The Left Ventricular dP/dt max-End-Diastolic Volume Relation in Closed-Chest Dogs

William C. Little
From the Division of Cardiology/Department of Medicine, University of Texas Health Science Center, San Antonio, Texas

SUMMARY. I investigated the relation of the maximum rate of left ventricular pressure rise to the end-diastolic volume and the comparison of the maximum rate of left ventricular pressure rise-end-diastolic volume relation to the end-systolic pressure-volume relation, using the time-varying elastance model. These studies were performed in 11 dogs chronically instrumented to measure left ventricular pressure and determine left ventricular volume from three orthogonal dimensions. During vena caval occlusions, the relations between the maximum rate of left ventricular pressure rise and end-diastolic volume were described by straight lines (r = 0.97 ± 0.01, mean ± SD). Dobutamine increased the slope of the maximum rate of left ventricular pressure rise-end-diastolic volume relation to 358 ± 94% of control. This increase was greater than the 244 ± 61% increase in the slope of the end-systolic pressure-volume relation (P < 0.005). The volume intercepts of the maximum rate of left ventricular pressure rise-end-diastolic volume relation and end-systolic pressure-volume relation were similar and were not significantly altered by dobutamine. The ratio of the slope of the maximum rate of left ventricular pressure rise-end-diastolic volume relation to the slope of the end-systolic pressure-volume relation divided by the time from end-diastole to end-systole was similar before (2.2 ± 0.7) and after dobutamine (2.3 ± 0.7, P = NS). Angiotensin II did not significantly alter the maximum rate of left ventricular pressure rise-end-diastolic volume relation generated by caval occlusion. Thus, consistent with the predictions of the time-varying elastance model, the maximum rate of left ventricular pressure rise-end-diastolic volume relation generated by caval occlusions is linear, and its slope may be a sensitive load-independent measure of left ventricular contractile performance. (Circ Res 56: 808-815, 1985)
Lithium/Left Ventricular \(\frac{dP}{dt_{max}} - V_{ED} \) Relation

 mum value, \(\frac{dP}{dt_{max}} \) during isovolumic contraction when \(V(t) \) is equal to \(V_{ED} \). Thus,

\[
\frac{dP}{dt_{max}} = \frac{dE(t)}{dt_{max}} (V_{ED} - V_o).
\]

Since \(E_n(t_n) \) appears to be relatively constant in all ventricles (Suga and Sagawa, 1974; Sunagawa and Sagawa, 1982), the maximum value of its derivative should also be a constant, \(k \). Thus,

\[
\frac{dE}{dt_{max}} = k \frac{E_{max}}{t_{max}}.
\]

Therefore, the time-varying elastance model of the LV predicts that the \(\frac{dP}{dt_{max}} - V_{ED} \) relation should be linear (Eq. 3). Furthermore, the slope of this relation, or \(\frac{dE}{dt_{max}} \), should be proportional to \(E_{max}/t_{max} \) (Eq. 4). Since \(E_{max} \) and \(t_{max} \) are both assumed to be independent of loading conditions, this relation should also be load independent. Since \(E_{max} \) increases in response to positive inotropic stimuli, while \(t_{max} \) decreases (Suga et al., 1973), the slope of the \(\frac{dP}{dt_{max}} - V_{ED} \) relation, which is proportional to their ratio, should be highly sensitive to changes in contractile function. The model also predicts that the volume intercept of the \(\frac{dP}{dt_{max}} - V_{ED} \) relation should be the same as the volume intercept \((V_o) \) of the LV \(P_{ES} - V_{ES} \) relation.

This study was thus undertaken to evaluate the above predictions of the time-varying elastance model in intact, chronically instrumented dogs.

Methods

Instrumentation

Eleven healthy, adult mongrel dogs were instrumented by a slight modification of a previously described technique (Little et al., 1984; Sodums et al., 1984). A sterile left lateral thoracotomy was performed under anesthesia with halothane (1–2%) following induction with xylene (1 mg/kg) and sodium thiopental (6 mg/kg). The pericardium was opened wide. A micromanometer pressure transducer (Kongsberg Instruments) and a polyvinyl catheter for transducer calibration (i.d. 1.1 mm) were inserted through the LV apex. Three pairs of ultrasonic crystals (5 MHz) were implanted in the endocardium of the LV to measure the anterior-posterior, septal-lateral, and base-apex (long axis) dimensions. Hydraulic occluder cuffs were placed around the inferior and superior venae cavae.

Data Collection

All studies were performed after full recovery from the thoracotomy (10 days to 2 weeks), with the dogs lying on their right sides in a sling. The LV catheter was connected to a pressure transducer (Statham P23DB) calibrated with a mercury manometer. The signal from the micromanometer was adjusted to match that of the catheter. The transit time of 5 MHz sound between the crystal pairs was determined and converted to distance assuming a constant velocity of sound in blood of 1.55 m/msec. The first derivative of LV pressure \((\frac{dP}{dt}) \) was obtained by electronically differentiating the micromanometer signal using an RC circuit with a linear frequency response to above 70 Hz. The analog signals were recorded on an eight-channel oscillograph (Beckman Instruments) and digitized with an on-line analog-to-digital converter (Dual Control Systems) at 100 Hz and stored on a floppy disk memory system utilizing a computer system (Zobex).

Experimental Protocol

The dogs were sedated with fentanyl (0.03–0.06 mg/kg) in combination with droperidol (1.5–3.0 mg/kg) and intubated. To prevent reflex changes in heart rate, the dogs were treated with atropine sulfate (0.2 mg/kg, iv) and were ventilated with room air. To minimize the effect of fluctuations in intrathoracic pressure, all data were recorded during 12-second periods while the dogs were apneic, with the glottis held open by the endotracheal tube (Little et al., 1984).

The effect of dobutamine (10 \(\mu \)g/kg per min, iv) was assessed in six dogs. Data were recorded during a steady state, non-intervention period to obtain baseline values. The \(P_{ES} - V_{ES} \) and \(\frac{dP}{dt_{max}} - V_{ED} \) relations were then generated by sudden occlusion of the cavae. This caused a progressive fall in LV end-systolic pressure, volume, and \(\frac{dP}{dt_{max}} \) over a 12-second recording period (Fig. 1). Immediately after the recording period, the caval occlusion was released. After all parameters had returned to their baseline level, the caval occlusion was repeated. Then dobutamine was infused until a steady state had been achieved, and the caval occlusions were repeated.

In seven dogs, the effect of arterial vasoconstriction produced by the infusion of angiotensin II (0.5–2.5 mg/min) was assessed. In addition to atropine, these animals were also pretreated with propranolol (2 mg/kg, iv) to block \(\beta \)-adrenergically mediated changes in contractility. Two caval occlusions were performed before, and again after, the infusion of angiotensin II sufficient to raise the systolic arterial pressure by at least 40 mm Hg (Sodums et al., 1984).

Data Analysis

The stored digitized data were analyzed by computer algorithm (Sodums et al., 1984; Little et al., 1984). Baseline

FIGURE 1. Analog recording following caval occlusion. \(P_{LV} \) = LV pressure in mm Hg, \(D_{AP} \) = anterior-posterior LV dimension in mm, \(DSL \) = septal-lateral LV dimension in mm, \(DL_A \) = long axis dimension in mm.
TABLE 1

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Dobutamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>168 ± 31</td>
<td>185 ± 28</td>
</tr>
<tr>
<td>P$_{ES}$</td>
<td>150 ± 32</td>
<td>160 ± 15</td>
</tr>
<tr>
<td>P$_{ED}$</td>
<td>8.1 ± 3.2</td>
<td>2.0 ± 2.1*</td>
</tr>
<tr>
<td>V$_{ES}$</td>
<td>36 ± 8.7</td>
<td>28 ± 8.8*</td>
</tr>
<tr>
<td>V$_{ED}$ (ml)</td>
<td>35 ± 9.5</td>
<td>27 ± 8.6*</td>
</tr>
<tr>
<td>dP/dt$_{max}$</td>
<td>48 ± 12</td>
<td>40 ± 12*</td>
</tr>
<tr>
<td>dP/dt$_{mean}$</td>
<td>2232 ± 740</td>
<td>3581 ± 915*</td>
</tr>
</tbody>
</table>

Results are expressed as mean ± SD; n = 6.

* P < 0.05, P$_{ES}$ = LV end-systolic pressure (mm Hg); HR = heart rate; P$_{ED}$ = LV end-diastolic pressure (mm Hg); V$_{ES}$ = LV end-systolic volume (ml); V$_{ED}$ = LV end-diastolic volume (ml); V$_{Ee}$ = LV end-ejection volume (ml); dP/dt$_{max}$ = peak value of time derivative LV pressure (mm Hg/sec); dP/dt$_{mean}$ = peak negative value of dP/dt (mm Hg/sec).

pressure of at least 40 mm Hg, and that produced no extra systoles, were analyzed. The LV end-systolic pressure-volume data during the fall of LV pressure produced by the caval occlusions were fit to

$$P_{ES} = E_{max}(V_{ES} - V_o),$$

using the linear least square technique. The LV V$_{ES}$ and dP/dt$_{max}$ were fit to

$$dP/dt_{max} = (dE/dt_{max})(V_{ES} - V_o),$$

where dE/dt$_{max}$ is the slope of the relation and V$_{o}$ is the volume intercept.

All results are summarized as the mean ± 1 SD, and the level of significance was P < 0.05. Multiple comparisons were performed by analysis of variance. Intergroup comparisons were performed by paired t-tests with an appropriate correction for the performance of multiple comparisons using the Bonferroni inequality (Glantz, 1981).

Postmortem Studies

At the conclusion of the experiments, the animals were killed and the hearts were examined to confirm the proper positioning of the instrumentation.

Results

A typical analog recording during a caval occlusion is shown in Figure 1. The LV pressure, dP/dt$_{max}$, and the three LV dimensions decline to-

![Figure 2](image-url)
Figure 2. Representative LV pressure-volume loops following caval occlusion. Only every other beat is displayed for clarity.

![Figure 3](image-url)
Figure 3. Simultaneously determined LV P$_{ES}$-V$_{ES}$ (left) and dP/dt$_{max}$-V$_{ED}$ relations (right) during control and after dobutamine. Both relations are linear, and their slopes increase with dobutamine. The increase in slope of the dP/dt$_{max}$-V$_{ED}$ is greater.
Effect of Dobutamine on the LV End-Systolic Pressure-Volume Relation

<table>
<thead>
<tr>
<th>Dog</th>
<th>n</th>
<th>r</th>
<th>E<sub>max</sub></th>
<th>V<sub>s</sub></th>
<th>r</th>
<th>E<sub>max</sub></th>
<th>V<sub>s</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61</td>
<td>0.978</td>
<td>10.69</td>
<td>17.7</td>
<td>28</td>
<td>0.950</td>
<td>27.78</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>0.985</td>
<td>11.75</td>
<td>8.2</td>
<td>63</td>
<td>0.964</td>
<td>25.13</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
<td>0.990</td>
<td>3.96</td>
<td>8.6</td>
<td>49</td>
<td>0.986</td>
<td>9.66</td>
</tr>
<tr>
<td>4</td>
<td>71</td>
<td>0.983</td>
<td>6.74</td>
<td>9.4</td>
<td>71</td>
<td>0.964</td>
<td>23.35</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>0.996</td>
<td>5.99</td>
<td>23.5</td>
<td>36</td>
<td>0.969</td>
<td>14.18</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>0.995</td>
<td>7.19</td>
<td>9.9</td>
<td>41</td>
<td>0.981</td>
<td>11.55</td>
</tr>
</tbody>
</table>

Mean ±SD
- 7.7 ± 12.9
- 2.9 ± 6.3
- 7.7 ± 7.9

P vs. control
- P = 0.005
- NS

E_{max} = slope of P_{ES}-V_{ES} relation in mm Hg/ml, V_s = volume intercept of P_{ES}-V_{ES} relation in ml.

TABLE 3
Effect of Dobutamine on the LV dP/d_{t_{max}}- V_{ED} Relation Determined Simultaneously with Table 2

<table>
<thead>
<tr>
<th>Dog</th>
<th>r</th>
<th>dE/dt<sub>max</sub></th>
<th>V<sub>s</sub></th>
<th>t<sub>max</sub></th>
<th>dE/dt<sub>max</sub></th>
<th>V<sub>s</sub></th>
<th>t<sub>max</sub></th>
<th>dE/dt<sub>max</sub></th>
<th>V<sub>s</sub></th>
<th>t<sub>max</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.968</td>
<td>64.9</td>
<td>12.2</td>
<td>200</td>
<td>1.2</td>
<td>0.953</td>
<td>199.0</td>
<td>13.6</td>
<td>180</td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>0.975</td>
<td>95.4</td>
<td>1.0</td>
<td>200</td>
<td>1.6</td>
<td>0.978</td>
<td>315.0</td>
<td>7.1</td>
<td>150</td>
<td>1.9</td>
</tr>
<tr>
<td>3</td>
<td>0.985</td>
<td>43.0</td>
<td>11.6</td>
<td>220</td>
<td>2.4</td>
<td>0.983</td>
<td>147.4</td>
<td>21.0</td>
<td>160</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>0.971</td>
<td>71.1</td>
<td>6.2</td>
<td>190</td>
<td>2.0</td>
<td>0.961</td>
<td>333.3</td>
<td>13.1</td>
<td>140</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>0.955</td>
<td>77.3</td>
<td>15.5</td>
<td>210</td>
<td>2.7</td>
<td>0.969</td>
<td>332.0</td>
<td>28.1</td>
<td>140</td>
<td>3.3</td>
</tr>
<tr>
<td>6</td>
<td>0.989</td>
<td>11.3</td>
<td>10.1</td>
<td>200</td>
<td>3.2</td>
<td>0.978</td>
<td>266.6</td>
<td>4.0</td>
<td>130</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Mean ±SD
- 77.8 ± 9.4
- 203 ± 2.2
- 265 ± 14.5
- 150 ± 1.3
- 265 ± 14.5
- 150 ± 1.3
- 77.2 ± 5.1
- 10 ± 0.7
- 150 ± 1.3
- 150 ± 1.3
- 265 ± 14.5
- 150 ± 1.3
- 77.2 ± 5.1
- 10 ± 0.7

P vs. control
- P < 0.001
- NS
- P < 0.001
- NS

dE/dt_{max} = slope of dP/dt_{max}-V_{ED} relation in mm Hg/ml-sec, V_s = volume intercept in ml, t_{max} = time from end diastole to end systole in msec.
than a single regression line described the simultaneously determined PES-VEt relation (r = 0.956 ± 0.019, P < 0.05). In one animal, the dP/dtmax-VEt relation (Fig. 6) did not remain linear at the higher VED levels produced by angiotensin II infusion. At these higher VED levels, the relationship flattened out. Only the linear portion of this curve (VED < 33 ml) was subjected to linear regression analysis.

Discussion

This study investigated several predictions suggested by the time-varying elastance model of the LV concerning the dP/dtmax-VEt relation and its link to the PES-VEt relation. Most of the results are consistent with these predictions. First, the relation between LV dP/dtmax and the VED is described by a straight line during acute preload reductions produced by caval occlusion. The dP/dtmax-VEt relation is relatively unchanged by increases in aortic pressure produced by angiotensin II infusion. At these higher VED levels, the relationship flattened out. Only the linear portion of this curve (VED < 33 ml) was subjected to linear regression analysis.

In response to dobutamine, the slope of the dP/dtmax-VEt relation is markedly increased (more so than the increase in Emax, the slope of the PES-VEt relation), while the volume intercept of the relation is relatively unchanged. Also, consistent with the time-varying elastance model, the volume intercept of the dP/dtmax-VEt relation is similar to the volume intercept of the PES-VEt relation.

The simple time-varying elastance model of LV function does not account for any effect of the characteristics of ejection on the LV systolic pressure generated at any LV volume (Suga and Sagawa 1974; Sunagawa and Sagawa, 1982). However, the LV pressure generated at any volume may be reduced somewhat when the stroke volume, ejection fraction, maximal velocity of ejection, or flow at end-systole are markedly altered (Suga and Yama- koshi, 1977; Suga et al., 1977; Hunter et al., 1983; Weber et al., 1982; Shroff et al., 1983; Maughan et al., 1984). These factors may account for the shift of the LV PES-VEt relation observed in this study and seen previously (Sodums et al., 1984) after the infusion of a vasoconstrictor. Interestingly, the LV dP/dtmax-VEt relation was not shifted as much by

TABLE 4

Effect of Angiotension II on LV Pressure and Volumes

<table>
<thead>
<tr>
<th>Control</th>
<th>Angiotension II</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>158 ± 13</td>
</tr>
<tr>
<td>dP/dtmax</td>
<td>2298 ± 558</td>
</tr>
<tr>
<td>dP/dtmin</td>
<td>-2298 ± 416</td>
</tr>
<tr>
<td>VED</td>
<td>86.6 ± 13.8</td>
</tr>
<tr>
<td>VES</td>
<td>28.3 ± 4.7</td>
</tr>
<tr>
<td>PED</td>
<td>28.7 ± 5.2</td>
</tr>
<tr>
<td>PED</td>
<td>4.3 ± 4.7</td>
</tr>
<tr>
<td>VEt</td>
<td>200 ± 31</td>
</tr>
</tbody>
</table>

Results are expressed as mean ± SD; n = 7.

*P < 0.05, HR = heart rate (beats/min), dP/dtmax = peak rate of LV pressure rise (mm Hg); dP/dtmin = peak rate of LV pressure fall (mm Hg/sec); VED = LV end-diastolic volume (ml); VES = LV end-systolic volume (ml); PED = LV end-diastolic pressure (mm Hg); PES = LV end-systolic pressure (mm Hg); tmax = time from end diastole to end systole (msec).

FIGURE 4. Comparison of the effect of dobutamine on the slope of the PES-VEt and dP/dtmax-VEt relations.
vasoconstriction. This may indicate that the simple time-varying elastance model is a better descriptor of the isovolumic phase of LV contraction than during ejection, and that the \(\frac{dP}{dt_{\text{max}}}-V_{ED} \) relation may be affected less by alterations of the arterial input characteristics than the \(P_{\text{ES}}-V_{ES} \) relation. Under conditions different than those employed in this study, the predictions of the time-varying elastance model may not be as accurate. For example, if the stroke volume and rate of LV ejection were increased due to a slow heart rate or vasodilation, the simple time-varying elastance model may not be adequate because of a much greater deactivating effect of ejection flow (Suga and Yamakoshi, 1977; Hunter et al., 1983; Shroff et al., 1983).

In this study, the slope of the \(\frac{dP}{dt_{\text{max}}}-V_{ED} \) relation, or \(\frac{dE}{dt_{\text{max}}} \), was roughly proportional to \(E_{\text{max}}/t_{\text{max}} \). The time-varying elastance model of the LV predicts that this proportionality constant should be equal to the maximum value of \(dE/dt_{\text{max}} \), which is similar in all ventricles. Suga and Sagawa (1974) evaluated \(E_{\text{max}}/t_{\text{max}} \) in a series of isolated hearts. Figure 9 of their paper indicates that the maximum value of \(dE_{\text{max}}/dt_{\text{max}} \) is approximately 1.4. This is somewhat lower than the ratio of \(dE/dt_{\text{max}} \) to \(E_{\text{max}}/t_{\text{max}} \) found in this study (2.2 ± 0.7 control and 2.3 ± 0.7 with dobutamine). However, the values obtained for \(dE/dt_{\text{max}} \) and \(E_{\text{max}}/t_{\text{max}} \) from Figure 3 of Suga and Sagawa's earlier study (1972) indicate that this ratio is approximately 2, in closer agreement with the observations of this study. The relationship between \(dE/dt_{\text{max}} \) and \(E_{\text{max}}/t_{\text{max}} \) and the similarity of the volume intercepts of the \(dE/dt_{\text{max}}-V_{ED} \) and \(P_{\text{ES}}-V_{ES} \) relations indicate that the time-varying elastance model provides a conceptual link between the events occurring during isovolumic contraction and at end systole.

The observation that the slope of the \(\frac{dP}{dt_{\text{max}}}-V_{ED} \) relation (\(dE/dt_{\text{max}} \)) showed a greater increase in response to a positive inotropic stimulation than \(E_{\text{max}} \)

Table 5

Effect of Angiotensin II on the LV \(P_{\text{ES}}-V_{ES} \) Relation

<table>
<thead>
<tr>
<th>Dog</th>
<th>Control</th>
<th>Angiotensin II</th>
<th>Control and angiotensin II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n)</td>
<td>(r)</td>
<td>(E_{\text{max}})</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>0.995</td>
<td>9.11</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>0.982</td>
<td>8.53</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>0.992</td>
<td>6.77</td>
</tr>
<tr>
<td>8</td>
<td>56</td>
<td>0.960</td>
<td>17.30</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.962</td>
<td>6.74</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>0.988</td>
<td>5.77</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>0.988</td>
<td>12.38</td>
</tr>
</tbody>
</table>

Mean: 9.5 ± 1.8 | 6.3 ± 1.1 | 9.1 ± 1.7 | 5.7 ± 2.2 | 6.7 ± 7.6 | 9.1 ± 1.7 | 5.7 ± 2.2 | 6.7 ± 7.6

\(P \) vs. control: \(P < 0.05 \) \(P < 0.005 \) NS NS

Abbreviations as in Table 1.

Table 6

Effect of Angiotensin II on the LV \(\frac{dP}{dt_{\text{max}}} \)-\(V_{ED} \) Relation

<table>
<thead>
<tr>
<th>Dog</th>
<th>Control</th>
<th>Angiotensin II</th>
<th>Control and angiotensin II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r)</td>
<td>(\frac{dE}{dt_{\text{max}}})</td>
<td>(V_o)</td>
</tr>
<tr>
<td>2</td>
<td>0.996</td>
<td>66.1</td>
<td>14.2</td>
</tr>
<tr>
<td>5</td>
<td>0.996</td>
<td>77.0</td>
<td>23.1</td>
</tr>
<tr>
<td>7†</td>
<td>0.985</td>
<td>64.8</td>
<td>7.2</td>
</tr>
<tr>
<td>8</td>
<td>0.987</td>
<td>105.0</td>
<td>19.7</td>
</tr>
<tr>
<td>9</td>
<td>0.980</td>
<td>53.0</td>
<td>44.8</td>
</tr>
<tr>
<td>10</td>
<td>0.964</td>
<td>62.0</td>
<td>6.6</td>
</tr>
<tr>
<td>11</td>
<td>0.995</td>
<td>106.9</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Mean: 76.4 ± 16.9 | 65.5 ± 11.5 | 73.1 ± 13.4

\(P \) vs. control: NS NS NS NS

† In animal 7, the LV \(\frac{dP}{dt_{\text{max}}}-V_{ED} \) relation became nonlinear at high \(V_{ED} \) (see Fig. 5). Only data from the linear portion (\(V_{ED} < 33 \) ml) were analyzed.

* Determined simultaneously with Table 5. Abbreviations as in Table 2.
is consistent with a previous observation of Suga et al. (1976). They compared the effects of baroreflex inotropic interventions on E_{max} and dP/dt_{max} in open-chest canine LV preparations contracting isovolumically at a constant volume. In their study, dP/dt_{max} showed greater changes than E_{max} in response to changes in contractility.

The results of this study are consistent with previous observations that dP/dt_{max} is preload dependent (Mason, 1969; Mahler et al., 1975; Wallace et al., 1963; Schmidt and Hoppe, 1978). These earlier studies assessed LV preload, using the LV end-diastolic pressure and not V_{ED}. Due to the nonlinear relation of LV end-diastolic pressure and V_{ED}, the dP/dt_{max}-V_{ED} relation cannot be directly deduced from these studies. Also, consistent with the observations of this study, Reeves et al. (1960) found in open-chest dogs that the relation between dP/dt_{max} and a measure of LV end-diastolic stretch was approximated by a straight line, whose slope was increased by epinephrine. Similarly, Quinones et al., (1976) reported that the ratio of dP/dt_{max} to the LV end-diastolic circumference increased in response to isoproterenol.

Most previous studies have found that dP/dt_{max} increases somewhat in response to elevations of arterial pressure. This increase in dP/dt_{max} can usually be attributed to an increase in the LV end-diastolic pressure and, thus, presumably, V_{ED} (Mason, 1969). However, Wallace et al., (1963) found, in a canine right-heart bypass preparation, that a sudden increase in aortic pressure increased dP/dt_{max} before the end-diastolic pressure increased. Others (Wildenthal et al., 1969; Furnival et al., 1970) have found that such sudden increases in aortic diastolic pressure do not alter dP/dt_{max} when it occurs prior to aortic valve opening.

Suga and Sagawa (1972) have derived the force-velocity relation from the time-varying elastance model. The force-velocity relation is related by appropriate scaling factors to the relation of $E(t)$ to $[dE(t)/dt]_E(t)$. Figure 3 of their paper shows an analog recording of $dE(t)/dt$ obtained in an isolated heart as an intermediate step toward constructing a force-velocity relation. The peak value of $dE(t)/dt$ or dE/dt_{max} in their figure is relatively constant during an increase in LV systolic pressure or an increase in V_{ED}, but increases in response to the infusion of positive inotropic agent, epinephrine. Since $dE(t)/dt_{max}$ is the slope of the dP/dt_{max}-V_{ED} relationship, our results are consistent with these observations of Suga and Sagawa (1972).

In one animal in this study, the dP/dt_{max}-V_{ED} relation became nonlinear at high V_{ED}. This may be a manifestation of the flat portion of the Frank-Starling relationship. The time-varying elastance model treats the ventricle as a perfectly elastic structure in which pressure and volume are linearly related at all volumes. It is clear that the real LV must have a limit above which further increase in volume will not result in a continued linear increase in dP/dt_{max} or LV systolic pressure. The dP/dt_{max}-V_{ED} relation may reach this limit sooner than the P_{ES}-V_{ES} relation, since V_{ED} is larger than V_{ES}. The observations of the linearity of the P_{ES}-V_{ES} relation and the data in the other animals in this study indicate that this limit is not usually reached in the physiological range of LV volumes.

The derivation of the dP/dt_{max}-V_{ED} relation described in the introduction depends on several assumptions that may not be completely accurate. First, LV volume may not be constant during isovolumic systole, as some volume is ejected into outwardly bulging mitral and aortic valves. Second, the volume correction factor (V_o) may not be constant early in systole (Suga and Sagawa, 1974). Finally, dP/dt_{max} may not always occur during isovolumic systole, but instead may in some circumstances be reached shortly after aortic valve opening. This is most likely to occur after vasodilation or when the LV systolic performance is depressed (Wildenthal et al., 1969; Quinones et al., 1976). However, the agreement of our results with the predictions of the time-varying elastance model (i.e., equations 3 and 4) suggests that these factors do not have a substantial effect under the conditions of this study.

The results of this study suggest that the LV dP/dt_{max}-V_{ED} relation is a sensitive, load-independent index of LV performance. However, before this can be applied, several limitations of this study must be considered. First, this study was performed after
opening of the pericardium. Second, although the study was performed in close-chest animals, the conditions were carefully controlled. Measurements were obtained during periods of apnea to avoid the confounding influences of changes in intrathoracic pressure. The animals were treated with atropine to avoid the influences of alterations in heart rate during caval occlusion, and with atropine and propranolol to prevent reflex changes in contractility during angiotensin II administration. Finally, the dP/dt\textsubscript{max}-V\textsubscript{ES} relations were generated by acute preload reduction. The effect of changing loading conditions by other methods and the variability of the relation over time remain to be determined.

In conclusion, this study demonstrates that in chronically instrumented dogs LV dP/dt\textsubscript{max} and the V\textsubscript{ES} are linearly related during caval occlusions. The relation is not altered by arterial vasoconstriction, and the slope of the dP/dt\textsubscript{max}-V\textsubscript{ES} Relation appears to be more sensitive to positive inotropic stimulation than \textit{E\textsubscript{max}}, the slope of the P\textsubscript{ES}-V\textsubscript{ES} relation. These results are consistent with predictions of the time-varying elastance model of the LV and support its use as a conceptual framework for the understanding of LV systolic performance.

I thank Drs. Robert A. O’Rourke and Gregory L. Freeman for their review of the manuscript; Anna Fackenthal and Debbie Palmer for typing the manuscript, and James Colston, Danny Escobedo, James Galloway, and Don Watkins for expert technical assistance. I also thank Aeyser Laboratories for donating the propranolol.

Supported in part by grants from the Texas Affiliate of the American Heart Association, and the University of Texas Health Science Center.

Address for reprints: William C. Little, M.D., Division of Cardiology/Department of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78284.

Received January 11, 1985; accepted for publication March 7, 1985.

References
Mahler F, Ross J Jr., O'Rourke RA, Covell JW (1975) Effects of changes in preload, afterload and inotropic state on ejection and isovolumic phase measures of contractility in the conscious dog. Am J Cardiol 35: 626–634
Schmidt HD, Hoppe H (1978) Preload dependence of dP/dt\textsubscript{max}, V\textsubscript{ES} and calculated V\textsubscript{ES} compared to the inotropic sensitivity of these indices of cardiac contractility. Basic Res Cardiol 73: 380–393

INDEX TERMS: Left ventricular dP/dt • Pressure-volume relations • Left ventricular performance
The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs.
W C Little

Circ Res. 1985;56:808-815
doi: 10.1161/01.RES.56.6.808

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1985 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/56/6/808