The Left Ventricular dP/dtmax-End-Diastolic Volume Relation in Closed-Chest Dogs

William C. Little
From the Division of Cardiology/Department of Medicine, University of Texas Health Science Center, San Antonio, Texas

SUMMARY. I investigated the relation of the maximum rate of left ventricular pressure rise to the end-diastolic volume and the comparison of the maximum rate of left ventricular pressure rise-end-diastolic volume relation to the end-systolic pressure-volume relation, using the time-varying elastance model. These studies were performed in 11 dogs chronically instrumented to measure left ventricular pressure and determine left ventricular volume from three orthogonal dimensions. During vena caval occlusions, the relations between the maximum rate of left ventricular pressure rise and end-diastolic volume were described by straight lines (r = 0.97 ± 0.01, mean ± SD). Dobutamine increased the slope of the maximum rate of left ventricular pressure rise-end-diastolic volume relation to 358 ± 94% of control. This increase was greater than the 244 ± 61% increase in the slope of the end-systolic pressure-volume relation (P < 0.005). The volume intercepts of the maximum rate of left ventricular pressure rise-end-diastolic volume relation and end-systolic pressure-volume relation were similar and were not significantly altered by dobutamine. The ratio of the slope of the maximum rate of left ventricular pressure rise-end-diastolic volume relation to the slope of the end-systolic pressure-volume relation divided by the time from end-diastole to end-systole was similar before (2.2 ± 0.7) and after dobutamine (2.3 ± 0.7, P = NS). Angiotensin II did not significantly alter the maximum rate of left ventricular pressure rise-end-diastolic volume relation generated by caval occlusion. Thus, consistent with the predictions of the time-varying elastance model, the maximum rate of left ventricular pressure rise-end-diastolic volume relation generated by caval occlusions is linear, and its slope may be a sensitive load-independent measure of left ventricular contractile performance. (Circ Res 56: 808-815, 1985)

It has been proposed that left ventricular (LV) systolic pump function can be modeled as a time-varying elastance (Suga and Sagawa, 1974; Sunagawa and Sagawa, 1982). In this model, the left ventricle is considered to behave as an elastic structure that stiffens in a predictable manner during systole. The LV pressure, P(t), at any time after the onset of contraction, t, is described by:

\[P(t) = E(t) (V(t) - V_o), \tag{1} \]

where E(t) is the LV elastance at t, V(t) the LV volume at t, and V_o the minimal volume required for the LV to generate supra-atmospheric pressure. The LV elastance, E(t), reaches a maximum value, E_max, at time t_{max}, which has been termed end systole. This end-systolic pressure-volume relation,

\[P_{ES} = E_{max} (V_{ES} - V_o), \]

has been the subject of much investigation. E_{max}, the slope of the P_{ES}-V_{ES} relation, is a measure of the global inotropic state, and is relatively insensitive to changes in loading conditions in isolated canine hearts (Suga et al., 1973; Suga and Sagawa, 1974; Suga and Yamakoshi, 1977; Suga et al., 1979; Sagawa, 1978, 1981), conscious dogs (Sodums et al., 1984), and man (Grossman et al., 1977; Mehmel et al., 1981).

In isolated canine hearts, Suga and Sagawa (1974) demonstrated that E(t) can be normalized by considering E_{max} and t_{max}, so that:

\[E_{N}(t_N) = E(t)/E_{max} \]

where \(t_N = t/t_{max} \) and \(E_{N}(t_N) \) is a normalized elastance function that is similar for all ventricles. Thus, the LV elastance can be expressed as:

\[E(t) = E_{max} E_{N}(t_N). \tag{2} \]

Although the P_{ES}-V_{ES} relation has been the subject of intense investigation, the more general time-varying elastance model has not been as widely studied in preparations other than the isolated heart. In addition to the P_{ES}-V_{ES} relation, the time-varying elastance model also has implications concerning the relation between the maximum rate of rise of LV pressure (dP/dt_{max}) and the end-diastolic volume (V_{ED}).

Derivation of the dP/dt_{max}-V_{ED} Relation from the Time-Varying Elastance Model

The time derivative of LV pressure (dP/dt) can be expressed in terms of LV elastance, as suggested by Sunagawa and Sagawa (1982), by differentiating Equation 1:

\[dP/dt = d(E(t) (V(t)-V_o))/dt. \]

Under normal conditions, dP/dt reaches its maxi-
mum value, dP/dt_{max}, during isovolumic contraction when V(t) is equal to V_{ED}. Thus,
\[\frac{dP}{dt_{max}} = \frac{dE(t)}{dt_{max}} (V_{ED} - V_o). \]
(3)
\(dE(t)/dt_{max} \) can be evaluated by differentiating Equation 2,
\[\frac{dE}{dt_{max}} = (E_{max}/t_{max}) (dE_n/dt_{nmax}). \]
Since E_n (t_n) appears to be relatively constant in all ventricles (Suga and Sagawa, 1974; Sunagawa and Sagawa, 1982), the maximum value of its derivative should also be a constant, k. Thus,
\[\frac{dE}{dt_{max}} = k \frac{E_{max}}{t_{max}}. \]
(4)
Therefore, the time-varying elastance model of the LV predicts that the dP/dt_{max}-V_{ED} relation should be linear (Eq. 3). Furthermore, the slope of this relation, or \(dE/dt_{max} \), should be proportional to \(E_{max}/t_{max} \) (Eq. 4). Since \(E_{max} \) and \(t_{max} \) are both assumed to be independent of loading conditions, this relation should also be load independent. Since \(E_{max} \) increases in response to positive inotropic stimuli, while \(t_{max} \) decreases (Suga et al., 1973), the slope of the dP/dt_{max}-V_{ED} relation, which is proportional to their ratio, should be highly sensitive to changes in contractile function. The model also predicts that the volume intercept of the dP/dt_{max}-V_{ED} relation should be the same as the volume intercept (V_o) of the LV \(P_{ES}-V_{ES} \) relation.

This study was thus undertaken to evaluate the above predictions of the time-varying elastance model in intact, chronically instrumented dogs.

Methods

Instrumentation

Eleven healthy, adult mongrel dogs were instrumented by a slight modification of a previously described technique (Little et al., 1984; Sodums et al., 1984). A sterile lateral thoracotomy was performed under anesthesia with halothane (1-2%) following induction with xylene (1 mg/kg) and sodium thiopental (6 mg/kg). The pericardium was opened wide. A micromanometer pressure transducer (Konigsberg Instruments) and a polyvinyl catheter for transducer calibration (i.d. 1.1 mm) were inserted through the LV apex. Three pairs of ultrasonic crystals (5 MHz) were implanted in the endocardium of the LV to measure the anterior-posterior, septal-lateral, and base-apex (long axis) dimensions. Hydraulic occluder cuffs were placed around the inferior and superior venae cavae.

Data Collection

All studies were performed after full recovery from the thoracotomy (10 days to 2 weeks), with the dogs lying on their right sides in a sling. The LV catheter was connected to a pressure transducer (Statham P23DB) calibrated with a mercury manometer. The signal from the micromanometer was adjusted to match that of the catheter. The transit time of 5 MHz sound between the crystal pairs was determined and converted to distance assuming a constant velocity of sound in blood of 1.55 m/msec. The first derivative of LV pressure (dP/dt) was obtained by electronically differentiating the micromanometer signal using an RC circuit with a linear frequency response to above 70 Hz. The analog signals were recorded on an eight-channel oscillograph (Beckman Instruments) and digitized on-line analog-to-digital converter (Dual Control Systems) at 100 Hz and stored on a floppy disk memory system utilizing a computer system (Zobex).

Experimental Protocol

The dogs were sedated with fentanyl (0.03-0.06 mg/kg) in combination with droperidol (1.5-3.0 mg/kg) and intubated. To prevent reflex changes in heart rate, the dogs were treated with atropine sulfate (0.2 mg/kg, iv) and were ventilated with room air. To minimize the effect of fluctuations in intrathoracic pressure, all data were recorded during 12-second periods while the dogs were apneic, with the glottis held open by the endotracheal tube (Little et al., 1984).

The effect of dobutamine (10 mg/kg per min, iv) was assessed in six dogs. Data were recorded during a steady state, non-intervention period to obtain baseline values. The \(P_{ES}-V_{ES} \) and \(dP/dt_{max}-V_{ED} \) relations were then generated by sudden occlusion of the cavae. This caused a progressive fall in LV end-systolic pressure, volume, and dP/dt_{max} over a 12-second recording period (Fig. 1). Immediately after the recording period, the caval occlusion was released. After all parameters had returned to their baseline level, the caval occlusion was repeated. Then dobutamine was infused until a steady state had been achieved, and the caval occlusions were repeated.

In seven dogs, the effect of arterial vasoconstriction produced by the infusion of angiotensin II (0.5-2.5 mg/min) was assessed. In addition to atropine, these animals were also pretreated with propranolol (2 mg/kg, iv) to block \(\beta \)-adrenergically mediated changes in contractility. Two caval occlusions were performed before, and again after, the infusion of angiotensin II sufficient to raise the systolic arterial pressure by at least 40 mm Hg (Sodums et al., 1984).

Data Analysis

The stored digitized data were analyzed by computer algorithm (Sodums et al., 1984; Little et al., 1984). Baseline

\[P_{LV} = LV \text{ pressure in mm Hg}, D_{AP} = \text{anterior-posterior LV dimension in mm}, D_{SA} = \text{septal-lateral LV dimension in mm}, D_{LA} = \text{long axis dimension in mm}. \]
hemodynamic values in each dog were obtained by averaging the data obtained during the 12-second steady state, non-intervention recording periods. End systole was defined as the time when the ratio of LV pressure to volume reached its maximum (Suga and Yamakoshi, 1977). End diastole was defined as the relative minima following the "a" wave of the high-fidelity LV pressure tracing. The time from end diastole to end systole was defined as t\^s. End ejection was defined as peak negative dP/dt (dP/dt\^e). The LV volume was calculated as a modified general ellipsoid using the equation:

\[V_{LV} = \left(\frac{\pi}{6} \right) D_{AP}D_{SL}D_{LA} \]

where \(V_{LV} \) = LV volume, \(D_{AP} \) = the anterior-posterior LV dimension, \(D_{SL} \) = the septal-lateral LV dimension, and \(D_{LA} \) = the long axis LV dimension. This method of volume calculation has been validated in our laboratory (Little et al., 1984; Sodums et al., 1984; Little and O'Rourke, 1985) and is similar to that used and validated by others (Olson et al., 1983), except that we determined endocardial dimensions directly; thus, the subtraction of LV wall thickness or volume was not necessary. This method gives a consistent measure of LV volume \(r > 0.97, \) \(\text{SEE} < 2\text{ml} \) despite changes in LV loading conditions and configuration.

Only caval occlusions that produced a fall in LV systolic pressure of at least 40 mm Hg, and that produced no extra systoles, were analyzed. The LV end-systolic pressure-volume data during the fall of LV pressure produced by the caval occlusions were fit to:

\[P_{ES} = E_{max}(V_{ES} - V_o), \]

using the linear least square technique. The LV \(V_{ED} \) and dP/dt\^max were fit to:

\[\frac{dP}{dt_{max}} = \frac{dE}{dt_{max}}(V_{ED} - V_o), \] (3a)

where \(\frac{dE}{dt_{max}} \) is the slope of the relation and \(V_o \) is the volume intercept.

All results are summarized as the mean ± 1 SD, and the level of significance was \(P < 0.05. \) Multiple comparisons were performed by analysis of variance. Intergroup comparisons were performed by paired t-tests with an appropriate correction for the performance of multiple comparisons using the Bonferoni inequality (Glantz, 1981).

Postmortem Studies

At the conclusion of the experiments, the animals were killed and the hearts were examined to confirm the proper positioning of the instrumentation.

Results

A typical analog recording during a caval occlusion is shown in Figure 1. The LV pressure, dP/dt\^max, and the three LV dimensions decline to-
TABLE 2
Effect of Dobutamine on the LV End-Systolic Pressure-Volume Relation

<table>
<thead>
<tr>
<th>Dog</th>
<th>n</th>
<th>r</th>
<th>E<sub>max</sub></th>
<th>V<sub>o</sub></th>
<th>n</th>
<th>r</th>
<th>E<sub>max</sub></th>
<th>V<sub>o</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61</td>
<td>0.978</td>
<td>10.69</td>
<td>17.7</td>
<td>28</td>
<td>0.950</td>
<td>27.78</td>
<td>18.5</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>0.985</td>
<td>11.75</td>
<td>8.2</td>
<td>63</td>
<td>0.964</td>
<td>25.13</td>
<td>9.2</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
<td>0.990</td>
<td>3.96</td>
<td>8.6</td>
<td>49</td>
<td>0.986</td>
<td>9.66</td>
<td>11.5</td>
</tr>
<tr>
<td>4</td>
<td>71</td>
<td>0.983</td>
<td>6.74</td>
<td>9.4</td>
<td>71</td>
<td>0.964</td>
<td>23.35</td>
<td>10.2</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>0.996</td>
<td>5.99</td>
<td>23.5</td>
<td>36</td>
<td>0.969</td>
<td>14.18</td>
<td>28.8</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>0.995</td>
<td>7.19</td>
<td>9.9</td>
<td>41</td>
<td>0.981</td>
<td>11.35</td>
<td>8.7</td>
</tr>
</tbody>
</table>

Mean ±SD
7.7 ± 12.9
2.9 ± 6.3
18.6 ± 14.5
7.7 ± 7.9

P vs. control
<0.005 NS

E_{max} = slope of P_{ES}-V_{ES} relation in mm Hg/ml, V_o = volume intercept of P_{ES}-V_{ES} relation in ml.

TABLE 3
Effect of Dobutamine on the LV dP/dt_{max}-VED Relation Determined Simultaneously with Table 2

<table>
<thead>
<tr>
<th>Dog</th>
<th>r</th>
<th>dE/dt<sub>max</sub></th>
<th>V<sub>o</sub></th>
<th>t<sub>max</sub></th>
<th>E<sub>max</sub>/t<sub>max</sub></th>
<th>dE/dt<sub>max</sub></th>
<th>V<sub>o</sub></th>
<th>t<sub>max</sub></th>
<th>E<sub>max</sub>/t<sub>max</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.968</td>
<td>64.9</td>
<td>12.2</td>
<td>200</td>
<td>1.2</td>
<td>0.953</td>
<td>199.0</td>
<td>13.6</td>
<td>180</td>
</tr>
<tr>
<td>2</td>
<td>0.975</td>
<td>95.4</td>
<td>1.0</td>
<td>200</td>
<td>1.6</td>
<td>0.978</td>
<td>315.0</td>
<td>7.1</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>0.985</td>
<td>43.0</td>
<td>11.6</td>
<td>220</td>
<td>2.4</td>
<td>0.983</td>
<td>147.4</td>
<td>21.0</td>
<td>160</td>
</tr>
<tr>
<td>4</td>
<td>0.971</td>
<td>71.1</td>
<td>6.2</td>
<td>190</td>
<td>2.0</td>
<td>0.961</td>
<td>333.3</td>
<td>13.1</td>
<td>140</td>
</tr>
<tr>
<td>5</td>
<td>0.955</td>
<td>77.3</td>
<td>15.5</td>
<td>210</td>
<td>2.7</td>
<td>0.969</td>
<td>332.0</td>
<td>28.1</td>
<td>140</td>
</tr>
<tr>
<td>6</td>
<td>0.989</td>
<td>11.3</td>
<td>10.1</td>
<td>200</td>
<td>3.2</td>
<td>0.978</td>
<td>266.6</td>
<td>4.0</td>
<td>130</td>
</tr>
</tbody>
</table>

Mean ±SD
77.8 ± 9.4
203 ± 2.2
265 ± 14.5
150 ± 2.3

P vs. control
<0.001 NS
<0.001 NS

dE/dt_{max} = slope of dP/dt_{max}-VED relation in mm Hg/ml·sec, V_o = volume intercept of dP/dt_{max}-VED relation in ml, t_{max} = time from end diastole to end systole in msec.
Table 4

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Angiotensin II</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (beats/min)</td>
<td>158 ± 13</td>
<td>153 ± 15</td>
</tr>
<tr>
<td>dP/dt_max (mm Hg)</td>
<td>2298 ± 558</td>
<td>2585 ± 711*</td>
</tr>
<tr>
<td>dP/dt_min (mm Hg/sec)</td>
<td>-2398 ± 416</td>
<td>-2662 ± 281*</td>
</tr>
<tr>
<td>V ED (ml)</td>
<td>46.6 ± 13.8</td>
<td>56.8 ± 17.5*</td>
</tr>
<tr>
<td>P ED (ml)</td>
<td>28.3 ± 4.7</td>
<td>34.8 ± 5.5*</td>
</tr>
<tr>
<td>V ES (ml)</td>
<td>28.7 ± 5.2</td>
<td>35.4 ± 6.2*</td>
</tr>
<tr>
<td>F_Ed (ml)</td>
<td>4.3 ± 4.7</td>
<td>11.9 ± 10.3*</td>
</tr>
<tr>
<td>F_ES (ml)</td>
<td>105 ± 23</td>
<td>191 ± 19*</td>
</tr>
<tr>
<td>t_max (msec)</td>
<td>200 ± 31</td>
<td>197 ± 23</td>
</tr>
</tbody>
</table>

Results are expressed as mean ± SD; n = 7.

*P < 0.05, HR = heart rate (beats/min), dP/dt_max = peak rate of LV pressure rise (mm Hg); dP/dt_min = peak rate of LV pressure fall (mm Hg/sec); V ED = LV end-diastolic volume (ml); V ES = LV end-systolic volume (ml); P ED = LV end-diastolic pressure (mm Hg); P_ES = LV end-systolic pressure (mm Hg); t_max = time from end diastole to end systole (msec).

Discussion

This study investigated several predictions suggested by the time-varying elastance model of the LV concerning the dP/dt_max-V ED relation and its link to the P ES-V ES relation. Most of the results are consistent with these predictions. First, the relation between LV dP/dt_max and the V ED is described by a straight line during acute preload reductions produced by caval occlusion. The dP/dt_max-V ED relation is relatively unchanged by increases in aortic pressure produced by vasoconstriction. In response to dobutamine, the slope of the dP/dt_max-V ED relation is markedly increased (more so than the increase in E_max*, the slope of the P ES-V ES relation), while the volume intercept of the relation is relatively unchanged. Also, consistent with the time-varying elastance model, the volume intercept of the dP/dt_max-V ED relation is similar to the volume intercept of the P ES-V ES relation.

The simple time-varying elastance model of LV function does not account for any effect of the characteristics of ejection on the LV systolic pressure generated at any LV volume (Suga and Sagawa 1974; Sunagawa and Sagawa, 1982). However, the LV pressure generated at any volume may be reduced somewhat when the stroke volume, ejection fraction, maximal velocity of ejection, or flow at end-systole are markedly altered (Suga and Yama- koshi, 1977; Suga et al., 1977; Hunter et al., 1983; Weber et al., 1982; Shroff et al., 1983; Maughan et al., 1984). These factors may account for the shift of the LV P ES-V ES relation observed in this study and seen previously (Sodums et al., 1984) after the infusion of a vasoconstrictor. Interestingly, the LV dP/dt_max-V ED relation was not shifted as much by
vasoconstriction. This may indicate that the simple time-varying elastance model is a better descriptor of the isovolumic phase of LV contraction than during ejection, and that the $dP/dt_{\text{max}} - V_{\text{ED}}$ relation may be affected less by alterations of the arterial input characteristics than the $P_{\text{ES}} - V_{\text{ES}}$ relation. Under conditions different than those employed in this study, the predictions of the time-varying elastance model may not be as accurate. For example, if the stroke volume and rate of LV ejection were increased due to a slow heart rate or vasodilation, the simple time-varying elastance model may not be adequate because of a much greater deactivating effect of ejection flow (Suga and Yamakoshi, 1977; Hunter et al., 1983; Shroff et al., 1983).

In this study, the slope of the $dP/dt_{\text{max}} - V_{\text{ED}}$ relation, or dE/dt_{max}, was roughly proportional to $E_{\text{max}}/t_{\text{max}}$. The time-varying elastance model of the LV predicts that this portionality constant should be equal to the maximum value of dE/dt_{max}, which is similar in all ventricles. Suga and Sagawa (1974) evaluated $E_{\text{max}}(t_{\text{max}})$ in a series of isolated hearts. Figure 9 of their paper indicates that the maximum value of dE/dt_{max} is approximately 1.4. This is somewhat lower than the ratio of dE/dt_{max} to $E_{\text{max}}/t_{\text{max}}$ found in this study (2.2 ± 0.7 control and 2.3 ± 0.7 with dobutamine). However, the values obtained for dE/dt_{max} and $E_{\text{max}}/t_{\text{max}}$ from Figure 3 of Suga and Sagawa's earlier study (1972) indicate that this ratio is approximately 2, in closer agreement with the observations of this study. The relationship between dE/dt_{max} and $E_{\text{max}}/t_{\text{max}}$ and the similarity of the volume intercepts of the $dP/dt_{\text{max}} - V_{\text{ED}}$ and $P_{\text{ES}} - V_{\text{ES}}$ relations indicate that the time-varying elastance model provides a conceptual link between the events occurring during isovolumic contraction and at end systole.

The observation that the slope of the $dP/dt_{\text{max}} - V_{\text{ED}}$ relation (dE/dt_{max}) showed a greater increase in response to a positive inotropic stimulation than E_{max}

Table 5

Effect of Angiotensin II on the LV $P_{\text{ES}} - V_{\text{ES}}$ Relation

<table>
<thead>
<tr>
<th>Dog</th>
<th>n</th>
<th>r</th>
<th>E_{max}</th>
<th>V_o</th>
<th>n</th>
<th>r</th>
<th>E_{max}</th>
<th>V_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>22</td>
<td>0.995</td>
<td>9.11</td>
<td>9.3</td>
<td>35</td>
<td>0.994</td>
<td>7.87</td>
<td>6.3</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>0.982</td>
<td>8.53</td>
<td>28.1</td>
<td>21</td>
<td>0.990</td>
<td>6.41</td>
<td>20.1</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>0.992</td>
<td>6.77</td>
<td>11.1</td>
<td>10</td>
<td>0.957</td>
<td>4.51</td>
<td>1.9</td>
</tr>
<tr>
<td>8</td>
<td>56</td>
<td>0.960</td>
<td>17.30</td>
<td>25.4</td>
<td>59</td>
<td>0.948</td>
<td>9.81</td>
<td>20.9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.962</td>
<td>6.74</td>
<td>25.1</td>
<td>53</td>
<td>0.967</td>
<td>3.16</td>
<td>14.3</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>0.988</td>
<td>5.77</td>
<td>14.3</td>
<td>47</td>
<td>0.990</td>
<td>5.90</td>
<td>11.4</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>0.988</td>
<td>12.38</td>
<td>12.4</td>
<td>19</td>
<td>0.998</td>
<td>6.64</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Mean: 9.5 ± 1.8, 6.3 ± 1.17, 9.1 ± 1.75

Table 5. Abbreviations as in Table 1.

Table 6

Effect of Angiotensin II on the LV $dP/dt_{\text{max}} - V_{\text{ED}}$ Relation

<table>
<thead>
<tr>
<th>Dog</th>
<th>r</th>
<th>dE/dt_{max}</th>
<th>V_o</th>
<th>r</th>
<th>dE/dt_{max}</th>
<th>V_o</th>
<th>r</th>
<th>dE/dt_{max}</th>
<th>V_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.996</td>
<td>66.1</td>
<td>14.2</td>
<td>0.987</td>
<td>62.1</td>
<td>2.7</td>
<td>0.990</td>
<td>65.6</td>
<td>4.4</td>
</tr>
<tr>
<td>5</td>
<td>0.996</td>
<td>77.0</td>
<td>23.1</td>
<td>0.990</td>
<td>81.7</td>
<td>22.4</td>
<td>0.986</td>
<td>87.2</td>
<td>24.8</td>
</tr>
<tr>
<td>7†</td>
<td>0.985</td>
<td>64.8</td>
<td>7.2</td>
<td>0.970</td>
<td>52.1</td>
<td>1.4</td>
<td>0.989</td>
<td>66.3</td>
<td>7.5</td>
</tr>
<tr>
<td>8</td>
<td>0.987</td>
<td>105.0</td>
<td>19.7</td>
<td>0.982</td>
<td>96.1</td>
<td>17.7</td>
<td>0.986</td>
<td>103.3</td>
<td>19.2</td>
</tr>
<tr>
<td>9</td>
<td>0.980</td>
<td>53.0</td>
<td>44.8</td>
<td>0.955</td>
<td>33.6</td>
<td>28.8</td>
<td>0.970</td>
<td>36.6</td>
<td>33.1</td>
</tr>
<tr>
<td>10</td>
<td>0.964</td>
<td>62.0</td>
<td>6.6</td>
<td>0.959</td>
<td>52.4</td>
<td>1.2</td>
<td>0.965</td>
<td>55.9</td>
<td>3.5</td>
</tr>
<tr>
<td>11</td>
<td>0.995</td>
<td>106.9</td>
<td>2.6</td>
<td>0.977</td>
<td>80.4</td>
<td>6.4</td>
<td>0.990</td>
<td>97.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Mean: 76.4 ± 16.9, 65.5 ± 11.5, 73.1 ± 13.4

Table 6. Abbreviations as in Table 2.† In animal 7, the LV $dP/dt_{\text{max}} - V_{\text{ED}}$ relation became nonlinear at high V_{ED} (see Fig. 5). Only data from the linear portion ($V_{\text{ED}} < 33$ ml) were analyzed.
is consistent with a previous observation of Suga et al. (1976). They compared the effects of baroreflex inotropic interventions on \(E_{\text{max}} \) and \(\frac{dP}{dt}_{\text{max}} \) in open-chest canine LV preparations contracting isovolumically at a constant volume. In their study, \(\frac{dP}{dt}_{\text{max}} \) showed greater changes than \(E_{\text{max}} \) in response to changes in contractility.

The results of this study are consistent with previous observations that \(\frac{dP}{dt}_{\text{max}} \) is preload dependent (Mason, 1969; Mahler et al., 1975; Wallace et al., 1963; Schmidt and Hoppe, 1978). These earlier studies assessed LV preload, using the LV end-diastolic pressure and not \(V_{\text{ED}} \). Due to the nonlinear relation of LV end-diastolic pressure and \(V_{\text{ED}} \), the \(\frac{dP}{dt}_{\text{max}}-V_{\text{ED}} \) relation cannot be directly deduced from these studies. Also, consistent with the observations of this study, Reeves et al. (1960) found in open-chest dogs that the relation between \(\frac{dP}{dt}_{\text{max}} \) and a measure of LV end-diastolic stretch was approximated by a straight line, whose slope was increased by epinephrine. Similarly, Quinones et al., (1976) reported that the ratio of \(\frac{dP}{dt}_{\text{max}} \) to the LV end-diastolic circumference increased in response to isoproterenol.

Most previous studies have found that \(\frac{dP}{dt}_{\text{max}} \) increases somewhat in response to elevations of arterial pressure. This increase in \(\frac{dP}{dt}_{\text{max}} \) can usually be attributed to an increase in the LV end-diastolic pressure and, thus, presumably, \(V_{\text{ED}} \) (Mason, 1969). However, Wallace et al., (1963) found, in a canine right-heart bypass preparation, that a sudden increase in aortic pressure increased \(\frac{dP}{dt}_{\text{max}} \) before the end-diastolic pressure increased. Others (Wildenthal et al., 1969; Furnival et al., 1970) have found that such sudden increases in aortic diastolic pressure do not alter \(\frac{dP}{dt}_{\text{max}} \) when it occurs prior to aortic valve opening.

Suga and Sagawa (1972) have derived the force-velocity relation from the time-varying elastance model. The force-velocity relation is related by appropriate scaling factors to the relation of \(E(t) \) to \[dE(t)/dt\]. Figure 3 of their paper shows an analog recording of \(dE(t)/dt \) obtained in an isolated heart as an intermediate step toward constructing a force-velocity relation. The peak value of \(dE(t)/dt \) or \(dE/dt_{\text{max}} \) in their figure is relatively constant during an increase in LV systolic pressure or an increase in \(V_{\text{ED}} \), but increases in response to the infusion of positive inotropic agent, epinephrine. Since \[dE(t)/dt_{\text{max}} \] is the slope of the \(dP/dt_{\text{max}}-V_{\text{ED}} \) relationship, our results are consistent with these observations of Suga and Sagawa (1972).

In one animal in this study, the \(dP/dt_{\text{max}}-V_{\text{ED}} \) relation became nonlinear at high \(V_{\text{ED}} \). This may be a manifestation of the flat portion of the Frank-Starling relationship. The time-varying elastance model treats the ventricle as a perfectly elastic structure in which pressure and volume are linearly related at all volumes. It is clear that the real LV must have a limit above which further increase in volume will not result in a continued linear increase in \(dP/dt_{\text{max}} \) or LV systolic pressure. The \(dP/dt_{\text{max}}-V_{\text{ED}} \) relation may reach this limit sooner than the \(P_{\text{ES}}-V_{\text{ES}} \) relation, since \(V_{\text{ED}} \) is larger than \(V_{\text{ES}} \). The observations of the linearity of the \(P_{\text{ES}}-V_{\text{ES}} \) relation and the data in the other animals in this study indicate that this limit is not usually reached in the physiological range of LV volumes.

The derivation of the \(dP/dt_{\text{max}}-V_{\text{ED}} \) relation described in the introduction depends on several assumptions that may not be completely accurate. First, LV volume may not be constant during isovolumic systole, as some volume is ejected into outwardly bulging mitral and aortic valves. Second, the volume correction factor \((V_o) \) may not be constant early in systole (Suga and Sagawa, 1974). Finally, \(dP/dt_{\text{max}} \) may not always occur during isovolumic systole, but instead may in some circumstances be reached shortly after aortic valve opening. This is most likely to occur after vasodilation or when the LV systolic performance is depressed (Wildenthal et al., 1969; Quinones et al., 1976). However, the agreement of our results with the predictions of the time-varying elastance model (i.e., equations 3 and 4) suggests that these factors do not have a substantial effect under the conditions of this study.

The results of this study suggest that the LV \(dP/dt_{\text{max}}-V_{\text{ED}} \) relation is a sensitive, load-independent index of LV performance. However, before this can be applied, several limitations of this study must be considered. First, this study was performed after
opening of the pericardium. Second, although the study was performed in close-chest animals, the conditions were carefully controlled. Measurements were obtained during periods of apnea to avoid the confounding influences of changes in intrathoracic pressure. The animals were treated with atropine to avoid the influences of alterations in heart rate during caval occlusion, and with atropine and propranolol to prevent reflex changes in contractility during angiotensin II administration. Finally, the \(\frac{dP}{dV} \)-\(V_{ED} \) relations were generated by acute preload reduction. The effect of changing loading conditions by other methods and the variability of the relation over time remain to be determined.

In conclusion, this study demonstrates that in chronically instrumented dogs LV \(\frac{dP}{dV} \) and the \(V_{ED} \) are linearly related during caval occlusions. The relation is not altered by arterial vasocostriction, and the slope of the \(\frac{dP}{dV} \)-\(V_{ED} \) Relation appears to be more sensitive to positive inotropic stimulation than \(E_{max} \), the slope of the \(P_{res} \)-\(V_{ES} \) relation. These results are consistent with predictions of the time-varying elastically model of the LV and support its use as a conceptual framework for the understanding of LV systolic performance.

I thank Drs. Robert A. O'Rourke and Gregory L. Freeman for their review of the manuscript; Anna Fackenthal and Debbie Palmer for typing the manuscript, and James Colston, Danny Escobedo, James Galloway, and Don Watkins for expert technical assistance. I also thank Ayerst Laboratories for donating the propranolol.

Supported in part by grants from the Texas Affiliate of the American Heart Association, and the University of Texas Health Science Center.

Address for reprints: William C. Little, M.D., Division of Cardiology/Department of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78284.

Received January 11, 1985; accepted for publication March 7, 1985.

References

Mahler F, Ross J Jr, O'Rourke RA, Covell JW (1975) Effects of changes in preload, afterload and inotropic state on ejection and isovolumic phase measures of contractility in the conscious dog. Am J Cardiol 35: 626–634

Schmidt HD, Hoppe H (1978) Preload dependence of \(\frac{dP}{dV} \)-\(V_{ES} \) and calculated \(V_{max} \) compared to the inotropic sensitivity of these indices of cardiac contractility. Basic Res Cardiol 73: 380–393

INDEX TERMS: Left ventricular \(\frac{dP}{dt} \) • Pressure-volume relations • Left ventricular performance
The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs.

W C Little

Circ Res. 1985;56:808-815
doi: 10.1161/01.RES.56.6.808

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1985 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circres.ahajournals.org/content/56/6/808

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/