Exposure to Fatty Acid Increases Human Low Density Lipoprotein Transfer across Cultured Endothelial Monolayers

Bernhard Hennig, D. Michael Shasby, and Arthur A. Spector
From the Departments of Biochemistry and Internal Medicine, University of Iowa and Veterans Administration Hospital, Iowa City, Iowa

SUMMARY. Human low density lipoproteins radiolabeled with 125I transfer across confluent monolayers of cultured porcine pulmonary artery endothelial cells. The amount transferred was dependent on the low density lipoprotein concentration and was not saturable at concentrations up to 300 μg protein per 0.5 ml medium. Gel filtration showed that more than 90% of the 125I which crossed the endothelial monolayer remained associated with low density lipoproteins, indicating that appreciable amounts of lipoprotein were not degraded during the transfer process. When the endothelial monolayer was exposed for 24 hours to culture media supplemented with 100–300 μM fatty acid complexed with 100 μM albumin, the amount of low density lipoprotein subsequently transferred increased by 65% to 150%. The extent of the increase was dependent on the type of fatty acid added and its concentration. At 200 μM, albumin-bound oleic and linoleic acids increased low density lipoprotein transfer, whereas palmitic, linolenic, arachidonic, and eicosapentaenoic acids did not. These results are consistent with the hypothesis that exposure of the endothelium to elevated concentrations of fatty acid may allow excessive amounts of cholesterol-rich lipoproteins to enter the arterial intima. (Circ Res 57: 776–780, 1985)

ENDOTHELIAL injury may be involved in the pathogenesis of atherosclerosis (Ross and Harker, 1976; Renkin and Curry, 1982). Such injury might reduce the ability of the endothelium to limit the transfer of macromolecules, thereby allowing increased entry of cholesterol-rich lipoproteins into the arterial wall (Ross and Harker, 1976). Liberation of high amounts of fatty acid near the arterial surface during hydrolysis of lipoprotein triglycerides has been proposed as a mechanism for endothelial injury (Zilversmit, 1973). In support of this possibility, recent studies demonstrated that exposure of cultured endothelial monolayers to elevated concentrations of free fatty acid leads to phospholipid fatty acyl modifications, triglyceride accumulation, and an alteration in cell morphology (Denning et al., 1983). Subsequent studies utilizing porcine pulmonary artery endothelial monolayers grown on micropore filters in culture demonstrated that exposure of the cells to elevated concentrations of fatty acid increased the transfer of albumin across the endothelium (Hennig et al., 1984). As an extension of this work, we have examined the transfer of low density lipoproteins (LDL), which are atherogenic, across these cultured endothelial monolayers.

Methods

Porcine pulmonary artery endothelial cells were cultured in M-199 containing 10% fetal bovine serum (Hennig et al., 1984). Cultures were determined to be endothelial by uniform morphology and by quantitative determination of angiotensin-converting enzyme activity. Cells from passages 5–12 were plated on gelatin-impregnated polycarbonate filters (Nucleopore Corp., 13 mm in diameter and 0.8-μm pore size) glued to polystyrene chemotaxis chambers (ADAPS, Inc.). After 48 hours, the chemotaxis chambers with attached filters and endothelial monolayers were washed free of serum by gentle immersion in M-199 and incubated in control or fatty acid-supplemented media. The media were composed of M-199 enriched with vitamins, amino acids, 15 mM HEPES, 5% fetal bovine serum, 100 μM solution of crystalline fatty acid-free bovine albumin (Sigma Chemical Co.), and, in the case of most experimental cultures, 100–300 μM oleic acid (Nu Check Prep, 98% pure by gas-liquid chromatography). Other fatty acids were tested at a concentration of 200 μM. Fatty acids were dissolved in ethanol. After the addition of one or two drops of 1 N NaOH, the material was dried under high purity N2, redissolved in a small amount of warm distilled water, and added to the medium containing albumin. The pH was adjusted immediately to 7.4. After a 24-hour incubation period, the chemotaxis chambers with...
attached endothelial monolayers were washed 3 times in M-199. The luminal compartment then was filled with M-199 containing 125I-low density lipoprotein (LDL), 125 or 250 μg LDL protein per 0.5 ml medium added to 0.57 cm² endothelium. After a 1-hour incubation, the luminal and abluminal media were sampled, and 125I-LDL radioactivity was determined in a Beckman 300 γ-counter.

LDL was prepared from human blood obtained from normal volunteers who were fasted for 12 hours. The LDL was isolated and washed by ultracentrifugation as previously described (Havel et al., 1955). The isolated LDL was purified further by gel filtration column chromatography (Mathur and Spector, 1976) using Bio-Gel A-5m with an operational range of 10,000–5,000,000 daltons (Bio-Rad Laboratories). The purity of LDL was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Hennig and Dupont, 1983). After the purified LDL was concentrated to approximately 5 mg protein/ml, it was iodinated with 125I by the modified iodine monochloride method (McFarlane, 1958; Bilheimer et al., 1972). This iodination method results in the incorporation of less than 4% of the radioactivity in LDL lipids, and not more than one 125I was incorporated per LDL molecule. There was no change in chromatographic elution pattern of LDL before or after iodination.

Transendothelial electrical resistance was measured by determining the current that passed across the monolayer when a 0.3-mV potential difference was produced across the monolayer by an automatic current voltage clamp (University of Iowa Bioengineering Dept.). The initial resistance was measured on the first day in a medium containing only M-199. Subsequently, the monolayers were placed in culture with M-199 containing 5% fetal bovine serum supplemented with either 100 μM fatty acid-free albumin or this concentration of albumin and 200 μM oleic acid. After 24 hours of incubation, the transendothelial electrical resistance was determined again in a medium containing only M-199.

Results

125I-LDL transferred across the confluent monolayer cultures of porcine pulmonary artery endothelial cells. As shown in Figure 1, the amount of LDL that passed across the endothelial monolayer during a 1-hour incubation was dependent on the concentration of LDL initially present in the upper chamber. There was no indication of saturation at LDL concentrations of up to 300 μg protein/ml. Exposure to LDL for 1 hour did not enhance the transfer of bovine albumin across the endothelial cell monolayer (8.7 ± 0.6 nmol albumin, control; 7.9 ± 0.5, 125 μg LDL protein; 7.3 ± 0.4, 250 μg LDL protein), indicating that LDL itself does not increase the transfer of macromolecules across these cultures.

Figure 2 shows gel filtration chromatograms of the 125I-LDL. Before traversing the endothelial monolayer (Fig 2, top), about 98% of the radioactivity eluted with the LDL peak, and only 2% was present in the low molecular weight region where phenol red eluted. This radioactivity profile of 125I-LDL was unaltered when it passed through filters without cells; more than 97% was recovered as 125I-LDL. The bottom of Figure 2, which shows a chromatogram of 125I-LDL which passed through an endothelial monolayer, demonstrates that 90 ± 2% (n = 4) of the radioactivity still eluted with the LDL peak. Treatment of the endothelium with fatty acid did not appreciably affect the distribution of the LDL radioactivity that passed through the monolayer. Although these findings indicate that some degradation was associated with LDL passage across the monolayer, most of the material that was transferred remained as LDL.

Figure 3 shows that the amount of 125I-LDL transferred across the endothelial cell monolayer was dependent on the oleic acid concentration to which the cultures were initially exposed. In these experiments, the cultures were exposed to medium containing oleic acid bound to albumin for 24 hours, and this medium then was removed. Subsequently, 125I-LDL transfer was measured during 1 hour of incubation in M-199 containing 125 μg LDL-protein per 0.5 ml medium. Additional experiments indicated that, although more LDL transfer occurred when the LDL concentration was raised from 125 μg to 250 μg LDL protein (2.4 ± 0.3 μg LDL protein to 4.4 ± 0.3 μg), the enhancement produced by prior exposure to 300 μM oleic acid persisted when the LDL concentration was 250 μg protein/ml (8.7 ± 0.9 μg LDL protein).

Other albumin-bound fatty acids were tested for their effect on LDL transfer across the endothelium. Figure 4 shows the amount of LDL transfer after endothelial cell monolayers were exposed to 200 μM...
of fatty acids that differed in carbon number and degree of unsaturation. Linoleic acid was as effective as oleic acid in increasing LDL transfer across the endothelial monolayer during a subsequent 1-hour incubation. By contrast, exposure to palmitic, linolenic, arachidonic, or eicosapentaenoic acids did not increase LDL transfer. Similar differences between linoleic and linolenic acids were observed for transendothelial albumin transfer (data not shown). The amount of albumin transferred was 2.11 ± 0.17 nmol/hr (n = 6 for this and the other groups) when the endothelial cultures were incubated for an initial 24-hour period without supplemental fatty acids. Exposure for 24 hours to a medium containing 200 μM linoleic acid increased albumin transfer during a subsequent 1-hour incubation to 3.37 ± 0.38 nmol/hr. However, there was no increase in albumin transfer (2.09 ± 0.38 nmol/hr) when the cultures were exposed initially to 200 μM linolenic acid.

To determine whether exposure to fatty acids affected the paracellular pathway across the endothelium, we measured the transendothelial electrical resistance of monolayers exposed for 24 hours to 200 μM oleic acid bound to 100 μM albumin. The initial electrical resistance of the control monolayers (4.91 ± 0.26 ohm·cm², n = 11) and those subsequently exposed to oleic acid (4.90 ± 0.29 ohm·cm², n = 10) was the same. After exposure for 24 hours to 100 μM albumin, the electrical resistance of the control cultures did not change significantly (4.54 ± 0.16 ohm·cm²), whereas those exposed to oleic acid bound to albumin exhibited a 30% decrease in electrical resistance (3.40 ± 0.32 ohm·cm²).

Discussion

These results support the hypothesis that exposure to elevated concentrations of fatty acid can increase the passage of lipoproteins through the endothelial monolayer and thereby possibly contribu-
tions, and hence, high molar ratios, occur during exposure to fatty acids (Hennig et al., 1984). Furthermore, there is no change in endothelial cell viability due to fatty acid exposure (Hennig et al., 1984). Assuming a normal albumin concentration value in the basal state being about 300–500 µM, free fatty acid concentrations can range from 180–3650 µM, as has been postulated to be involved in the atherosclerotic process. Elevations of free fatty acids, even when bound to plasma albumin, increase LDL transfer across cultured endothelial monolayers. Since this effect was not produced by exposure to highly polyunsaturated fatty acids such as linolenic, arachidonic, and eicosapentaenoic acids, it is unlikely that the greater LDL transfer is caused by peroxidative injury. This is consistent with our previous findings that the incorporation of labeled leucine into total cell protein is not affected by incubation of the cultures with 300 µM oleic acid, suggesting that there is no change in endothelial cell viability due to fatty acid exposure (Hennig et al., 1984). Furthermore, the fatty acid effect on albumin transfer was found to be totally reversible at 100 µM oleic acid and partially reversible at 300 µM (Hennig et al., 1984). Even though the free fatty acid concentrations producing the increased LDL transfer are high from the physiological standpoint, they are still reasonable, relative to values that can occur in humans. Plasma free fatty acid concentrations can range from 180–1650 µM (Fredrickson and Gordon, 1958), the usual value in the basal state being about 300–500 µM (Spector, 1975). Assuming a normal albumin concentration of 600 µM, the molar ratio of free fatty acid to albumin in human plasma can vary between 0.3 and 2.8. High plasma free fatty acid concentrations, and hence, high molar ratios, occur during severe stress (Knitza et al., 1978; Batt and Topping, 1979), uncontrolled diabetes (Galton et al., 1975; Hall et al., 1979), starvation (Fredrickson and Gordon, 1958; Sawin and Willand, 1970), and after prolonged exercise (Havel et al., 1963). In addition, it is possible that the local concentration of fatty acid generated at the endothelial surface during hydrolysis of lipoprotein triglycerides may exceed these levels.

Porcine pulmonary artery endothelial cultures were used in this study. Although atherosclerosis usually is localized to systemic arteries, pulmonary atherosclerosis occurs in disease states where the pulmonary circulation is exposed to systemic blood pressures (Moore et al., 1982). Therefore, even though these cultures are not derived from a more prevalent site of atherogenesis, they probably can provide some basic insight into mechanisms involved in the atherosclerotic process.

LDL transfer across the endothelial monolayer in this system is concentration dependent but not saturable. Since the LDL concentrations tested are far above those reported to saturate LDL receptor binding in other systems (Goldstein and Brown, 1974; van Hinsburgh et al., 1983; Baker et al., 1984), it is likely that most or all of the LDL transfer is not receptor-mediated. There is evidence that intact LDL can cross normal endothelium in vivo and enter the subendothelial region of an artery (Walton, 1975; Bratzler et al., 1977; Kurozumi et al., 1983). In agreement with these findings, some LDL can be recovered from the arterial wall when labeled LDL is injected into humans (Scott and Hawley, 1970). Recently, an increased and selective accumulation of LDL has been observed in a damaged arterial wall (Roberts et al., 1983). Our data suggest that exposure of endothelium to a high concentration of fatty acid might also facilitate the entry of LDL into the arterial wall. The conductance measurements indicate an alteration of the paracellular transfer pathway. Although we have not actually demonstrated that LDL penetrated the paracellular pathway, this is a potential mechanism for the enhanced transendothelial transfer of LDL produced by fatty acid exposure. Such a pathological mechanism would provide a potential link between fatty acid elevations and atherogenesis, as has been postulated previously (Zilversmit, 1973, 1976; Ross and Harker, 1976).
References


Hall SEH, Saunders J, Sonksen PH (1979) Glucose and free fatty acid turnover in normal subjects and in diabetic patients before and after insulin treatment. Diabetologia 16: 297–306


INDEX TERMS: Endothelium • Fatty acid • Lipids • Low density lipoproteins • Atherosclerosis

Circulation Research/Vol. 57, No. 5, November 1985
Exposure to fatty acid increases human low density lipoprotein transfer across cultured endothelial monolayers.
B Hennig, D M Shasby and A A Spector

Circ Res. 1985;57:776-780
doi: 10.1161/01.RES.57.5.776

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1985 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4371

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/57/5/776

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/