multivariate profile analysis. Univariate analyses of variance were used to follow up significant multivariate results. The dark-adapted heart rate, light response and response to drug treatments of sympathetically innervated and noninnervated atria were compared by analysis of variance. Transplant weight and catecholamine content were compared using Student’s t test. Follow-up comparisons were made using Newman-Kuels tests. Data are reported throughout as mean ± standard error (SEM).

Results

OBSERVATIONS OF FETAL ATRIAL TISSUE IN OCULO. Within 24 hours after implantation, sinususes of blood were evident on implanted atria, with the tissue surface becoming well vascularized within 1 week. In oculo, fetal heart tissue does not grow to the size it would achieve in situ and does not retain distinct chambers. Instead blood-filled sinusoids are observed. The coro­nary arterial system does not develop in oculo. Blood vessels grow in from the ground plexus of the iris and are relatively uniform in their distribution.

CATECHOLAMINE CONTENT OF ATRIAL GRAFTS. Figure 2 presents norepinephrine content of atria cultured in sympathetically innervated and noninnervated anterior eye chambers. Measurement of norepinephrine content of atria implanted into sympathetically denervated eye chambers confirmed nondetectable to very low catecholamine levels (range, 0–0.550 ng/implant, mean = 0.17 ± 0.07 ng/implant compared to range 1.4–11.9 ng/implant, mean = 5.7 ± 1.1 ng/implant for innervated implants). As care was taken to remove the iris not directly adherent to the atrial graft, the norepinephrine content of atria maturing in sympa­thetic denervation eye chambers suggests that the expected ingrowth of sympathetic fibers into the grafted atria did, in fact, occur. Measurable epinephrine content was found in 2 noninnervated and one innervated implant (1.6 and 1.4 ng/implant in noninnervat­ed and 7.8 ng/implant in innervated implants). The very low to nondetectable catecholamine content of noninnervated atrial implants suggests that noninner­vated implants do not sequester catecholamines from the circulation. This finding is consistent with Potter’s report of the capability of denervated myocardium to take up and store catecholamines is minimal (6% of capacity of innervated myocardium).

GROWTH OF ATRIA MATURING IN OCULO. Sympathetically innervated grafts showed significantly greater growth than grafts into denervated eye chambers [F (3, 22) = 5.25, p < 0.007]. Subsequent analyses indicated differential growth between weeks 2 and 4 and between weeks 4 and 6. By 8 weeks after implant, atria maturing in sympathetically innervated anterior eye chambers were 86% larger than atria maturing in sympathetically denervated eye chambers (2.22 ± 0.29 vs. 1.19 ± 0.13 mm²). Figures 3 and 4 show the differential growth of atria in sympathetically innervated and noninnervated eye chambers. Because the implants are three dimensional structures, surface dimensions are likely to underestimate actual differences in growth as a function of experimental manipulations. To examine this possibility, implanted atria from 8 host rats were weighed. Sympathetically innervated atrial grafts weighed three times more than noninnervated atria (2.35 ± 0.75 mg vs. 0.76 ± 0.21 mg). When viewed through the surgical microscope, sympathetically innervated transplants were dark red in color and appeared to be thicker than the more amber-colored noninnervated transplants.

RATE OF ATRIA MATURING IN OCULO. Atria maturing in sympathetically noninnervated eye chambers maintained a higher rate than innervated implants when measurements were made with the host rats anesthe­tized with ether and using the white light source on the surgical microscope (see Figure 5). These measurement conditions produce high parasympathetic tone to the anterior chamber (white light) and high levels of
circulating catecholamines (ether anesthesia). Thus, the higher basal rates in sympathetically noninnervated atria could reflect an increased intrinsic heart rate, reduced parasympathetic tone and/or an increased sensitivity to circulating catecholamines in sympathetically noninnervated transplants.

After two months in oculo, intrinsic heart rate and autonomic controls were estimated from ether-anesthetized hosts using white microscope light (Figure 6). Parasympathetic tone was estimated by the heart rate increase after intraperitoneal injection of atropine methyl nitrate (10 μg/kg). Sympathetic tone was estimated by the heart rate decrease after injection of aten-

To obviate concerns about the effects of anesthesia of the host and measurement under white light, recordings of heart rate were also made from chronic recording electrodes. On the first day of testing, a dark-adapted baseline heart rate was obtained simultaneously from atria implanted into sympathetically innervated and denervated eye chambers in each host. Baseline heart rates of sympathetically innervated and noninnervated atria were virtually identical (289 vs. 290, see Figure 7). Adaptation to a darkened chamber produces high sympathetic and low parasympathetic tone to the anterior eye chamber.

A profound bradycardia after presentation of a light stimulus (−205 ± 33 bpm for sympathetically innervated and −207 ± 35 bpm for noninnervated transplants) confirmed that electrograms were from in oculo atria rather than the host rat. No significant change in rate of the in oculo atria was observed after atropine treatment (see Figure 7). This result was expected, given the low parasympathetic tone to the anterior chamber when host rats are adapted to a darkened environment. However, muscarinic blockade attenuated substantially the bradycardic response to light stimulation (to −40 ± 16 for sympathetically innervated and −38 ± 19 for noninnervated transplants). Substantial sympathetic control of in oculo atria when host rats are in a darkened environment was confirmed by

Figure 3. Effects of sympathetic innervation on growth of fetal rat atria transplanted into the anterior chamber of the eye. Atria placed into anterior chambers denervated by removal of the ipsilateral superior cervical ganglion did not differ in size at the time of implantation (i.e., they were from the same litter of fetuses and implanted at the same time), yet by 6 weeks in oculo atrial grafts into sympathetically innervated anterior eye chambers had more than doubled in size, while atria in denervated eyes failed to grow (t (55) = 2.3, p < 0.05). Data are mean ± SEM.

Figure 4. Photographs of sympathetically innervated (Panel A) and noninnervated (Panel B) atrial grafts that illustrate the difference in size observed as a function of sympathetic innervation.
Heart Rate of In Oculo Atria

Effect of sympathetic innervation on heart rate. Measurements were made using a surgical microscope with host rats anesthetized with ether. By 6 weeks in oculo atria in sympathetically denervated anterior eye chambers had a significantly higher rate than innervated implants (t(36) = 3.1, p < 0.01).

Controls of In Oculo Heart Rate

Effects of sympathetic innervation on heart rate. Measurements were made using a surgical microscope with host rats anesthetized with ether. By 6 weeks in oculo atria in sympathetically denervated anterior eye chambers had a significantly higher rate than innervated implants (t(36) = 3.1, p < 0.01).

Intrinsic Rate and Autonomic Control

In oculo heart rate by circulating catecholamines. In contrast, both circulating catecholamines and high sympathetic neural tone to the anterior eye chamber contribute to adrenergic stimulation of atria in sympathetically innervated eye chambers.

Discussion

Sympathetic innervation exerted a trophic effect on the growth of fetal rat atria cultured in the anterior chamber of the rat eye and depressed the intrinsic rate at which the atrial grafts beat. These findings suggest that differences in sympathetic stimulation during development may contribute to variability among individuals in heart size and rate.
Intrinsic and Maximal In Oculo HR

Effects of Sympathetic Innervation

Heart Rate (bpm)

Intrinsic HR Maximum HR

SCG Intact

SCG Removed

Figure 8. Intrinsic and maximal heart rates (mean ± SEM) of atria cultured in sympathetically innervated and denervated anterior eye chambers. Recordings were made after atria had been in oculo for 3 months from chronically implanted electrodes. Intrinsic rate was determined after combined blockade with atenolol and methylatropine. Maximal heart rate was determined after injection of 10 μg/kg isoproterenol into a subcutaneously implanted catheter. Maximal heart rate did not differ between sympathetically innervated and noninnervated grafts (p < 0.05).

Atria cultured in oculo become innervated at approximately the same time after conception as do atria in situ. Olson and colleagues reported innervation of fetal rat hearts cultured in the anterior eye chamber to occur during the second and third weeks after implantation. For atria grafted at 12 days postconception in our study, this would correspond to innervation in oculo between 20 and 26 days after conception (E-20 to P-5), the period during which sympathetic innervation of the heart undergoes final maturation in situ. Prior to growth of catecholamine fibers into the grafted atria, catecholamine stimulation would come both from circulating catecholamines and, in sympathetically innervated eye chambers, by diffusion of norepinephrine released from the sympathetic nerves innervating the iris. The consequences of this early catecholamine stimulation of hearts developing in oculo remain to be determined.

In oculo, sympathetically innervated and noninnervated atrial grafts are perfused by the same circulating catecholamine and hormonal stimulation. By comparing sympathetically innervated and noninnervated grafts, we can determine the effects of sympathetic innervation per se on cardiac growth and rate. Growth of sympathetically innervated atrial grafts may have been enhanced because they received a greater quantity of norepinephrine stimulation than noninnervated grafts or because they were exposed to some other trophic substance released from sympathetic nerves. In oculo, beating heart tissue does not pump against a blood pressure gradient so the increased growth of sympathetically innervated atrial grafts cannot be attributed to differential hemodynamic load.

Trophic influences of sympathetic innervation on heart growth. This experiment demonstrated that sympathetic innervation promotes the growth of fetal rat atria grafted into the anterior eye chamber. At the time the atria were grafted, cell division was contributing to cardiac growth. Sympathetic innervation may have increased graft size by promoting ongoing cell division, increasing the size of individual myocytes, or both. Claycomb's report that isoproterenol treatment of newborn rats inhibited subsequent cell division argues against the possibility that sympathetic innervation of grafted fetal atria would promote cell division. Since catecholamine stimulation is known to induce hypertrophy of myocytes, it seems likely that sympathetically innervated grafts had larger cells. However, determination of whether cell size or number or both were increased by sympathetic innervation awaits empirical verification.

Our findings are consistent with the report of Nayler and colleagues that pharmacological blockade of sympathetic stimulation of young rabbits reduced heart size and inconsistent with the reports of Kirby and Stewart and of Higgins and Pappano that sympatheticectomy of the embryonic chick heart did not alter its growth. In the present study, the surface dimensions of sympathetically innervated atrial grafts were not significantly increased over noninnervated grafts for the first 4 weeks in oculo. If Kirby and Stewart and Higgins and Pappano had been able to follow their sympathectomized chick hearts for a longer period of time, growth differences might have been detected. Alternatively, the immature sympathetic innervation of the fetal heart may exert minimal control of cardiac growth, with more substantial sympathetic influence on heart size occurring after birth.

Trophic influence of sympathetic innervation on other cardiovascular target organs. Sympathetic innervation has also been reported to exert a trophic influence on developing blood vessels. Bevan and Bevan demonstrated that sympathetic innervation promotes the growth of blood vessels in the ear of young rabbits using a strategy similar to that used in the present experiment. They produced unilateral denervation by removing the superior cervical ganglion.
which supplies sympathetic innervation to the ipsilateral ear. In young rabbits (4 weeks of age), sympathetic denervation resulted in decreased vascular smooth muscle proliferation, fewer vascular smooth muscle cells and stiffer blood vessel walls.21, 22 Sympathetic denervation of the arteries of older rabbits did not alter the number of smooth muscle cells. However, in all age groups, sympathetic denervation reduced force of vascular contraction and produced postjunctional hypersensitivity to depolarizing stimuli.

Aprigliano and Hermansmeyer43 produced sympathetic denervation of the portal vein by 6-hydroxydopamine treatment of newborn rats. Postjunctional alterations were observed in the sympathectomized portal veins which Aprigliano and Hermansmeyer43 attributed to removal of a trophic influence of the sympathetic nervous system. Specifically, a partial depolarization was observed in denervated portal veins. They hypothesized that the associated ionic changes were components of the trophic interaction between sympathetic nerves and blood vessels.

In spontaneously hypertensive rats (SHR), the hypertrophy of blood vessel walls and increased vascular reactivity are at least partially dependent on sympathetic innervation. Unilateral surgical denervation of cerebral arteries in 3-week-old stroke-prone SHR attenuated the wall thickening expected in intraparenchymal vessels 1 year later.44 Abel and Hermansmeyer45 demonstrated that sympathetic innervation may be necessary for development of the membrane properties which underly vascular hyperreactivity in SHR rats. They transplanted tail arteries from 2-week-old SHR and WKY control pups into the anterior eye chamber of SHR or WKY host rats. In sympathetically innervated eye chambers, the blood vessels underwent interconversion to membrane properties (resting potential and NE sensitivity) characteristic of the host strain. However, if cultured in sympathetically denervated eye chambers, the arteries developed membrane properties characteristic of the donor strain.

Both increased sympathetic nervous system activity and increased size of the heart and blood vessel walls are observed in neonatal rats of the genetically hypertensive SHR strain. Because of technical difficulties in selectively preventing sympathetic innervation of the heart and blood vessels during fetal development, the role of sympathetic stimulation in the early growth and differentiation of cardiac and vascular smooth muscle in situ has yet to be determined. By 4–5 days of age, pharmacological blockade of sympathetic stimulation produces a larger bradycardia1 and a greater fall in blood pressure46 in SHR than in WKY pups. By 3 weeks of age, norepinephrine in plasma and dopamine \(\beta\)-hydroxylase in blood vessels are both increased in SHR rats.47, 48 Measurements of heart weight, ventricular weight to body weight ratios, ventricular wall thickness and myocardial DNA and RNA content indicate that the hearts of newborn SHR are larger than WKY, contain more cells, and are synthesizing more proteins.1, 6, 49–51 Similarly, the earliest measurements of the wall to lumen ratios and medial wall thickness of blood vessels in SHR indicate that hypertrophy begins during the first 2 postnatal weeks.52, 53 Thus, there is considerable circumstantial evidence linking enhanced sympathetic activity with increased growth of cardiac and vascular smooth muscle. However, the increased hemodynamic demand placed on the heart and blood vessels of young SHR by the higher mean arterial pressure24–26 could also account for the cardiac and vascular hypertrophy.

\textbf{Effects of sympathetic innervation on intrinsic heart rate.} In contrast to the tachycardic response observed to phasic sympathetic stimulation, the results of the present study indicate that tonic sympathetic stimulation of the developing heart reduces the intrinsic rate of firing of its pacemaker. Little is understood of how pacemaker rate is determined during development. Specialization of the sinoatrial region as pacemaker occurs very early in embryonic development.57, 58 Electrical activity is initiated in the atrial region of the embryonic chick heart.57–59 Rhythmic electrical activity precedes mechanical activity and histologic identification of pacemaker cells.57, 60 There is a gradual increase in the rate at which the embryonic heart beats during fetal and early postnatal development.1, 10, 11, 61 An increased pacemaker rate in the maturing heart may result from changes inherent in the developing heart, from the changes in the fetal and postnatal heart's neurohumoral milieu or from an interaction between intrinsic and neurohumoral factors. The current data indicate that sympathetic innervation can influence the pacemaker rate established by the embryonic heart.

Individual differences in functional sympathetic maturation and tonic activity exist early in development.1, 62 Individual differences in sympathetic nervous system function may be genetically based (e.g., SHR rats48, 63 or induced by environmental factors.62 The present results suggest that sympathetic innervation of developing cardiovascular target organs may be one effector system through which genetically determined and environmentally induced differences influence subsequent cardiovascular function.

\textbf{Acknowledgments}

Catecholamine assays were performed in the laboratory of S. Oparil by R. Gist; the authors thank Dr. Oparil for her assistance. P. Alverson provided excellent technical assistance during data collection. The comments of W. T. Woods on an earlier draft were most helpful.

\textbf{References}

5. Ishii K, Shigenobu K, Kasuya Y: Postjunctional supersensitiv-
ity in young rat heart produced by immunological and chemical

6. Simpson P, McGrath A, Savion S: Myocyte hypertrophy in
neonatal rat heart cultures and its modulation by serum and by

7. Simpson P: Stimulation of hypertrophy of cultured neonatal rat
heart cells through an alpha-1-adrenergic receptor and induction of
beating through an alpha-2 and beta-1-adrenergic receptor interaction.
Circ Res 1985;56:884–894

10. Adolph EF: Ranges of heart rate and their regulations at various

11. Adolph EF: Ontogeny of heart-rate controls in hamster, rat, and

12. Vie J, Vincenzi FF: Functional autonomic innervation of mam-
malian cardiac pacemaker during the perinatal period. Biol Neonate
1977;31:19–26

13. Wekstein DR: Heart rate of the preweanling rat and its auto-

14. Kirby M, Stewart D: Adrenergic innervation of the developing
chick heart: Neural crest ablations to produce sympathetically

15. Higgins D, Pappano AJ: Development of transmitter secretory
mechanisms by adrenergic neurons in the embryonic chick

16. Cutilletta AF, Benjamin M, Culpepper WS, Opatri S: Myocar-
dial hypertrophy and ventricular performance in the absence of
hypertension in spontaneously hypertensive rats. J Mol Cell Cardiol
1978;10:689–703

17. Opatri S, Cutilletta AF: Hypertrophy in the denervated heart: A
comparison of central sympathetic treatment with 6-hy-
droxydopamine and peripheral sympathetic with nerve
growth factor antisem. Am J Cardiol 1979;44:970–978

18. Clark DW, Jones DR, Phelan EL, Devine CE: Blood pressure and
vascular resistance in genetically hypertensive rats treated at

19. DeChamplain J, Malmors T, Olson L, Sachs C: Ontogenesis of
peripheral adrenergic neurons in the rat: Pre- and postnatal

20. Owman D, Sjoberg NO, Swedin G: Histochemical and chemi-
cal structures of sympathetic preganglionic nerves in cats and
postnatal development of the different systems of "short" and "long" adrenergic nerves in peripheral organs of the rat. Z Zellforsch 1971;116:319–341

21. Pappano AJ: Ontogenic development of autonomic neuroef-
fector transmission and transmitter activity in embryonic and

22. Clubb FJ, Bishop SP: Formation of binucleated myocardial
cells in the neonatal rat: An index for growth hypertrophy. Lab
Invest 1984;50:571–577

23. Slotkin TA, Smith PG, Lau C, Barnes D: Functional aspects of
developmental catecholamine biosynthesis and release in the
sympathetic nervous system, in Parvez H, Parvez S (eds): Biogenic Amines in Development. New York, Elsevier North-
Holland Biomedical Press, 1980, pp 29–48

24. Seidler FJ, Slotkin TA: Presynaptic and postsynaptic contribu-
tions to ontogeny of sympathetic control of heart rate in the

25. Zak R, Rabinowitz M: Molecular aspects of cardiac hyper-
trophy. Annu Rev Physiol 1979;41:539–552

26. Teitelman G, Baker H, Joh TH, Reis DJ: Appearance of cate-
cholamine-synthesizing enzymes during development of rat
sympathetic nervous system: Possible role of tissue environ-
ment. Proc Natl Acad Sci USA 1979;76:509–513

27. Wildenthal K: Long-term maintenance of spontaneously beat-
ing mouse hearts in organ culture. J Appl Physiol 1971;
30:153–157

28. Ingwall JS, Goldhaber SZ, Roeske WR, Wildenthal K: Mouse
hearts in organ culture: A preparation for studying fetal cardiac
145–156

29. Ingwall JS, Roeske WR, Wildenthal K: The fetal mouse heart
in organ culture: Maintenance of the differential state, in Harris CC, Trump BF, Stoner GD (eds): Methods in Cell Biology, vol

30. Olson L, Seiger A: Beating intracardiac hearts: Light controlled
rate by autonomic innervation from the host iris. J Neurobiol
1976;7:193–203

31. Tucker DC, Hall ME: Sympathetic innervation alters growth and
intrinsinc rate of hearts maturing in oculo. Circulation
1985;72(suppl 3):362

32. Tucker DC, Saper CB: Intrinsic rate of SHR hearts maturing in

33. Tucker DC, Woods WT: Development of pacemaker activity
in fetal rat heart cultured in oculo. Fed Proc 1986;45:770

34. Peluvay MA, Cardinael D, Jovenat 1981;149:131 RJ, Barabini
M, Vacas MI: Ipsilateral thyroid growth and depressed thyroid
hormone synthesis and content after unilateral superior cervical
ganglionectomy in rats. Acta Physiol Latinam 1983;33:
165–170

35. Bradford M: A rapid and sensitive method for the quanitative
analysis of microgram quantities of protein using the principal

36. Potter LT, Cooper T, William VL, Wolfe DE: Synthesis, bind-

37. Olson L, Seiger A, Stromberg I: Intracranial transplantation in
rodents: A detailed account of the procedure and examples of its
use in neurobiology with special reference to brain tissue

38. Oberpriller JO, Oberpriller JC: Modified hamster atrial cardiac

39. Bevan JA, Bevan RD: Developmental influences on vascular

40. Bevan RD: Effect of sympathetic denervation on smooth muscle
cell proliferation in growing rabbit ear artery. Circ Res
1975;37:14–19

41. Bevan TD, Tsuru H: Long-term influence of the sympathetic

42. Bevan RD: Trophic influence of peripheral adrenergic nerves on

43. Agripilino O, Hermenskeyer M: Trophic influences of the
sympathetic nervous system on the rat portal vein. Circ Res
1977;41:198–206

44. Hart MN, Heistad DD, Brody MJ: Effect of chronic hyperten-
sion and sympathetic denervation on wall/lumen ratio of cere-

45. Abel PW, Hermenskeyer K: Sympathetic cross-innervation of SHR and genetic controls suggests a trophic influence on vas-

46. Smith PG, Poston CW, Mills E: Contribution of noradrenergic
vascular activity to blood pressure in neonatal and adult

47. Nagaoa A, Lovenberg W: Plasma norepinephrine and dopa-
mine-beta-hydroxylase in genetic hypertensive rats. Life Sci
1976;19:29–34

49. Weiss L, Lundgren Y: Left ventricular hypertrophy and its

50. Hamet P, Kunes J, Fletcher K, Cantin M, Genest J: Hyper-
trophy and hyperplasia of heart and kidney in newborn sponta-

60. Viragh Sz, Challice CE: The development of the conduction system in the mouse embryo heart. Dev Biol 1980;80:28–45

Key Words • fetal rat atria • in oculo culture • intrinsic beating rate • sympathetic innervation
Sympathetic innervation alters growth and intrinsic heart rate of fetal rat atria maturing in oculo.
D C Tucker and R Gist

Circ Res. 1986;59:534-544
doi: 10.1161/01.RES.59.5.534

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/59/5/534

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/