Neuronal Regulation of the Development of the α-Adrenergic Chronotropic Response in the Rat Heart

Elizabeth D. Drugge, Michael R. Rosen, and Richard B. Robinson
From the Division of Developmental Pharmacology, Departments of Pharmacology and Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York

SUMMARY. During development, there are changes in the response of automatic cardiac fibers to α-adrenergic agonists. In neonatal rat ventricle, in vitro phenylephrine (1 × 10⁻⁴ M) induces an increase in automatic rate from 115 ± 12 (mean ± SEM) to 168 ± 10 beats/min, P < 0.05. In contrast, in adult rat ventricle, the rate decreases from 36 ± 8 to 12 ± 12 beats/min, P < 0.05. At both ages, the response is attenuated by the α₁-antagonist, prazosin (1 × 10⁻⁴ M). We used cultures of neonatal rat myocytes to determine whether maturation of innervation contributes to the ontogeny of this response. All non-innervated cultures showed a positive chronotropic response to α-stimulation; phenylephrine (1 × 10⁻⁴ M) increased the rate from 40 ± 2 to 52 ± 2 beats/min, P < 0.05. In contrast, 60% of the myocytes innervated with sympathetic neurons showed a decrease in rate in response to phenylephrine, from 78 ± 6 to 67 ± 6 beats/min, P < 0.05. The negative chronotropic effect of phenylephrine did not result from the release of acetylcholine or adenosine, or the inhibition of presynaptic norepinephrine release by phenylephrine. Furthermore, exposure to neuronal norepinephrine is not responsible for the alteration in muscle cell responsiveness. In conclusion, we have demonstrated the modulation of the myocardial response to α-adrenergic stimulation by the occurrence of innervation in tissue culture. This provides an explanation for the previously identified ontogenetic change in α-adrenergic effects on intact cardiac fibers from excitation to inhibition. (Circ Res 57: 415-423, 1985)

THE effect of α-adrenergic stimulation on cardiac automaticity changes during myocardial development. To illustrate, in isolated tissues from the mature canine (Rosen et al., 1977; Posner et al., 1976) and human (Mary-Rabine et al., 1980) heart, α-adrenergic stimulation usually induces a decrease in automatic rate. This α-mediated negative chronotropic response is seen in about 75% of adult canine Purkinje fibers, but in only 50% of neonatal canine Purkinje fibers (Rosen et al., 1977). Furthermore, many early neonatal fibers exhibit an increase in automatic rate in response to α-agonists, which is not seen in the adult (Reder et al., 1984). This increase is antagonized by phentolamine but not propranolol. A positive chronotropic response to α-adrenergic agonists, analogous to that which is observed in intact neonatal cardiac tissue, also has been reported in cultured, non-innervated myocytes from neonatal rats (Karsten et al., 1977; Kupfer et al., 1982; Hermsmeyer et al., 1982).

We hypothesized that sympathetic innervation might have a role in changing the responsiveness to α-adrenergic stimulation from positive to negative chronotropy. This was based in part on the similar time course for developmental changes in cardiac innervation and in autonomic responsiveness (Pappano, 1977). It also was based in part on the understanding that the early neonatal heart, which tends to show a positive chronotropic response to α-stimulation, is poorly innervated by cardiac sympathetic nerves (Pappano, 1977; Standen, 1978; Lipp and Rudolph, 1982), and that the rapid postnatal development of innervation might modulate the change in the chronotropic response (Reder et al., 1984). In this study, we tested our hypothesis by observing the effects of α-adrenergic agonists on automaticity of neonatal rat myocytes in culture alone and in coculture with sympathetic ganglion cells. To test whether this model was analogous to the in situ heart, we also performed studies on newborn and adult rat ventricle. Our data will demonstrate that the addition of sympathetic neurons to cultured neonatal myocardial cells converts the response to α-adrenergic stimulation by the occurrence of innervation in tissue culture. This provides an explanation for the previously identified ontogenetic change in α-adrenergic effects on intact cardiac fibers from excitation to inhibition. (Circ Res 57: 415-423, 1985)

Methods

Studies on Intact Rat Ventricle

Neonatal Wistar rats were decapitated and their hearts were removed, the atria trimmed away, and the ventricles bisected and placed in a tissue bath perfused with Tyrode's solution containing (mmol/liter): NaCl, 131; NaHCO₃, 18; CaCl₂, 2.7; MgCl₂, 0.5; NaH₂PO₄, 1.8; KCl, 4.0; dextrose, 5.5. The tissue bath was connected to ground via a 3 M KCl-Ag-AgCl junction. The Tyrode's solution was gassed with 95% O₂/5% CO₂ and warmed to 37°C. The flow rate of the perfusate was 10–12 ml/min, and the bath volume was 3 ml. The rate of beating of the ventricles was
monitored with Teflon-coated bipolar silver wire electrodes connected to an amplifier. The signal was recorded on a strip chart recorder. The tissue was allowed to beat spontaneously in the bath for 20 minutes. Those preparations that attained a regular and stable rhythm within this time were monitored for stability for an additional 20 minutes, and then the experiment was begun. Each preparation was exposed to increasing concentrations of the α-agonist, phenylephrine (1 × 10^{-10} \text{ M} \text{ to } 1 × 10^{-4} \text{ M}). Steady state effects occurred in 5–8 minutes; the period of perfusion used with each concentration was 10 minutes. In experiments involving α1-blockade, prazosin (1 × 10^{-6} \text{ M}) was added to the bath after the control period. Perfusion with prazosin, alone, was maintained for 20 minutes before phenylephrine exposure and then was continued, with phenylephrine, throughout the experiment. This concentration of prazosin did not alter the spontaneous rate of beating. After exposure to the highest concentration of phenylephrine, a wash in Tyrode’s was performed, and the automatic rate was again determined.

Preparation of Muscle Cell Cultures

Under sterile conditions, hearts were removed from 2-day-old Wistar rats and placed in sterile salt solution. The atria were then trimmed away. The trypsin dispersion protocol has been described previously (Lau et al., 1980). Subsequently, the cells were pooled and centrifuged at 200 g for 5 minutes and were resuspended in Dulbecco’s minimal essential medium (MEM) with 10% horse serum, 5 × 10^{-4} \text{ M} hypoxanthine, and 12 mm NaHCO₃. The cells were preplated for 40 minutes at 37°C to decrease fibroblast contamination (Blondel et al., 1971). The muscle cells then were resuspended in MEM containing 20 ng/ml nerve growth factor (NGF) at a density of 500,000 cells/ml (26,000 cells/cm²) and plated in 60-mm petri dishes containing five 9 × 22 mm coverslips, each precoated with fibronectin (25 ng/mm²), for 45 minutes.

Preparation of Nerves for Nerve-Muscle Cultures

After removal of the hearts from 2-day-old Wistar rats, the rest of the contents of the chest and abdominal cavities was removed. Then, the paravertebral sympathetic chains were removed, placed in sterile salt solution, and dissected free from associated tissue. The chains were incubated at 37°C in 0.125% trypsin for 30 minutes. After this period, MEM with 10% horse serum was added to stop the trypsinization. The cells were triturated approximately 40 times and the supernatant was collected. Additional trypsin was added to the remaining tissue, which was then triturated another 20 times and finally diluted with MEM and horse serum. The supernatants from the two triturations were pooled and centrifuged at 200 g for 5 minutes.

The pellet was resuspended in MEM with 10% horse serum and 20 ng/ml NGF and plated at a density of approximately 600 cells/mm² onto glass coverslips previously coated with fibronectin, as described above. We prepared nerve-muscle cultures by first plating the nerve cells and then adding freshly dissociated muscle cells 2 hours later; one nerve cell was plated for every four muscle cells plated. Although the nerve:muscle ratio at the time of plating was known, the nerve:muscle ratio after 4–5 days in culture could not be determined. For all cultures, the coverslips were transferred on day 1 to separate dishes 30 mm in diameter, and fresh media were added. The media were removed, and fresh media added again, on day 4.

Measurement of Pharmacological Responsiveness of Cultures

Each coverslip was studied in its own petri dish. Although rapid desensitization of the β-adrenergic receptor does occur, which precludes the use of this method for studying β-adrenergic responses (Hermsmeyer and Robinson, 1977), the α-adrenergic response does not undergo such desensitization (Fisher et al., 1984). Furthermore, we found that the sensitivity to the α-agonist phenylephrine with the current method is similar to that reported with the superfusion technique (Kupfer et al., 1982).

Twenty-four hours before the experiments, the media were collected and replaced with fresh media. The next day, each coverslip, in its own petri dish, was placed on the stage of a Leitz Diavert microscope equipped with phase contrast optics. The media were maintained at 37°C with a fan heater controlled by a thermistor in the dish. A steady stream of humid 95%O₂/5%CO₂ flowed over the surface of the media. The automatic rate of a region of spontaneously contracting cells was measured with a photocell coupled to a television monitor of the microscope field (Sinclair et al., 1971). Drug administration involved injection of 0.02 ml of a 100X concentrated solution through a hole in the dish cover and then exchanging 0.15 ml of media 10 times. The number of media exchanges required to distribute a phenol red solution evenly was used to determine the number of media exchanges required for drug distribution. Cumulative concentration-response experiments were performed by exposing the cultures to phenylephrine (1 × 10^{-6} \text{ M} \text{ to } 1 × 10^{-4} \text{ M}) for 2 minutes at each concentration. The spontaneous rate at each concentration was determined during the 2nd minute following drug exposure to avoid transient rate changes due to the pipetting action of drug administration. Experiments in which antagonists were used required that we determine control rate, administer the antagonist, again determine the rate, and then administer phenylephrine at the concentrations mentioned above. Control experiments involved repeated vehicle administration following the same procedure. No change in spontaneous rate was seen in the vehicle controls.

Measurement of Catecholamine Levels

Catecholamine content was measured using the Upjohn Cat-a-Kit (Upjohn Laboratories). Two milliliters of media were collected on days 2, 4, and 5 after culturing, and were frozen in a dry ice-alcohol bath. The media were stored at −60°C until assayed within 3 weeks of collection. Media changes for cultures used for the catecholamine assays were made on days 1 and 4.
Materials

Sources: L-Phenylephrine hydrochloride, atropine sulfate, trypsin III, adenosine deaminase II, and fibronectin (Sigma Chemicals); prazosin (Pfizer); d,l-propranolol (Ayerst); MEM with Hanks' salt solution (GIBCO); horse serum (KC Biological). NGF was provided by Dr. D.I. Ishii.

Statistics

All groups studied were tested for normal distributions of spontaneous rates with the D'Agostino test (Zar, 1974). All concentration-response curves were analyzed by nested analysis of variance (Snedecor and Cochran, 1967), and significant differences were determined at the $P < 0.05$ level. Differences in mean values at the $P < 0.05$ level were determined using the Bonferroni critical value for the modified t-test. The paired t-test (Zar, 1974) was used to determine differences between control rate and the effect of atropine or propranolol on the cultures. All values are expressed as mean ± SEM.

Results

Effects of Phenylephrine and Prazosin on Intact Tissue Automaticity

Adult Rat

We first asked whether the negative chronotropic effect of α-adrenergic stimulation previously observed in canine Purkinje fibers (Rosen et al., 1977; Posner et al., 1976) also occurred in adult rat ventricle. Phenylephrine induced a concentration-dependent decrease in rate in adult muscle, as shown in Figure 1A. The maximum negative chronotropic effect occurred at a concentration of 1×10^{-8} M, at which the spontaneous rate was $13 ± 4$ beats/min, compared to the control rate of $36 ± 8$ beats/min. In the presence of prazosin (1×10^{-6} M), no concentration of phenylephrine significantly decreased the rate from the control value ($39 ± 7$ beats/min). To confirm that the increase in rate induced by phenylephrine (1×10^{-6} M) in the presence of prazosin was β-mediated, we conducted an additional protocol in the six hearts treated with prazosin. After completing the concentration-response curve, in the continued presence of prazosin, we first washed out the phenylephrine (rate returned to $39 ± 8$ beats/min) and then added phenylephrine (1×10^{-6} M) and propranolol (1×10^{-7} M), simultaneously. The rate no longer increased ($40 ± 11$ beats/min). Finally, the phenylephrine and propranolol again were washed out ($39 ± 11$ beats/min) and phenylephrine (1×10^{-6}) alone was added. This increased the rate to $46 ± 13$ beats/min, $P < 0.05$, demonstrating that the tissue was still capable of responding to phenylephrine after the extended drug regimen.

Neonatal Rat

In contrast to the adult rat ventricle, the neonatal ventricle exhibited a positive chronotropic response to all concentrations of phenylephrine. At a concentration of 1×10^{-8} M, the rate increased to $168 ± 11$ from a control rate of $115 ± 12$ beats/min (Fig. 1B).

In the presence of prazosin (10^{-6} M), this concentration of phenylephrine failed to significantly increase the rate from the control value of $98 ± 17$ beats/min.

Development of Innervation in Vitro

To demonstrate that functional adrenergic neurons were present in the nerve-muscle cultures, we assayed the media from both nerve-muscle cultures and plain muscle cultures for dopamine, epinephrine, and norepinephrine. Table 1 summarizes the catecholamine levels in the muscle cultures and the nerve-muscle cultures as a function of day in culture. Although all three catecholamines were elevated in the nerve-muscle cultures, compared with the mus-
TABLE 1
Catecholamine Levels in Nerve-Muscle Cultures and Muscle Cultures as a Function of Culture Age

<table>
<thead>
<tr>
<th>Catecholamine level (pg/ml)</th>
<th>Day 2</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Muscle</td>
<td>Nerve-muscle</td>
<td>Muscle</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>16 ± 5</td>
<td>57 ± 4</td>
<td>25 ± 8</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>31 ± 9</td>
<td>9 ± 4</td>
<td>27 ± 9</td>
</tr>
<tr>
<td>Dopamine</td>
<td>38 ± 15</td>
<td>12 ± 10</td>
<td>19 ± 14†</td>
</tr>
</tbody>
</table>

n = 5 in each case (mean ± SEM).
* P < 0.05 compared to corresponding muscle cultures.
† P < 0.05 compared to catecholamine level on day 2.

In nerve-muscle cultures, the most dramatic difference was observed in the norepinephrine levels. Nerve-muscle cultures exhibited an increase from 57 ± 4 pg/ml on day 2 to 210 ± 40 pg/ml on day 5. In contrast to the nerve-muscle cultures, norepinephrine levels did not exceed 25 ± 8 pg/ml during the first 5 days in pure muscle cultures. Epinephrine and dopamine also exhibited a time-dependent increase in the nerve-muscle cultures (Table 1). The former remained low in the control muscle cultures, whereas the latter decreased significantly.

We next exposed day 4 and 5 cultures to tyramine (1 × 10^{-6} M) to determine whether sufficient norepinephrine could be released to affect the spontaneous rate of the muscle cells in the nerve-muscle cultures. Figure 2 depicts a strip chart recording of the effect of tyramine on spontaneous rate in muscle and nerve-muscle cultures. The spontaneous rate of the muscle culture was not altered by tyramine. In contrast, the rate of the nerve-muscle culture increased from 69–92 beats/min. Although the magnitude of the increase in rate varied from culture to culture, 53% of the 45 nerve-muscle cultures exposed to tyramine demonstrated an increase in rate, whereas there was no increase in rate in any of the 40 non-innervated muscle cultures tested.

Homogeneity of Nerve-Muscle Cultures

Figure 3 is a photomicrograph of a day 4 culture of muscle cells and dispersed sympathetic nerve cells. At this age, there are isolated regions with few or no neurons present, and other regions where multiple neuronal endings terminate. As demonstrated in this micrograph, we frequently observed bifurcation of axons just proximal to their termination on muscle cells. A similar pattern of axon termination has been reported in cultures of neonatal rat ventricle cells grown in the presence of explanted sympathetic ganglia (Marvin et al., 1984). For the pharmacological studies of nerve-muscle cultures described below, we selected muscle cells that appeared heavily innervated, based on the presence of bifurcating axonal terminations as in Figure 3.

Effect of Phenylephrine on Spontaneous Rate of Muscle and Nerve-Muscle Cultures

Having confirmed the presence of releasable catecholamines in day 4 and 5 nerve-muscle cultures, we next compared the response of nerve-muscle cultures and pure muscle cultures of this age to phenylephrine. Figure 4 demonstrates the effect of two concentrations: 1 × 10^{-8} M, which had induced
the maximum negative chronotropic response in adult rat ventricle, and 1×10^{-6} M, which had induced a β-mediated positive chronotropic response in the adult rat. In the muscle culture, rate increased from 60–78 beats/min in response to 1×10^{-8} M phenylephrine; a concentration of 1×10^{-6} M further increased the rate to 96 beats/min. In contrast, the nerve-muscle culture responded to 1×10^{-8} M phenylephrine with a decrease in rate from 66–58 beats/min. Phenylephrine (1×10^{-6} M) increased the rate to above the control level, presumably due to β-receptor activation.

To confirm that the positive chronotropic response of non-innervated muscle cultures was α-mediated, we performed phenylephrine concentration-response curves in the presence and absence of prazosin. Phenylephrine induced a concentration-dependent increase in spontaneous rate in the pure muscle cultures, whereas pre-exposure to prazosin (1×10^{-6} M) depressed the positive chronotropic effect (Fig. 5).

Additional studies of the cultures suggested that the nerve-muscle cultures possess both parasympathetic and sympathetic tone. The muscarinic blocker, atropine (1×10^{-7} M), increased the spontaneous rate from 54 ± 6 to 60 ± 6 beats/min ($n = 16$, $P < 0.05$); propranolol (1×10^{-7} M) decreased spontaneous rate from 60 ± 6 to 56 ± 8 beats/min ($n = 16$, $P < 0.05$). In contrast, pure muscle cultures showed no response to either antagonist. Therefore, to eliminate the possibility that phenylephrine was acting pre-synaptically in the nerve-muscle cultures to cause the release of acetylcholine (resulting in muscarinic slowing of the rate), the response of nerve-muscle cultures to phenylephrine was measured in the presence of atropine (1×10^{-7} M). Propranolol (1×10^{-7} M) also was added to eliminate the possibility that the negative chronotropic re-

FIGURE 3. Phase contrast photomicrograph of a 4-day-old nerve-muscle culture. Bifurcation of a neuron can be seen in the middle left side (arrow).

FIGURE 4. Strip chart recordings of chronotropic response of muscle and nerve-muscle cultures to the α-agonist, phenylephrine. Phenylephrine (1×10^{-8} M) increased the rate in the muscle culture, and a concentration of 1×10^{-6} M further increased the rate (upper panel). In contrast, the nerve-muscle culture exhibited a decrease in rate in response to 1×10^{-6} M phenylephrine (lower panel).
An increase in rate, both in the absence and presence of atropine (ATR) (1 X 10^-7 M). All of the muscle cultures responded to phenylephrine (1 X 10^-8 M) with a decrease in rate. A third neurotransmitter, adenosine or a phosphorylated derivative, which could have been responsible for the observed decrease in rate, was also eliminated as a possible mediator. In the presence of adenosine deaminase (10 U/ml), atropine, and propranolol, 75% of the nerve-muscle cultures showed a decrease in rate (n = 20; data not shown).

Besides highlighting the dramatic differences between the muscle and nerve-muscle cultures, Figure 6 suggested that responses of the innervated cultures consisted of two populations. Therefore, we divided the nerve-muscle cultures into two groups, based on whether or not they responded to phenylephrine (1 X 10^-8 M). However, after the nerve-muscle cultures had been separated into two groups on the basis of whether they exhibited a negative chronotropic response to phenylephrine (1 X 10^-8 M), each subpopulation was normally distributed.

Figure 7 shows complete concentration-response curves for the nerve-muscle chronotropic response to phenylephrine in the presence of atropine (1 X 10^-7 M) and propranolol (1 X 10^-7 M). As described in the preceding paragraph, the nerve-muscle cultures were divided into two groups based on whether or not they responded to phenylephrine (1 X 10^-8 M). All of the nerve-muscle cultures exposed to phenylephrine (1 X 10^-8 M) showed a decrease in rate (n = 20; data not shown) in the presence of prazosin, atropine, and propranolol showed no change in rate (n = 6). * indicates a significant difference (P < 0.05) in rate in response to phenylephrine, compared to control.
The similar time course for the ontogeny of functional innervation and the changes in cardiac autonomic responsiveness of the developing organism have suggested that the onset of innervation might mediate these changes (Pappano, 1977). Previous attempts to investigate the role of innervation in the development of cardiac autonomic responsiveness have relied on chemical destruction of neurons (Yamada et al., 1980) or premature formation of neuronal synapses (Lau and Slotkin, 1979) in the intact animal. Using cell culture, we were able to study the contribution of nerves in isolation from confounding factors in the intact animal.

The developmental immaturity and lack of functional cardiac innervation in the newborn rat has been well documented (Pappano, 1977; Standen, 1978; Lipp and Rudolph, 1982). We confirmed that neonatal rat myocardial cultures exhibit a positive chronotropic response to α-stimulation with phenylephrine, and that this is antagonized by the α₁-specific antagonist prazosin. Our studies confirm the presence of functional sympathetic neurons in the nerve-muscle cultures. Evidence for this is provided by the assays of catecholamine level, which increased considerably by day 4 in culture, and by the ability of tyramine (1 × 10⁻⁸ M) to elicit a change in spontaneous rate in day 4 nerve-muscle cultures. In contrast, pure muscle cultures fail to respond to tyramine or to show increases in catecholamine levels; dopamine levels decreased significantly by days 4 and 5. Further evidence of functional contact between nerve and muscle cells in these cultures has been demonstrated previously, both electrophysiologically and ultrastructurally (Robinson, 1985).

The addition of sympathetic neurons to neonatal myocytes in co-culture resulted in the development of a negative chronotropic response to phenylephrine, similar to that observed in intact ventricle from adult rat. Furthermore, we did not observe any example of a negative chronotropic response to phenylephrine in the more than 60 non-innervated muscle cultures studied.

The response to phenylephrine was studied in the presence of various antagonists to determine whether the negative chronotropy might be presynaptically mediated. It has been reported that adrenergic neurons may become partially cholinergic when cultured with nonneuronal cells, i.e., myocardial cells and fibroblasts (Furshpan et al.,

Table 2

<table>
<thead>
<tr>
<th>Nerve-muscle culture no.</th>
<th>Norepinephrine level (pg/ml)</th>
<th>Change in rate in response to phenylephrine, 1 × 10⁻⁸ M (beats/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Method 1 (control rate = 69.6 ± 7.2)</td>
<td>Method 2 (control rate = 67.4 ± 4.4)</td>
</tr>
<tr>
<td></td>
<td>0 0 0 6 45 76 78 120 127</td>
<td>0 0 0 0 0 3 4 15 17</td>
</tr>
<tr>
<td></td>
<td>+8 -5 +9 +1 -11 -9 +1 -8 +7</td>
<td>-1 +10 -2 -7 -8 +8 -8 -30 +17</td>
</tr>
</tbody>
</table>

See Results for a description of the two experimental methods. Correlation coefficient for Method 1 = 0.00659; correlation coefficient for Method 2 = -0.00323.

* In media from 18 nerve-muscle cultures.
Therefore, atropine was used to block post-synaptic muscarinic receptors in the cell that acetylecholine was released presynaptically. Atropine (1 x 10^{-5} M) caused a slight increase in rate in the nerve-muscle cultures, suggesting the presence of some cholinergic neurons. Propranolol also altered the rate in the nerve-muscle cultures, suggesting the occurrence of endogenous catecholamine release. The rate of beating in innervated muscle cultures was not affected by atropine or propranolol. Nonetheless, we performed the phenylephrine concentration-response curves in the presence of atropine and propranolol for both the muscle and nerve-muscle cultures. A third possible transmitter that recently has been identified in similar cultures is adenosine or a phosphorylated derivative (Pottet et al., 1983). However, sympathetic neurons cultured with myocytes remain adrenergic for the first 5 days (Mains and Patterson, 1973; Johnson et al., 1976, 1980). Landis (1980) reported that, during the first 4 days in culture, about 90% of the synaptic vesicles in each terminal have dense cores (characteristic of adrenergic neurons). The purinergic neurotransmitter was seen in cultures only after 2 weeks. Our studies were done on cells that had been in culture for 4-5 days. Therefore, it seemed unlikely that a purinergic neurotransmitter was responsible for the negative chronotropic response. Nevertheless, we thought it advisable to test the possibility of a purinergic mechanism, and did this with adenosine deaminase. We demonstrated that the negative chronotropic response of nerve-muscle cultures to phenylephrine persisted in the presence of adenosine deaminase. Furthermore, both the negative and positive chronotropic responses of nerve-muscle cultures to phenylephrine were prevented by the "a"-antagonist, propranolol, suggesting that any pre-synaptic action of phenylephrine would have to be via "a"-receptors, rather than the more likely "a"-subtype (Berthelson and Pettit, 1977).

The reason that some of the nerve-muscle cultures persisted in showing an "a"-adrenergic increase in rate, rather than a decrease in rate, is unclear. It may depend on variations in nerve density, and, therefore, concentration of any conditioning agents in the bulk medium (see below). Alternatively, this increase may result from the following factors. The nerve cells were dispersed throughout the culture, sending out processes that terminated on some muscle cells (Fig. 3), but leaving other muscle cells apparently non-innervated. Although muscle cells selected for study appeared to be innervated, upon visual inspection, we could not be certain of the presence of functional synapses in all instances. Further, in any particular instance, we could not know the degree of apposition of any synapses formed with the actual pacemaker cell within a contiguous, synchronous sheet of automatic myocytes.

We have previously considered the cellular electrophysiological mechanisms responsible for "a"-adrenergic-induced negative and positive chronotropic effects on canine Purkinje fibers (Rosen et al., 1977; Reuter et al., 1984). To summarize the earlier studies, the addition of "a"-adrenergic amines induces either a decrease (for the negative chronotropic effect) or an increase (for the positive chronotropic effect) in the slope of phase 4 depolarization. No changes in maximum diastolic potential or threshold potential were seen. Posner et al. (1976) reported on the negative chronotropic effects of epinephrine, and correlated these with a decrease in K+ flux across the membrane. One report of "a"-adrenergic effects on pacemaker currents has been inconclusive (Hauswirth et al., 1976). Hence, it appears reasonable to relate the "a"-adrenergic effects on chronotropy to an alteration in phase 4 depolarization, in association with changes in K+ permeability of the membrane.

The mechanism by which the addition of sympathetic neurons to cultured myocardial cells changes the "a"-adrenergic response in most cells studied also remains to be determined. It is possible that the effect is chemically mediated. Norepinephrine, the level of which varies from culture to culture, has been reported to modify postsynaptic "a"-receptors: chronic exposure to "a"-agonists causes supersensitivity (Hermesmeyer and Robinson, 1977; Tse et al., 1979; Yamaguchi et al., 1981), whereas reduction of sympathetic input results in supersensitivity (Glaubiger et al., 1978; Yamada et al., 1980; Lau and Siotkin, 1982). To determine whether norepinephrine in the culture media modulated the "a"-receptor response to phenylephrine, we measured norepinephrine levels in the nerve-muscle cultures before testing them pharmacologically (Table 2). We found no correlation between the norepinephrine level in a particular nerve-muscle culture and the presence or magnitude of the chronotropic response to "a"-adrenergic stimulation. Other bulk factors, the levels of which may fluctuate among cultures, may also be responsible for modifying the "a"-chronotropic response. Variations in local release of a conditioning factor provide another possibility.

In conclusion, we have used a cell culture preparation to elucidate the direct effects of innervation on autonomic responsiveness in the ventricular myocardial cell. Our data demonstrate that the addition of sympathetic neurons to cultured neonatal myocytes converts the "a"-response in an increase in rate to a decrease in rate, indicating that the ontogeny of innervation in vivo contributes to the observed conversion of the "a"-adrenergic response from positive to negative chronotropy during development. These results have the following important implications: first, they demonstrate that, in the postnatal period, the development of innervation has, in addition to its previously demonstrated physiological effects, the ability to change the qualitative response to "a"-adrenergic receptor stimulation of the heart. Since sympathetic and parasympathetic stim-
ulation are important modulators of cardiac rate and rhythm, the type of change we describe (from excitatory to inhibitory) might have an important antiarrhythmic role. Moreover, the failure of such changes to occur in normal fashion (a variability in the aforementioned changes) may contribute to arrhythmogenesis. A second question raised by our results is whether—if innervation, once established, is removed—the response to α-adrenergic stimulation again becomes excitatory. Such an event would have important implications with respect to myocardial infarction, where nerve death can occur, and to cardiac transplantsations.

We express our gratitude to Ema Stasko and Elliot Romero for technical assistance, to the late Dr. H. Lowell Stone for performing preliminary measurements of catecholamine levels using Cat-a-kit (Upjohn Diagnostic), and to Marvoin Nalick for the graphic and photographic work.

Supported by USPHS-NHLBI Grant HL-28958. Dr. Robinson is a Senior Investigator of the New York Heart Association.

Address for reprints: Richard B. Robinson, Ph.D., Department of Pharmacology, Columbia University, 630 W. 168th Street, New York, New York 10032.

Received February 4, 1985; accepted for publication May 30, 1985.

References

INDEX TERMS: Heart cell culture - α-Adrenergic receptor - Catecholamine - Chronotropy - Development - Sympathetic innervation - Neonatal rat
Neuronal regulation of the development of the alpha-adrenergic chronotropic response in the rat heart.
E D Drugge, M R Rosen and R B Robinson

Circ Res. 1985;57:415-423
doi: 10.1161/01.RES.57.3.415

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1985 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/57/3/415

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/