Dopamine Attenuates the Contractile Response to Angiotensin II in Isolated Rat Glomeruli and Cultured Mesangial Cells

R. Barnett, P.C. Singhal, L.A. Scharschmidt, and D. Schlondorff

Recent evidence suggests that dopamine may alter kidney function by actions not only in the renal vasculature but also at the glomerular–mesangial level. We studied this phenomenon by examining the ability of dopamine to antagonize the contractile properties of angiotensin II in isolated rat glomeruli and cultured mesangial cells. In isolated rat glomeruli angiotensin II caused a decrease in the planar surface area, indicating glomerular contraction, an effect that was abolished by coincubation with dopamine. Angiotensin II also mediated shape changes in cultured mesangial cells, which resulted in a decline in their planar areas. Simultaneous addition of dopamine prevented these decreases in cell size. In mesangial cells grown on a flexible silicone rubber support, angiotensin II addition enhanced wrinkling of the mobile surface. This indicated that the angiotensin-II-induced decrease in cell size observed in cells grown on conventional substrata represented contraction. Conversely, dopamine caused a rapid reduction in wrinkling of the surfaces from control cells as well as those previously treated with angiotensin II, actions consistent with cell relaxation. The prostaglandin inhibitor indomethacin did not alter the ability of dopamine to attenuate angiotensin-II-associated reductions in mesangial cell surface area. Direct determination of mesangial cell prostaglandin-E₂ production showed that dopamine did not change either basal synthesis or angiotensin-II-stimulated synthesis of prostaglandin. The results demonstrate that dopamine antagonizes the constrictor effect of angiotensin II at the glomerular–mesangial level. This action of dopamine is prostaglandin independent. These findings support a role for dopamine in the regulation of glomerular filtration and may provide a rationale for its use during states of renal vasoconstriction. (Circulation Research 1986;59:529–533)

DOPAMINE (DA) is an endogenous catecholamine that has positive inotropic properties and vasodilator actions especially in the renal circulation. DA may play a physiological role in regulating renal blood flow. For example, DA decreases renal vascular resistance and antagonizes norepinephrine-mediated vasoconstriction in isolated rabbit efferent and afferent arterioles. DA could also preserve renal blood flow and glomerular filtration rate in clinical conditions characterized by enhanced pressor activity. Kidney tissue is able to synthesize DA, and renal cortical slices, proximal tubular cells, and to a lesser extent, isolated glomeruli have been shown to convert L-DOPA to dopamine. Dopaminergic nerves adjacent to the vascular pole of the glomerulus could provide an additional source of DA, especially since dopaminergic receptors have been characterized in isolated rat glomeruli. DA stimulates cAMP production in isolated glomeruli and cultured mesangial cells. Cyclic AMP, in turn, relaxes mesangial cells and antagonizes the shape-change induced by vasopressin. This may be another example of cAMP-induced smooth muscle relaxation.

Vasoactive substances such as angiotensin II (AII) cause renal vascular constriction and decrease the glomerular ultrafiltration coefficient Kₐ. The latter has been postulated to result in part from diminished effective filtration surface area, possibly as a result of mesangial cell contraction. This hypothesis is supported by the reduction in planar surface area in isolated glomeruli and in cultured mesangial cells following incubation with AII. In order to assess the ability of DA to attenuate the effect of pressor peptides such as AII at the glomerular mesangial level, we examined the direct effects of AII and DA on the surface area of isolated glomeruli and cultured mesangial cells as a reflection of their contractility. To assess a possible role for prostaglandin in mediating the effects of DA experiments were also carried out in the presence of prostaglandin synthesis inhibition. Furthermore, the direct effect of DA on PG₂ synthesis was evaluated. Our results show that DA antagonizes the shape-changes induced by AII in isolated glomeruli and in cultured mesangial cells by a mechanism that is independent of prostaglandin.

Materials and Methods

Dopamine was purchased from Sigma (St. Louis, Mo.). Angiotensin II was obtained from Ciba-Geigy (Summit, N.J.). [³H] PGE₂ (130 Ci/mole) was purchased from Amersham (Arlington Heights, Ill.), and

From the Albert Einstein College of Medicine, Bronx, New York.

Part of this work was presented at the annual meeting of the American Society for Clinical Research in Washington, D.C., May 1985.

Supported by National Institutes of Health Grants AM 22036 and AM 07089 and New York State Health Research Council Grant 431-6534. R.B. was a fellow of the National Kidney Foundation.

Address for reprints: R. Barnett, S.U.N.Y. at Stony Brook, Health Science Center, T15-O20, Stony Brook, NY 11794.

Received March 20, 1986; accepted July 21, 1986.
Incubation of Mesangial Cell for PG Synthesis

According to previously published methods.1314 The culture medium consisted of RPMI 1640 (Grand Island Biological Laboratory) supplemented with 10% fetal calf serum, penicillin (0.66 μg/ml) and streptomycin sulfate (60 μg/ml). After mesangial cells had reached confluence (15—20 days after glomerular seeding) they were subcultured according to previously published methods.1314

Direct Microscopical Observation of Mesangial Cells

In the present report, experiments were performed on cells 7—10 days after the first subculture. The culture media was discarded, the flask washed twice with 5 ml of buffer (20 mM Tris-HCl, pH 7.4, 5 mM glucose, 135 mM NaCl, 10 mM KCl, 10 mM Na-acetate, 2 mM CaCl₂, and 2 mg/ml of essential fatty acid free bovine serum albumin) and incubated with 3.5 ml of this solution at 37°C. Experimental agents were made up in buffer and added to the incubations after a 10-minute control period to yield the final concentrations indicated in "Results." Aliquots (0.5 ml) of incubation buffer were removed after an additional 10 minutes and stored at —20°C for subsequent radioimmunoassay of prostaglandin.16

Glomerular Isolation and Culture of Mesangial Cells

Male Sprague-Dawley rats (Charles River Breeders, Wilmington, Mass.) 150—250 were maintained on tap water and Purina rat chow ad libitum. Kidneys were removed under pentobarbital anesthesia. The glomeruli were isolated and cultured as previously described.1314 Mesangial cells had reached confluency (15—20 days after glomerular seeding) they were subcultured according to previously published methods.1314

Incubation of Mesangial Cell for PG Synthesis

Experimental incubations were performed on cells 7—10 days after the first subculture. The culture media was discarded, the flask washed twice with 5 ml of buffer (20 mM Tris-HCl, pH 7.4, 5 mM glucose, 135 mM NaCl, 10 mM KCl, 10 mM Na-acetate, 2 mM CaCl₂, and 2 mg/ml of essential fatty acid free bovine serum albumin) and incubated with 3.5 ml of this solution at 37°C. Experimental agents were made up in buffer and added to the incubations after a 10-minute control period to yield the final concentrations indicated in "Results." Aliquots (0.5 ml) of incubation buffer were removed after an additional 10 minutes and stored at —20°C for subsequent radioimmunoassay of prostaglandin.16

Determining the Planar Surface Area of Isolated Glomeruli

Glomeruli isolated by successive sieving,14 were washed three times in a Robinson’s buffer containing 1 mM CaCl₂. Aliquots of glomeruli were incubated with vehicle or experimental agent for 20 minutes at room temperature and fixed in 1% glutaraldehyde. The glomerular planar surface area was determined within several hours using an automated #720 Quantimet Image Analyzer (Cambridge Instruments of Moncie, N.Y.). The planar surface area of 30–60 glomeruli was determined for each experimental maneuver. For group analysis of all experiments, the mean planar surface areas of control and experimental glomeruli in each experiment (i.e., the mean of 30—60 glomeruli considered as one experiment) were compared using the Bonferroni inequality for the paired t test.15

Results

Glomerular Planar Surface Area

The glomerular planar surface area of 1,053 glomeruli from control incubations in seven experiments was 15,146 ± 641 μ². All (10⁻⁸ M) significantly decreased planar surface area by 11% to 13,500 ± 604 μ² (7 experiments with 304 glomeruli; p < 0.01 compared to control). Coincubation of glomeruli with AII and DA significantly blunted this effect to values not different from control (14,866 ± 620 μ²; 7 experiments with 282 glomeruli; p < 0.02 compared to AII only). DA alone had no significant effect on planar surface area (14,948 ± 620 μ²; 7 experiments with 285 glomeruli).

Planar Surface Area of Mesangial Cells Grown on Rigid Substrates

Cultured mesangial cells showed the typical stellate appearance with multiple cell extensions using phase contrast microscopy. Under control conditions, cell shape and planar surface area did not appreciably change over a 40-minute period. Addition of AII (10⁻⁷ M) produced a shape change consisting of shortening and narrowing of cell extensions and a decrease in total cell surface area as previously reported.14 At room temperature these changes could be observed as early as 5 minutes after addition of AII and progressed up to at least 20 minutes. A scattergraph of the percent of change observed under the different conditions over a 20-minute period is shown in Figure 1. About 40% of cells showed a decrease in planar size that exceeded 5% of control during AII incubation. DA alone caused
no significant change, but DA almost completely prevented the decrease in cell planar surface induced by All. A quantitative evaluation of the mean percent of change in planar surface area of all cells under the various conditions is illustrated in Figure 2. All caused an overall mean decrease in planar surface area of 7% with some cells exhibiting minimal changes and others diminishing by more than 20% (see Figure 1). Coincubation of All with DA (10^{-6} M) markedly attenuated the All effect (Figure 2). Addition of DA alone caused no appreciable difference compared to controls. A similar analysis was performed on cells pretreated with indomethacin (10 \mu M) in order to exclude prostaglandins as potential mediator for the DA effect on All-induced shape change. In four series of experiments indomethacin alone, or indomethacin plus DA, caused no appreciable differences in cell size over a 40-minute period. All addition resulted in a significant decrease in surface area by -463 \pm 93 \mu m^2/cell (p<0.01), which was attenuated by DA to -93 \pm 41 \mu m^2/cell in spite of inhibition of prostaglandin synthesis.

Mesangial Cells Grown on Flexible Substrata

In order to ascertain whether the shape changes observed in mesangial cells were indeed due to contraction, we performed additional experiments with cells grown on a mobile surface. In this system, contraction of cells results in increased wrinkling of the mobile film on which the cells are grown, while cell relaxation causes a decrease in wrinkles. Under basal conditions, most cells exhibited some wrinkling of the silicone rubber surface, indicating resting tension (Figure 3). In 14 experiments involving 67 cells, there were no significant changes in the length of wrinkles during a 10-minute control period. Addition of All (10^{-7} M) caused an overall mean decrease in the length of wrinkles from 440 \pm 60 \mu m/cell complex to 260 \pm 30 \mu m (6 experiments with 21 cell complexes; p<0.005). With sequential addition of experimental agents at 20-minute intervals (Figure 3), we observed an initial increase in wrinkles from a control of 760 \pm 120 \mu m/cell complex to 840 \pm 120 \mu m (p<0.01) with All followed by a rapid loss of wrinkles with DA to 690 \pm 120 \mu m, a number not different from control but significantly lower than All only (p<0.005; 5 experiments with 17 cell complexes). When DA was added, first cell wrinkles decreased from 300 \pm 50 \mu m/cell complex to 200 \pm 40 \mu m (p<0.05), and subsequent addition of All did not increase wrinkle length (210 \pm 40 \mu m; 3 experiments with 12 cell complexes). Thus, DA decreased resting tension of cells and antagonized the All-induced increase in cell tension.

Discussion

Our results show that DA can antagonize the constrictor effect of All at the glomerular–mesangial level. This is supported by the finding that the All-mediated response of cultured mesangial cells to All (10^{-6} M) did not increase PGE_{2} production (7.1 \pm 0.8 ng). In contrast, All (10^{-5} M) significantly increased PGE_{2} synthesis to 45.6 \pm 7.1 ng. Coincubation of All with DA resulted in comparable stimulation to 58 \pm 12 ng, which was not different from All alone.
Figure 3. Representative photographs of the effects of DA (10^-6 M) and All (10^-7 M) on cells grown on flexible silicone rubber. A. The wrinkles generated by the resting tension of cells under control conditions (con) markedly decrease 10 minutes after addition of DA, revealing the underlying mesangial cells. B. After 20-minutes All has considerably enhanced wrinkling — indicating increased cell tension — while subsequent addition of DA diminishes that effect at 50 minutes. The bright particle represents an artifact floating in the incubation buffer.

Anated decrease in the planar surface area of isolated glomeruli and cultured mesangial cells was antagonized by coincubation with DA. The results of experiments using flexible silicone rubber substrata further support the idea that the mesangial cell shape change mediated by All represent contraction, while DA causes mesangial cell relaxation. We have previously characterized this system and shown that it permits differentiation of changes in cell shape resulting from contraction from those due to cell detachment or cell relaxation. The exact mechanism of action for DA in the glomerular mesangium has not been defined. Glomeruli contain dopaminergic receptors, and DA enhances synthesis of cAMP in cultured mesangial cells. As the relaxation produced by DA in mesangial cells is similar to that observed with cAMP, it is possible that this effect of DA on glomeruli and mesangial cells is secondary to cAMP generation. On the other hand, our results exclude prostaglandins as mediators of DA action. It has also been reported that pre-treatment of rats with indomethacin fails to alter the DA-induced decline in renal vascular resistance. In the present study indomethacin did not attenuate the effect of DA on mesangial cells and DA did not change basal or All-stimulated prostaglandin synthesis. Interestingly, this also shows that All-associated prostaglandin release does not depend on mesangial cell contraction. Edwards has reported direct vasodilatory properties of DA on isolated rabbit afferent and afferent arterioles. Our present results add the glomerulus itself as a target for DA, strengthening the argument for a role of DA in the physiologic regulation of glomerular filtration. Furthermore, these effects of DA may be of particular consequence during the activation of pressor systems. For example, in septic shock, dopamine infusion has been reported to increase glomerular filtration rate without altering renal blood flow.

In summary: DA antagonizes All-mediated contraction of isolated glomeruli and cultured mesangial cells. This action of DA does not depend on prostaglandin. These findings help to explain effects of DA on the regulation of glomerular filtration and may provide a rationale for the use of DA during states of marked renal vasoconstriction.

Acknowledgment
We thank Mrs. D. Nieves for superb secretarial support.

References
6. Felder RA, Blecher M, Eisner GM, Jose PA: Cortical tubular...

Key Words • dopamine • isolated rat glomeruli • cultured mesangial cells • angiotensin II
Dopamine attenuates the contractile response to angiotensin II in isolated rat glomeruli and cultured mesangial cells.
R Barnett, P C Singhal, L A Scharschmidt and D Schlondorff

Circ Res. 1986;59:529-533
doi: 10.1161/01.RES.59.5.529

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1986 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/59/5/529

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/