Effect of Venous Flow on Frequency of Venous Vasomotion in the Bat Wing

By Mary P. Wiedeman, Ph.D.

Investigations indicated that an elevation in venous flow caused an increase in the frequency of rhythmic contractions of the small veins in the bat wing.

Rhythmic contractions of veins are a prominent feature of the veins in the bat's wing. It has been suggested that the principle stimulus for this activity may be pressure within the vessel. That the distending force of blood pressure excites the activity of vascular smooth muscle has been pointed out by others. This investigation was carried out to determine what changes in the frequency of vasomotion would occur as a result of increasing the volume of blood per unit of time delivered to a vein from the arterial vessels.

Method

Common brown bats (Myotis and Eptesicus) were prepared for observation as described by Nicoll and Webb. The frequency of venous vasomotion was counted and expressed in cycles per minute. Readings were made at a minimum of 3 sites and a maximum of 6 and the average rate was determined. A site is defined as a segment of the vessel between two valves.

To raise the volume of blood per unit of time carried by a vein, all large veins in the wing were tied off with the exception of one, which resulted in a single open pathway for venous outflow. The activity of this vessel was observed. Nembutal (4 mg./100 Gm.) was used in these experiments to reduce the possibility of vasomotor rate changes brought about by variations in heart rate or somatic muscular activity.

An increase in total circulating fluid volume was obtained by infusion into the tail vein of dextran (6 per cent in saline). A microinjector which delivered 0.1 ml./20 min. was used for the infusion. In these animals, one wing was denervated and the other left intact.

Results

Vasomotion in Venous Branches of Normal and Denervated Wings. In 10 animals the rate of vasomotion was determined hourly over a period of 4 to 5 hours to learn the variations in both denervated and intact wings when no experimental procedures were used. In 7 of the innervated wings, a decrease in rate occurred between the initial and final reading. The increase in the remaining 3 animals averaged 2.2 c.p.m. In the denervated wings 6 showed a decrease in rate and the average increase in the 4 wings was 2.4 c.p.m.

Vasomotion in Vessels Serving as Major Pathways. In a group of 11 animals, the frequency of vasomotion in a branch was counted after Nembutal to establish a control rate and found to average 12.7 c.p.m. After ligating 3 large veins, most of the venous drainage was diverted into the branch and counts were made at intervals up to 5 hours. A significant increase in vasomotion cycles was found in all animals, the average of the group being 15.9 c.p.m. or an average increase of 25.8 per cent over the control period (fig. 1). A statistical evaluation of the changes appears in table 1.

If flow within the vein is the principle stimulus for rhythmic contractions, it was thought that increasing the amount of blood flowing into a vessel would increase the frequency of contractions. Ligation of other venous pathways was selected as the best method for keeping the larger amount of blood the vessel carried within physiologic limits and eliminating pressure changes in the arteries. Nembutal was used to keep the animal in a stable state during the experiment.

Vasomotor Rates after Infusion of Dextran. Infusion of dextran was very slow to prevent any possible myogenic or reflex activity as the result of sudden changes in pressure or volume.

From the Temple University-School of Medicine, Department of Physiology, Philadelphia, Pa.

This investigation was supported in part by research grant H-2880 from the National Heart Institute, U. S. Public Health Service.

Received for publication July 9, 1957.
in either veins or arteries. To exclude influences, if any, of central reflexes originating from increased cardiac output, one wing was denervated by sectioning the tegmental nerve near the shoulder. A remarkable increase in the diameter of arteries and veins following this procedure indicates effective removal from central control.

In a group of 10 animals, a control reading was made on a venous branch several hours after denervation of one wing and on a similar branch in the other intact wing. These animals were given 0.1 to 0.2 ml of a 6 per cent solution of dextran over a period of approximately one half hour. Frequency counts at the end of the infusion period showed an increase in all animals: an average increase in the normal wing of 3.3 c.p.m. and a smaller increase of 1.9 c.p.m. in the denervated wing.

In 9 animals whose right wings had been denervated, after 1 to 3 days to allow time for the initial effects of nerve sectioning to wear off, 0.1 ml to 0.2 ml of a 6 per cent solution of dextran were given. In all of these animals an increase of vasomotion was shown. There was an increase in the intact wing averaging 3.6 c.p.m. while the denervated wing vessels showed an average increase of 2.5 c.p.m.
On statistical evaluation, all of the infusion experiments showed significant changes in rate of rhythmical contraction and relaxation of the venous branch under observation (table 2).

**DISCUSSION**

The results support the view that flow and, possibly, pressure within the veins is an effective stimulus for rhythmic contraction of veins. In the control group of animals observed hourly, a small increase or decrease in the vasomotion was seen to occur without apparent reason. Temperature recordings by thermocouples of room air and wings showed no correlation between temperature variations throughout the day (3 degrees centigrade maximum change) and vasomotion.

Transitory changes in rates were brought about when arterial inflow increased or decreased in the struggling animal. Care was taken to make all readings during quiet periods.

In the anesthetized animals, the venous vasomotion became faster when experimental procedures caused more venous blood to be directed into a single vessel. This would seem especially significant since the changes in volume and pressure were within physiologic limits, no artificial solutions were introduced, and the arterial vessels were not directly involved.

In the infusion experiments less change in the number of cycles per minute was seen in both the acute and chronic denervated wings than in the intact wing. The explanation for this may lie in the initial difference in the resting diameter of the vessels of the two wings. Because of the increased diameter and low tone of the denervated vessels, a larger volume of fluid would be needed to produce an effective distention and consequent stretch of the smooth muscle cells.

The increase in the number of rhythmic contractions and relaxations per unit of time can be explained on the basis of stimulating the activity of smooth muscle by flow or distention. This would support Folkow’s conclusions\(^1\)\(^2\) which showed, by measurements of pressure and flow, that an elevation of blood pressure is excitatory to vascular smooth muscle. Nicoll and Webb\(^3\) have stated that tone changes in all vessels vary directly with the stretch or tension on the cells and that this mechanism is the regulator of the active vasomotion in veins and venules. The increase in rhythmic contraction of venous vessels resulting from an increase in the volume of blood delivered to them from the arterial side must be a prominent factor in venous return.

**SUMMARY**

An increase in vasomotion cycles occurs in a vein when excess blood is diverted into it by the occlusion of neighboring veins. An increase in total circulating fluid volume accelerates vasomotion in veins of both denervated and contralateral intact wings, with greater changes occurring in the intact vessels. The results support the view that pressure within the small veins is an effective stimulus for rhythmic contractions. An elevation of pressure enhances this activity which acts as an aid to venous return to the heart.

**ACKNOWLEDGMENT**

The author is indebted to Donald Tartock and Marlene Wilson for technical assistance, and to Dr. George C. Henny for the statistical evaluation of the data.

**SUMMARIO IN INTERLINGUA**

Un augmento del cyclos de vasomotion occurre in un vena si excessos de sanguine es divertite verso illo per le occlusion de un vena vicin. Un augmento del total volumine de fluido circulante accelera le vasomotion in alas enervate de vespertiliones e in alas intacte contralateral. Le alterationes in le vasos intacte es plus pronunciate. Le resultatos supporta le conception que pression intra le parve venas es un efficace stimulo pro contractiones rhythmic. Un elevation del pression promove iste activitate que age como adjuncta al retorno venose verso le corde.

**REFERENCES**


Effect of Venous Flow on Frequency of Venous Vasomotion in the Bat Wing

MARY P. WIEDEMAN

Circ Res. 1957;5:641-644
doi: 10.1161/01.RES.5.6.641

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1957 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/5/6/641

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/