Chromatography Studies of the Excretion Products after Meralluride Administration in Normal Subjects and Cardiac Patients

By JOHN H. MOYER, M.D., RICHARD A. SEIBERT, PH.D. AND CARROLL A. HANDLEY, PH.D.

Separation of the urinary excretory products of the organomercurial diuretic, meralluride (Mercuhydrin) has been possible using adsorption chromatography. Practically all of the mercury is excreted in a form closely resembling the administered meralluride. Most of the excretion occurs within the first 6 hours in both cardiac patients and normal subjects. The amount of mercury excreted as degradation products is insufficient to produce diuresis. Therefore, it is concluded that the diuretic action of meralluride depends on the specific organic mercurial molecule.

One concept for the diuretic action of organomercurial compounds is that they release inorganic mercury in the body. The inorganic mercury is thought to inhibit the renal tubular enzymes which are responsible for sodium and chloride reabsorption. Although inorganic mercury compounds, such as bichloride of mercury, do produce diuresis, they are less potent than organomercurial diuretics. The fact that all organomercurial compounds do not have diuretic action suggests that a specific organomercurial configuration is necessary. Furthermore, differences in the potencies of the various organomercurials indicate that their diuretic potency is not related to their capacity to release inorganic mercury but, instead, is inherent in the organomercurial molecule. Kessler and Pitts have shown that the mercury in the organomercurials is rapidly cleared from the blood and eliminated, whereas the nondiuretic organomercurials are slowly excreted. More direct evidence was presented by Weiner and Müller when they failed to demonstrate, by polarography, inorganic mercury in the urine during mercurial diuresis. These investigators found that mersalyl (Salyrgan) was mainly excreted as a mersalyl cysteine complex. They calculated that less than 12.5 per cent of the injected mercury was excreted in a significantly altered form.

In the current investigation meralluride (Mercuhydrin), a sodium salt of a carboxylic acid, was found to be selectively adsorbed by passing it through a chromatography column of acid aluminum oxide, an anionotropic adsorbent. Inorganic mercury and noncarboxylic mercury compounds were not adsorbed. Therefore, using meralluride as the organomercurial diuretic, the form and rate of mercury excreted in the urine were studied in dogs (fig. 1). The current report presents similar observations made on normal subjects and patients with heart failure.

Method

The adsorbent material for the chromatography column was selected after extensive trials of the known anionotropic adsorbents. Acid aluminum oxide was found to adsorb meralluride quantitatively when the latter was passed through the column. The column was prepared by packing about 5 Gm. of acid aluminum oxide into a 1.2 x 18 cm. glass column. Glass wool was used to retain the adsorbent. The solutions, containing the mercurial compounds to be separated, were passed through the column with the aid of slight suction.

Twenty milliliters of distilled water were passed through the column to quantitatively remove the nonadsorbed fraction (fraction B) of mercury (fig. 2). To elute the adsorbed mercury compound, 10 ml. of 5 per cent sodium carbonate followed by 25 ml. of distilled water were passed through the column (fraction E). These two fractions, as well as a sample of the untreated urine (unchromatographed urine), were analyzed for mercury content according to the method of Laug and Nelson. The sum of the mercury in the two fractions should approximate closely the total mercury in the urine (unchromatographed urine). In order to check the accuracy of the method, samples containing known amounts of inorganic mercury and meralluride were passed

From Department of Pharmacology, Baylor University College of Medicine, Houston, Tex.

Supported in part by a grant from the Houston Heart Association.

Received for publication May 7, 1957.

Circulation Research, Volume V, September 1957
494 CHROMATOGRAPHY STUDIES OF MERALLURIDE EXCRETION

Mercury From Degradation Products of Meralluride

Fig. 1. Total mercury excretion following meral-
luride administration (2 ml. = 78 mg. Hg) in 8 dogs. Adsorbed fraction indicated as meralluride mercury. Nonadsorbed fraction contains the degradation prod-
ucts of meralluride. The heavy line, average meral-

through the column. It was observed that each frac-
tion could be separated quantitatively.3

Two groups of individuals who received meral-
luride were studied. The first group was composed
of normal subjects without evidence of heart failure
or renal disease. The meralluride was administered
intravenously, intramuscularly, and subcutaneously
in 2 ml. doses which are equivalent to 78 mg. of
meralluride Hg. There were 6 subjects in this
group. The urine was collected in 6 hour fractions
for a total of 24 hours following the administration
of the meralluride. All 6 of the subjects were given
meralluride intravenously and intramuscularly, but
only 4 were given the drug subcutaneously.

The second group of individuals who received
meralluride consisted of 9 patients with cardiac
failure who were responsive to diuretics. The etiology
of the heart failure in all of the patients was arterio-
sclerotic heart disease. Five patients received the
meralluride intravenously and 6 received it intra-
muscularly.

Prior to administration of the meralluride, both
to the noncardiac and to the cardiac patients, two
6 hour control specimens of urine were collected.
The volume of urine during these control periods as
well as the excretory rates of sodium, potassium, and
mercury (if any) were measured.

After the meralluride was administered (2 ml. =
78 mg. meralluride Hg), the urine was collected at
6 hour intervals for the next 24 hours. Each speci-
men was passed through the previously described
chromatography column and the fractions were
analyzed for mercury. Urinary sodium and potas-
sium excretion rates were determined. The serum
electrolytes (sodium, potassium and chloride) were
found to be within normal limits in all of the patients
studied.

Results

Noncardiac subjects rapidly excreted the
drug predominantly in a form adsorbed by
the column. About 68 per cent was excreted
in the adsorbable form (meralluride mercury) in
the first 6 hours when given by the intravenous
route and 63 per cent and 64 per cent after
the intramuscular and subcutaneous routes
respectively. By the end of 24 hours, 85 per
cent had been excreted when the drug was
given intravenously and 81 per cent and 82
per cent when the drug was given intra-
muscularly or subcutaneously (fig. 2). Of the
mercury recovered, less than 3 per cent was in
the degraded (non-meralluride Hg) form fol-
lowing administration by any route. Although
the amounts are too small to be significantly
different, it appears that the major part of the
degraded form was also excreted during the
first 6 hours.

Figure 3 compares the sodium and potassium
excretion rates in total milliequivalents with
the mercury excretion in milligrams during
successive 6 hour periods following administra-
tion of meralluride. Since the different routes of
injection show such similar patterns of excre-
tion, only the intravenous route is presented
graphically. During the first 6 hours 53 mg. of
mercury was excreted in the adsorbable form
(meralluride Hg). During the same period, 168
mEq. of sodium were excreted as compared to
only 44 mEq. during the 6 hour period im-
mediately preceding the administration of
meralluride. Thus, the period of maximum
sodium, water and mercury excretion coincided,
and the curves for sodium and mercury elimina-
tion paralleled each other throughout the 24
hours. By the end of 18 hours, the sodium
excretion fell below the control values and
remained there for at least the next 6 hours.
Potassium excretion was not changed signifi-
cantly throughout the 24 hour period. Mercury
in the degraded meralluride fraction (fraction
B) comprised an insignificant amount, being
less than 1 mg. in any one period which is
insufficient to produce diuresis.

In the cardiac patients responding to meral-
luride, and in the noncardiac subjects, mer-
curry was excreted in a qualitatively similar
Fig. 2 Top. Total meralluride mercury recovered in the urine compared to nonmeralluride mercury (degradation products) excretion rate in normal subjects (mean values) comparing three routes of administration.

Fig. 3 Bottom. Comparison of the excretion rates of meralluride mercury and its degradation products of meralluride with sodium (A) and potassium excretion (C) during successive 6 hour periods. Maximum increase in sodium excretion simultaneous with maximum excretion of meralluride mercury (B). Degradation products (D) of meralluride in urine, insignificant.

manner. Here again, the maximum period of meralluride mercury excretion occurred during the first 6 hours following drug administration but the amount ranged from 29 mg. (37 per cent) to 45 mg. (58 per cent) after intravenous injection and from 13 (17 per cent) to 42 mg. (54 per cent) after intramuscular injection. Excretion rate following intravenous administration was approximately two times greater during the second 6 hour period in the cardiac patients than it was in the noncardiac subjects. After 24 hours, the total mercury excreted, which ranged from 80 to 90 per cent of the injected mercury, was about equal in the normal subjects and in the responsive cardiac patients. As in the normals, an insignifi-

Fig. 4 Top. Total mercury excretion in a patient with heart failure comparing intravenous and intramuscular administration. Excretion rate less rapid initially following intramuscular route but the total excretion about the same. Excretion of degradation products less than 5 per cent of the excreted mercury.

Fig. 5 Bottom. Excretion rates of sodium and potassium compared to those of meralluride mercury during successive 6 hour periods following the administration of 2 ml. (78 mg. Hg) of meralluride to patients in heart failure. Maximum excretion rate of meralluride mercury coincided with that of sodium following both routes of administration.

cant amount (less than 3 per cent) was excreted as degradation products (fig. 4). In 48 hours or less, the excretion of mercury was complete in all patients.

In figure 5 the sodium excretion rate in total milliequivalents when meralluride was given to the cardiac patients is summarized. When given intravenously there was a rather marked rise in sodium excretion which remained high for 18 hours but the maximum was during the first 6 hours. After intramuscular injection, there was a marked rise in sodium output also and again the maximum rate was during the first 6 hours. There was no significant effect on potassium excretion. The mercury excretion paralleled sodium excretion just as it did in the normal subjects.
Discussion

It appears from the data shown here that meralluride passes through the body, exerts its effect on the renal tubules, and appears in the urine in a form quite similar to the injected drug. By utilizing the acid adsorbent chromatography column, we have been able to separate the urine mercury into two fractions. Mercury in the degraded meralluride fraction comprised an insignificant amount, being less than 1 mg. which is insufficient to produce diuresis in any one period. The exact nature of the two fractions is unknown. Evidence from paper chromatography as well as from polarographic studies by others, indicates that even the degraded form is still an organic radical. After 6 hours about 60 to 70 per cent of the administered mercury is excreted following either the intramuscular or the intravenous route of drug administration in normal subjects. In the cardiac patients, mercury was excreted in a manner qualitatively similar to that of the normal subjects. There appeared to be a moderate delay in the cardiac patients following intramuscular administration; this was probably due to delayed adsorption in patients with an abnormal circulation and a slight increase in tissue fluid.

Burch and his associates, using radioactive mercury, found that in normal subjects excretion is almost complete in 24 hours, but takes longer in cardiac patients. He states that this could lead to cumulative toxic effects. In our series we found negligible amounts in the urine 48 hours after injection, and total mercury recovery was essentially complete during this time interval. Studies on a large number of patients receiving mercurial therapy for prolonged periods failed to show any indication of accumulation of mercury.

Summary

A method for quantitatively separating the excretory products of meralluride has been described. It has been demonstrated by this method that practically all the mercury is excreted in a form closely resembling the administered drug. The method involves the use of adsorption chromatography which separates the excretory products into two fractions. One fraction, which represents by far the larger amount, is strongly adsorbed by the column. The other fraction is readily washed through the column by distilled water. The majority of the mercury is excreted within the first 6 hours in both cardiac and normal patients as well as in laboratory animals. The total amount of mercury excreted in 24 hours was similar in noncardiac and cardiac patients and was 80 to 90 per cent of that injected. In all subjects the mercury in the degradation products was of insufficient quantity to produce the diuresis exhibited. Therefore, it seems evident that inorganic mercury could not produce the diuresis. Instead, it seems quite likely that the diuretic action depends on the organic mercurial molecule.

Summario in Interlingua

Es descripte un metodo pro le separation quantitativa del productos excretori de merallurido. Le metodo ha demonstrate que practicamente omne le mercurio es excernite in un forma multo simile al droga administrate. Le metodo se basa super le uso de chromatographia absorptional que separa le productos excretori in duo fractiones. Un de iste fractiones, le qual representa per multo le plus grande quantitate, es fortemente absorbite per le columna. Le altere fraction es prestemente lavate a transverso le columna per aqua distillate. Le plus grande portion del mercury es excernite intra le prime sex horas tanto in subjectos non-cardiac e in patientes cardiac. Illo amontava a 80 a 90 pro cento del quantitate injicite. In omne le subjectos studiate le mercurio in le productos de degradation esesse de quantitates insufficiente pro producer le diurese que esseva presente. Ergo, il pare evidente que mercurio inorganic non poteva producer le diurese. Il es plus tosto satis probable que le action diuretic depende del organic molecula mercurial.
REFERENCES


Chromatography Studies of the Excretion Products after Meralluride Administration in Normal Subjects and Cardiac Patients
JOHN H. MOYER, RICHARD A. SEIBERT and CARROLL A. HANDLEY

Circ Res. 1957;5:493-497
doi: 10.1161/01.RES.5.5.493

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1957 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/5/5/493

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/