Prejunctional and Postjunctional Actions of Endogenous Norepinephrine at the Sympathetic Neuroeffector Junction in Canine Coronary Arteries

Richard A. Cohen, John T. Shepherd, and Paul M. Vanhoutte
From the Department of Physiology and Biophysics, Mayo Clinic and Mayo Foundation, Rochester, Minnesota

SUMMARY. The effects of endogenous and of exogenous norepinephrine were studied in isolated rings of canine left circumflex coronary artery and its first ventricular branch. Norepinephrine was released from adrenergic nerve endings by transmural electrical stimulation and by tyramine. In rings contracted with prostaglandin \(\text{E}_2 \), transmural electrical stimulation resulted in frequency-dependent relaxations which were blocked by propranolol or tetrodotoxin; tyramine and exogenous norepinephrine caused concentration-dependent relaxations which were blocked by propranolol. The tyramine-induced relaxations also were inhibited by cocaine. The left circumflex artery was less sensitive than its branch to \(\beta \)-adrenergic activation; this difference was significant even between rings of the two vessels immediately adjacent to the branching point and was abolished by phentolamine. In the presence of propranolol, transmural electrical stimulation, tyramine and phenylephrine, produced contractions of the left circumflex artery, but not the branch; these contractions were prevented by phentolamine. Phentolamine, but not prazosin, augmented the \(\beta \)-adrenergic response of left circumflex artery to low frequency stimulation; in arteries preincubated with \(^3\)H-norepinephrine, this was accompanied by an increased overflow of tritiated neurotransmitter. The prejunctional effect of phentolamine was also evident in branch coronary arteries which exhibit no postjunctional \(\alpha \)-adrenergic responses. With high frequency stimulation, both \(\alpha \)-adrenergic antagonists equally augmented the relaxation of left circumflex artery; the efflux of tritiated norepinephrine was not different from untreated arteries. These experiments demonstrate, in isolated coronary arteries, that the primary adrenergic response to released endogenous norepinephrine is \(\beta \)-adrenergic relaxation. The prejunctional effects of nonspecific \(\alpha \)-adrenergic antagonists preclude their use in determining the importance of postjunctional coronary \(\alpha \)-adrenergic receptor activation caused by sympathetic nerve stimulation. (Circ Res 52: 16–25, 1983)

CORONARY ARTERIES contain adrenergic nerve terminals (Denn and Stone, 1976) which release norepinephrine upon stimulation (Borda et al., 1977; Rorie and Shepherd, 1980), but the action of the released neurotransmitter on coronary arterial smooth muscle remains controversial. A predominant \(\beta \)-adrenergic relaxation in response to exogenous norepinephrine is found in isolated small epicardial or ventricular branches, whereas, in the large epicardial vessels, this relaxation is opposed by \(\alpha \)-adrenergic contraction (Zuberbuhler and Bohr, 1965). Norepinephrine released from adrenergic nerves by transmural electrical stimulation causes \(\alpha \)-adrenergic contraction of medium-sized coronary arteries of the monkey, but \(\beta \)-adrenergic relaxation in those of the dog and sheep (Borda et al., 1977; Brine et al., 1979; Toda, 1981).

It is difficult to determine the direct effects of the neurotransmitter on coronary vessels in vivo, since the decrease in resistance which results from stimulation of the nerves can be attributed mainly to increased myocardial metabolism (Berne and Rubio, 1979). \(\beta \)-Adrenergic coronary vasodilation accompanies sympathetic activation resulting from hypothalamic stimulation in conscious dogs (Von Restorff and Bassenge, 1976), but the prevailing opinion is that cardiac sympathetic nerves exert a tonic \(\alpha \)-adrenergic constrictor influence on coronary resistance which persists even during severe exercise (Berne et al., 1965; Feigel, 1968; Vatner et al., 1970; Mohrman and Feigl, 1978; Orlick et al., 1978; Berne and Rubio, 1979; Murray and Vatner, 1979; Gwitz and Stone, 1981; Heyndrickx et al., 1982). This conclusion is based largely on the characterization of coronary vascular responses using nonspecific \(\alpha \)-adrenergic antagonists (e.g., phentolamine or phenoxybenzamine) which, by augmenting norepinephrine release (Stjärne, 1975; Starke and Docherty, 1980; Langer, 1981), could significantly alter the response to nerve stimulation.

The present study of isolated canine coronary arteries provides an explanation for the different conclusions which have been reached as to whether the primary effect of the sympathetic nerves on coronary vessels is constrictor or dilator. Using transmural electrical stimulation and tyramine to release norepinephrine, \(\beta \)-adrenergic relaxation was found to predominate in the left circumflex coronary artery and its first ventricular branch. In the presence of phen-
tolamine, a greater release of norepinephrine during electrical stimulation could account entirely for the observed augmented β-adrenergic relaxation.

Methods

The heart was removed from mongrel dogs (15–25 kg) following anesthesia with sodium pentobarbital (30 mg/kg, iv), anticoagulation with sodium heparin (150 units/kg, iv), and exsanguination. The left circumflex coronary artery from its origin to its first major ventricular branch (approximately 3 cm long and 2.0 mm outside diameter) and the entire epicardial portion of the branch artery (approximately 2.5 cm long and 1 mm outside diameter) were dissected free.

Organ Bath Experiments

Rings of vessel, 4 mm long, were placed in organ chambers (25 ml) filled with physiological salt solution of the following millimolar composition: NaCl, 118.3; KCl, 4.7; MgSO 4, 1.2; KH 2PO 4, 1.2; CaCl 2, 2.5; NaHCO 3, 25.0; calcium EDTA, 0.026; and glucose, 11.1. The solution was maintained at 37°C and gassed with 95% O 2-5% CO 2. The rings were connected to a strain gauge (Gould model UC2) for measurement of isometric force.

Before the actual experiments, the rings were placed at the optimal point of their length-tension relationship (Vanhoutte and Leusen, 1969) by repeated 3-minute exposures to 20 mm potassium chloride. Basal tension in the rings was increased gradually over a 90-minute period until contractions were maximal. The optimal basal tension was 14 ± 0.6 g for left circumflex rings and 13 ± 0.4 g for the branch rings (n = 18). This tension was maintained throughout the experiment.

<table>
<thead>
<tr>
<th>Incubation time (hrs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3.5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tyramine (10^{-8} M)</td>
<td>Control</td>
<td>55 ± 11</td>
<td>12 ± 6.1*</td>
<td>9.3 ± 3.8*</td>
<td>34 ± 4.2†</td>
</tr>
<tr>
<td></td>
<td>Indomethacin throughout</td>
<td>43 ± 11</td>
<td>30 ± 6.5</td>
<td>23 ± 3.4</td>
<td>20 ± 4.8</td>
<td>20 ± 5.5</td>
</tr>
<tr>
<td></td>
<td>Electrical stimulation (16 Hz)</td>
<td>Control</td>
<td>30 ± 13</td>
<td>26 ± 13</td>
<td>22 ± 5.0</td>
<td>35 ± 5.4†</td>
</tr>
<tr>
<td></td>
<td>Indomethacin throughout</td>
<td>55 ± 6.2</td>
<td>46 ± 8.9</td>
<td>37 ± 5.2</td>
<td>40 ± 8.3</td>
<td></td>
</tr>
</tbody>
</table>

Control rings were incubated in the presence of ethanol (4 × 10^{-5} M) which was present as the indomethacin solvent. In control rings, the response to tyramine was significantly less at 1 and 2 hours. When indomethacin was present throughout, there was no significant difference in the relaxation produced by tyramine or electrical stimulation in the first 2 hours. Sequential additions were made to only control rings following the first 2 hours, while responses to tyramine or electrical stimulation were elicited at the same time for comparison in rings treated with indomethacin (3 × 10^{-5} M) throughout. Electrical stimulation parameters were 0.2 msec, 10 V, 16 Hz.

† Incubation for 30 minutes in indomethacin (3 × 10^{-5} M) significantly increased the response to tyramine and electrical stimulation.

§ Cocaine (3 × 10^{-5} M) blocked the response to tyramine.

Values are means ± SEM, n = 6.
respectively, and the ED50 as that which caused 50% maximal contractile response to the agonist.

Electrical Stimulation

Adrenergic nerve endings of left circumflex and branch coronary rings were electrically stimulated with parallel rectangular platinum electrodes (1 cm², 7-mm spacing), a Grass stimulator (SD9), and a d.c. current amplifier. Since supramaximal transmural stimulation of coronary artery rings results in non-neurogenic inhibitory responses (Brine et al., 1979; Toda, 1981; Rooke et al., 1982), the current threshold for the non-neurogenic response was determined for each experiment. Rings were contracted with prostaglandin F₃₀ (2 × 10⁻⁶ M) in the presence of tetrodotoxin (10⁻⁷ M) and the maximal pulse duration at 10 V and 16 Hz which caused no relaxation was determined (pulse duration: 0.27 ± 0.02 msec, mean current 450 ± 60 mA). Following washout of tetrodotoxin, responses to these stimuli then were elicited under basal conditions or after repeated contraction with prostaglandin F₃₀ (2 × 10⁻⁶ M); relaxations were expressed as a percentage of prostaglandin F₃₀-induced tension above baseline. Frequency-response curves were obtained by allowing responses to reach maximum before increasing the frequency. The responses in the presence of α-adrenergic antagonists were obtained simultaneously with control responses and were expressed as a percentage of a 16 Hz initial response elicited just prior to a 30-minute incubation with the antagonist or control solution. Neither antagonist, in the concentrations used, had any effect on the prostaglandin F₃₀-induced contraction.

3H-Norepinephrine Displacement by Tyramine

The left circumflex artery was cut into 1-mm-wide longitudinal strips of 10–20 mg each and incubated in 3H-norepinephrine (10⁻⁶ M) in physiological salt solution maintained at 37° and gassed with 95% O₂-5% CO₂ for 120 minutes. The strips were then washed for 2 hours by serial passage in 6-ml aliquots of physiological salt solution. At the end of the washing period, efflux of tritium was at a constant rate. Strips were subsequently incubated in 2-ml aliquots of physiological salt solution and serially exposed for 10-minute periods each to physiological salt solution, prostaglandin F₃₀ (2 × 10⁻⁶ M) and prostaglandin F₃₀ with tyramine (3 × 10⁻⁵ M) in the presence or absence of propranolol (10⁻⁷ M).

3H-Norepinephrine Release by Electrical Stimulation

Longitudinal strips of left circumflex coronary artery (4–6 cm long, 2–3 mm wide, 47 ± 2.9 mg) were incubated 120 minutes in 3H-norepinephrine (10⁻⁶ M). After incubation, the tissues were rinsed in fresh physiological salt solution and mounted for superfusion (Vanhoutte et al., 1973). The strips were suspended at 4-g tension and were superfused by means of a roller pump at 3 ml/min with oxygenated physiological salt solution at 37°C. For electrical stimulation, two platinum wires (0.5 mm in diameter, 10 cm long) were placed parallel to and in contact with the strips. Except where otherwise noted, electrical impulses were 10 V, 0.2 msec duration.

After an initial washout period of 120 minutes, the superfusate was collected for 2-minute intervals (by means of a fraction collector) for estimation of the efflux of total radioactivity. Strips were electrically stimulated for 6 minutes at 2 Hz or 1 minute at 16 Hz, followed by a 36-minute washout period, during which tritium efflux reached basal levels.

Radioactivity Measurements

At the end of the experiments with 3H-norepinephrine, the strips were blotted dry, weighed, and the tritiated compounds were then extracted with 1 N acetic acid containing 0.03 mM disodium EDTA and 5 mM ascorbic acid (Verbeuren et al., 1979; Verbeuren and Vanhoutte, 1982). Fractional release of tritiated compounds was calculated as the ratio of disintegrations per minute (dpm) released per unit time to the total dpm extracted plus dpm released.

To determine the amounts of intact 3H-norepinephrine in the superfusate, we obtained samples for column chromatographic analysis by pooling three of the 2-minute samples immediately prior to and after each period of electrical stimulation. In these samples, tritiated norepinephrine was separated from its major metabolites as described previously (Verbeuren et al., 1977, 1978). Evoked efflux of tritiated norepinephrine was calculated as stimulated minus basal efflux.

Samples (1 ml) of the incubation solutions, superfusate, the extraction medium, and the fractions obtained during the column chromatographic procedure were added to 10 ml of Safety-Solve (Research Products International), and the radioactivity then was measured in a liquid scintillation spectrometer (Beckman LS 8800); corrections for quenching were made by the external standard method. All samples were counted for 10 minutes or until 10,000 cpm was reached.

Statistical Analysis

Unless otherwise noted, rings or strips from six animals were studied for each group of experiments. The data are expressed as means ± SEM. Statistical evaluation of the data was by Student’s t-test, using geometric means of the IC₅₀’s, IC₆₀’s, and ED₅₀’s when applicable. Differences were regarded as significant when their probability was greater than 95%.

Results

Inhibitory Responses to Electrical Stimulation, Tyramine and Norepinephrine

At optimal basal tension, prostaglandin F₂α (2 × 10⁻⁶ M) produced submaximal contractions which were significantly greater in left circumflex rings (12.0 ± 0.6 g) than in branch rings (8.0 ± 0.4 g). When expressed as a percentage of the maximal contraction of each ring to potassium chloride (4 × 10⁻² M), there was no significant difference between the contractile response to prostaglandin F₂α (2 × 10⁻⁹ M) in left circumflex and branch rings (37 ± 4.3 and 31 ± 5.4%, respectively).

Transmural electrical stimulation caused frequency-dependent relaxation of both left circumflex (Fig. 1) and branch artery rings contracted with prostaglandin F₂α. Initial responses to 16 Hz stimulation were significantly less in left circumflex rings than in branch rings (45 ± 4.7 vs. 78 ± 4.0% relaxation), and the frequency which produced 20% relaxation was significantly greater in the former (4.9 ± 1.0 vs. 1.5 ± 0.2 Hz).
but the left circumflex rings were significantly less sensitive compared to the branch rings (IC$_{50}$: 5.9 X 10$^{-6}$ M and 2.1 X 10$^{-6}$ M, respectively). This change occurred abruptly at the site of branching. Thus, the left circumflex ring taken from just proximal to the arterial branching point was significantly less sensitive to tyramine than the branch ring taken from just distal to the branching point, even though the rings were taken from within 2 mm of the branching point (IC$_{50}$ of left circumflex, 5.4 X 10$^{-6}$ M; branch, 2.1 X 10$^{-6}$ M). In the presence of phentolamine (5 X 10$^{-6}$ M), there was no significant difference between the IC$_{50}$ of tyramine for the two vessels (left circumflex, 4.0 X 10$^{-6}$ M; branch, 3.4 X 10$^{-6}$ M). There was no significant difference between the IC$_{50}$ of tyramine for the left circumflex rings in the presence—and that for the branch rings, in the absence—of phentolamine.

Contraction caused by electrical stimulation, tyramine, phenylephrine, and angiotensin II

Under basal conditions, electrical stimulation had no significant effect in either left circumflex or branch rings. In the presence of propranolol (10$^{-7}$ M), electrical stimulation caused frequency-dependent contractions in left circumflex rings (Fig. 1) but not in the branch.

In the presence of propranolol (10$^{-7}$ M) under basal conditions, tyramine caused concentration-dependent contractions in both left circumflex and branch artery rings (IC$_{50}$: left circumflex, 3.0 X 10$^{-7}$ M; branch 3.0 X 10$^{-7}$ M). The effect of propranolol (10$^{-7}$ M) on the displacement of norepinephrine by tyramine was determined after incubation with 3H-norepinephrine. In the presence of phentolamine (5 X 10$^{-6}$ M), the basal efflux of tritium was unaffected by propranolol or prostaglandin F$_{2\alpha}$. Tyramine caused a significant increase in tritium efflux, which was not significantly affected by the β-adrenergic blocker (Table 2).
vessel. Phenolamine \((5 \times 10^{-7} \text{ M})\) abolished the contractile response to tyramine in the left circumflex artery in the presence or absence of cocaine, but had no significant effect on that in the branch.

In the presence of propranolol \((10^{-7} \text{ M})\) and cocaine \((3 \times 10^{-5} \text{ M})\), phenylephrine caused concentration-dependent contractions of the left circumflex artery reaching a maximal contraction of 9.9 ± 1.6 g. Phenolamine \((10^{-7} \text{ M})\) and prazosin \((5 \times 10^{-8} \text{ M})\) caused a parallel shift to the right of the concentration-response curve to phenylephrine \((\text{ED}_{50} \text{ control}, 1.2 \times 10^{-6} \text{ M}; \text{phenolamine}, 1.6 \times 10^{-5} \text{ M}; \text{prazosin}, 1.1 \times 10^{-5} \text{ M})\). The response to phenylephrine was not significantly different in the presence of these concentrations of the two \(\alpha\)-adrenergic antagonists. Branch rings did not respond significantly to phenylephrine \((10^{-9} \text{ to } 10^{-4} \text{ M})\).

Angiotensin II caused concentration-dependent contractions of coronary rings which were maximal at \(3 \times 10^{-8} \text{ M}\) and averaged 3.6 ± 0.4 and 2.8 ± 0.4 g, in left circumflex and branch arteries, respectively. This represented 33 ± 10 and 32 ± 5% of the maximal contraction of each ring to potassium chloride. The sensitivity to angiotensin II was similar irrespective of the anatomical location of the rings along the left circumflex and branch artery \((\text{ED}_{50} \text{ left circumflex artery})\).

Table 2

<table>
<thead>
<tr>
<th>Condition</th>
<th>Percent fractional release*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiological salt solution</td>
<td>Prostaglandin (F_{2a})</td>
</tr>
<tr>
<td>Control</td>
<td>1.3 ± 0.1</td>
</tr>
<tr>
<td>Propranolol ((10^{-7} \text{ M}))</td>
<td>1.2 ± 0.1</td>
</tr>
</tbody>
</table>

* Results are given as percent fractional release of tritium during 10-minute incubations. All tubes contained phenolamine \((5 \times 10^{-7} \text{ M})\). Values are means ± SEM of six determinations. Prostaglandin \(F_{2a}\) did not significantly affect basal release rate. Tyramine caused a significant increase in release rate which was not significantly affected by propranolol.
Effect of α-Adrenergic Antagonists on Response to Electrical Stimulation

After a 30-minute incubation in control solution, the maximum relaxation of left circumflex rings at 16 Hz was not significantly different from the initial response. In rings incubated for 30 minutes with prazosin (5 × 10⁻⁸ M), the relaxation response was comparable to control from 0.5 to 2 Hz, but significantly greater between 4 and 16 Hz. Relaxation responses in rings preincubated with phentolamine (10⁻⁶ M) were significantly greater than control responses throughout the frequency range. The relaxation in the phentolamine-treated rings exceeded that in the prazosin-treated rings from 0.5 to 8 Hz, but was not significantly different at 16 Hz (Fig. 4). After 30 minutes of incubation in phentolamine, the relaxations of branch coronary arteries exceeded those of control rings from 1 to 4 Hz, and those of prazosin-treated rings at 1 Hz. There were no significant differences between the relaxation response of prazosin treated and control branch coronary rings (Table 3).

When left circumflex coronary strips preincubated with ³H-norepinephrine were exposed to phentolamine (10⁻⁶ M) and electrically stimulated at 2 Hz, the fractional release of tritiated compounds (Fig 5) and the ³H-norepinephrine efflux (Fig. 6) were significantly greater than that in control or prazosin (5 × 10⁻⁸ M) treated arteries. There was no significant difference in fractional release of tritiated compounds or ³H-norepinephrine efflux between control and prazosin-treated strips at 2 Hz. The fractional release of tritiated compounds and the efflux of ³H-norepinephrine evoked by 16 Hz stimulation was not significantly different between phentolamine-treated and control strips (Fig. 7). Increasing the stimulation pulse duration from 0.2 to 2 msec greatly augmented the fractional release and efflux of ³H-norepinephrine.

Discussion

The optimal basal tension determined in this study is higher than the tensions previously used in studies of coronary vascular smooth muscle (Zubebuhler and Bohr, 1965; Borda et al., 1977; Toda et al., 1981; Van Neuten et al., 1980; Brazenor and Angus, 1981). From the Laplace relationship, tension (dynes per cm²) equals the product of pressure (dynes per cm²) and radius (cm). For a coronary artery with a radius of 0.1 cm and a distending pressure of 100 mmHg (1.3 × 10⁵ dynes per cm²), circumferential wall tension would approximate 1.3 × 10⁵ dynes per cm² or 13 g (Burton, 1965). Thus, the optimal tension determined in vitro is in the range of physiological wall tension. Affinity of adrenergic receptors in arterial smooth muscle is influenced by alterations in wall tension (Raffa and Tallarida, 1981; Price et al., 1981). Transmural electrical stimulation was employed to release norepinephrine from adrenergic nerve end-
Table 3

Effect of Prazosin and Phentolamine on Response of Branch Canine Coronary Artery to Electrical Stimulation

<table>
<thead>
<tr>
<th>% Maximum initial response</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7.4 ± 2.2</td>
<td>13 ± 2.6</td>
<td>31 ± 4.8</td>
<td>51 ± 6.9</td>
<td>74 ± 6.6</td>
<td>102 ± 4.5</td>
</tr>
<tr>
<td>Prazosin (5 × 10⁻⁸ M)</td>
<td>6.2 ± 2.2</td>
<td>18 ± 4.0</td>
<td>43 ± 5.7</td>
<td>63 ± 7.1</td>
<td>90 ± 4.4</td>
<td>110 ± 3.0</td>
</tr>
<tr>
<td>Phentolamine (10⁻⁶ M)</td>
<td>12 ± 2.7</td>
<td>33 ± 4.7*</td>
<td>46 ± 6.9†</td>
<td>78 ± 8.8†</td>
<td>98 ± 9.8</td>
<td>108 ± 8.7</td>
</tr>
</tbody>
</table>

Values are means ± SEM, n = 9. Results are expressed as percentage of initial response to 16 Hz elicited just prior to 30-minute incubation of three rings with prazosin, phentolamine, or control solution. The electrical stimuli were delivered equally and simultaneously to the three vessels. Stimulation parameters were the same as those in Figure 4.

* Relaxation responses in the phentolamine-treated rings were significantly greater than in control or prazosin-treated rings.

† Relaxation responses in the phentolamine-treated rings were significantly greater than in control rings. No significant differences occurred between responses of control and prazosin-treated branch coronary arteries.

In order to compare the responses in left circumflex and branch coronary arteries to endogenous norepinephrine with those to exogenous norepinephrine, the sympathomimetic amine, tyramine, was used. The prejunctional action of adrenergic blocking drugs used to characterize these responses do not affect pharmacological displacement of norepinephrine by tyramine, but would hinder interpretation of the observed differences in sensitivity to transmural electrical stimulation (Lorenz et al., 1979; Langer, 1981; Vanhoutte et al., 1981). Since blockade of neuronal uptake prevents the indirect sympathomimetic effect of tyramine, cocaine was used to differentiate responses to tyramine which were due to the release of endogenous norepinephrine from those due to its direct effects on the arterial smooth muscle cells (Trendelenberg, 1978; Vanhoutte et al., 1981). Propranolol was employed to establish the β-adrenergic action of norepinephrine released by tyramine. Although β-adrenergic blockers are known to inhibit neuronal uptake mechanisms and thereby decrease displacement of norepinephrine by tyramine (Foo et
The popliteal artery, which is devoid of medial inner-contiguous branches of the limb arteries of the rabbit. Neurogenic responses. By indomethacin accounts for its protective action on coronary artery tone and adrenergic neurotransmission, is more sensitive to norepinephrine than the adjacent saphenous artery which has a dense medial innervation. It has been postulated that—in the latter—greater neuronal uptake is responsible for a decrease in the effective concentration of norepinephrine (Bevan and Purdy, 1973). A similar difference in innervation might also explain the change in sensitivity to tyramine and exogenous norepinephrine at the branching point of the coronary artery. Smaller branch coronary arteries are less densely innervated than is the proximal left circumflex artery (Denn and Stone, 1976). However, variations in the density of innervation are not likely to explain the difference in sensitivity observed in the present study, since phentolamine abolished the difference without affecting the response of the branch artery. These observations suggest that both endogenous and exogenous norepinephrine have an alpha-adrenergic vasoconstrictor action, which attenuates their inhibitory effect in the left circumflex, but not in the branch segment. The absence of response of the branch segment to phenylephrine suggests that it is devoid of functioning post-junctional alpha-adrenergic receptors. The abrupt decrement in sensitivity observed at the branching point is probably specific for activation of alpha-adrenergic receptors, since it is not seen with angiotensin II or prostaglandin F2α. Furthermore, the similarity in beta-adrenergic responsiveness in the presence of phentolamine suggests the parity of the beta-adrenergic receptor sensitivity in the left circumflex artery and its branch.

In the presence of beta-adrenergic blockade, electrical stimulation or tyramine cause contraction of the left circumflex vessel under basal conditions. The antagonism by cocaine of the tyramine-induced response, and the blockade by phentolamine of the contractions due to electrical stimulation and tyramine, indicate that they result from alpha-adrenergic activation by endogenous norepinephrine. The lack of response to electrical stimulation and tyramine in the absence of propranolol suggests that the primary action of endogenous norepinephrine in the left circumflex artery is beta-adrenergic inhibition of contraction which is secondarily opposed by an alpha-adrenergic component. Thus, although the level of vessel tone may affect the relative size of alpha- and beta-adrenergic responses (Bevan, 1979), the observations under basal conditions taken in conjunction with the experiments in rings contracted with prostaglandin F2α, demonstrate that the beta-adrenergic postjunctional action of norepinephrine released from sympathetic nerves predominates in the canine left circumflex coronary artery. This is unlike most other blood vessels, with the exception of the facial vein (Pegram et al., 1976), where vascular beta-adrenergic receptors are not functionally innervated, although they can be humorally activated (Russell and Moran, 1980; Cohen and Coffman, 1981; Vanhoutte et al., 1981).

Branch vessels treated with propranolol did not contract when electrically stimulated. Since contractions of the branch vessel occurred only at higher concentrations of tyramine and were not antagonized by cocaine or phentolamine, they probably are due to a direct nonadrenergic action of tyramine. In the left circumflex artery, the contraction caused by tyramine in the presence of cocaine was abolished by phentolamine, indicating that it may be due to a direct alpha-adrenergic contractile action of tyramine. These experiments further differentiate the action of neuronally released norepinephrine in the two coronary seg-

![Figure 7. Effect of phentolamine on fractional release of tritiated compounds evoked by 16 Hz stimulation in canine left circumflex coronary artery.](http://circres.ahajournals.org/Downloaded-from-by-guest-on-October-26,2017)
ments by confirming the absence of α-adrenergic receptor-mediated contraction in the branch vessel.

Prejunctional Actions of Endogenous Norepinephrine

This study demonstrates that the β-adrenergic relaxation of canine coronary artery caused by low frequency electrical stimulation is augmented by phentolamine, but not by prazosin. Phentolamine is a relatively nonselective α-adrenergic antagonist which—in addition to its postjunctional α-adrenergic effect—increases the efflux of norepinephrine from sympathetic nerve endings by blocking prejunctional α-adrenergic receptors, while, by contrast, prazosin has little prejunctional blocking effect (Davey, 1980; Langer, 1981). The experiments with phenylephrine demonstrated that the two antagonists in the concentrations used have an equal postjunctional blocking potency. Thus, the greater relaxation during low frequency stimulation seen in phentolamine-treated as compared to prazosin-treated left circumflex and branch coronary rings suggests a prejunctional effect in those treated with phentolamine. Direct evidence in support of this interpretation comes from the demonstration that phentolamine, but not prazosin, augments the fractional release of tritiated compounds and the evoked norepinephrine efflux during 2 Hz stimulation of left circumflex arterial strips.

Phentolamine did not augment the norepinephrine release caused by 16 Hz stimulation, confirming the finding that the effect of prejunctional α-adrenergic activation is small at high frequencies (Stjärne, 1975; Starke and Docherty, 1980). The failure to increase the efflux of norepinephrine at 16 Hz is not due to the inability for further norepinephrine release, as demonstrated by the experiments where the pulse duration was lengthened. Thus, the greater relaxation seen in left circumflex coronary rings treated with phentolamine, must be due to blockade of the postjunctional α-adrenergic activation caused by the large amounts of norepinephrine released at 16 Hz. This interpretation is supported by the comparable relaxation with phentolamine and the selective postjunctional α-adrenergic blocker prazosin, and by the absence of augmentation by either prazosin or phentolamine of the β-adrenergic response of the branch coronary vessels at the higher frequencies.

It is evident from these studies that norepinephrine released from coronary sympathetic nerves inhibits its own further release, presumably by activating prejunctional α-adrenergic receptors. The relative importance of the pre- and postjunctional α-adrenergic limitation of coronary sympathetic β-adrenergic vaso-dilatation should depend upon the frequency of nerve discharges and whether large or small vessels are involved. This is particularly relevant in view of the in vivo studies which have been interpreted as demonstrating a predominant α-adrenergic postjunctional constrictor effect of coronary sympathetic nerves, based on decreased coronary resistance following α-adrenergic blockade with phentolamine or phenoxybenzamine (Mohrmann and Feigl, 1978; Orlick et al., 1978; Murray and Vatner, 1979; Gwirtz and Stone, 1981; Heyndrickx et al., 1982). Even in left circumflex artery where postjunctional α-adrenergic responses occur, the prejunctional action of phentolamine during low frequency stimulation may be solely responsible for the augmented relaxation of coronary vascular smooth muscle observed in the presence of the α-adrenergic antagonist. Although physiological discharge rates of coronary sympathetic nerves are not known, they are likely to be in the range in which prejunctional inhibition is observed (Folkow, 1955). Thus, the use of nonselective α-adrenergic antagonists in establishing a postjunctional α-adrenergic coronary response to sympathetic nerve activation is subject to question. Rather, the augmented coronary vasodilation observed during severe exercise after treatment with phentolamine (Murray and Vatner, 1979) may suggest a physiological role for coronary prejunctional α-adrenergic receptors at which norepinephrine inhibits its own release.

References

Cohen et al./Coronary Sympathetic Neuroeffector Junction

Lorenz RR, Vanhoutte PM, Shepherd JT (1979) Interaction between neuronal amine uptake and prejunctional α-adrenergic receptor activation in smooth muscle from canine blood vessels and spleen. Blood Vessels 16: 113-125

Vanhoutte PM, Lorenz RR, Tyce GM (1973) Inhibition of norepinephrine-H release from sympathetic nerve endings in veins by acetylcholine. J Pharmacol Exp Ther 185: 386-394

INDEX TERMS: Canine coronary artery , Sympathetic nerve activation , β-Adrenergic receptors , Neurogenic responses
Prejunctional and postjunctional actions of endogenous norepinephrine at the sympathetic neuroeffector junction in canine coronary arteries.
R A Cohen, J T Shepherd and P M Vanhoutte

Circ Res. 1983;52:16-25
doi: 10.1161/01.RES.52.1.16

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/52/1/16