Relation of Negative Intraventricular Pressure to Ventricular Volume

By GERHARD A. BRECHER, M.D., PH.D., AND ABBOTT T. KISSEN, PH.D.

Elastic forces of the ventricular walls produce a subatmospheric (negative transmural) pressure in the empty quiescent ventricle of open chest dogs. As fluid is added to the ventricle the negative intraventricular transmural pressures become 0 and finally positive. The resulting ventricular pressure-volume curves are S-shaped, having one limb in the negative and another in the positive pressure range. It is concluded that previously reported suction and negative intraventricular transmural pressures lasting throughout the entire diastole in ventricles with small residual volumes are caused by elastic forces which also prevail under static conditions.

It has recently been demonstrated that the nearly empty, rhythmically beating ventricle is capable of sucking fluid into its cavity. Negative intraventricular pressures and suction have been recorded not only in early diastole but throughout the entire diastole. This indicates that a sucking force exists even when the myocardium is in a relaxed state such as prevails under the relatively static conditions of late diastole. Since the ventricular residual volume was very small under the conditions of those experiments, a study was made of the relation of negative intraventricular pressure to ventricular volume under static conditions. This was done in the quiescent but viable ventricle.

METHOD

The precise establishment of the 0 level is important for the accurate recording of transmural intraventricular pressures, especially in the low pressure range. Pressure-volume determinations in the past have been done without establishing a 0 level suitable for transmural pressure measurements. Generally, previous workers considered the lowest pressure obtained in the ventricle as 0 pressure and used it as the 0 reference level. This may explain why the occurrence of negative transmural pressure in pressure-volume measurements has escaped observation in the past. In the present experiments the 0 pressure level was established precisely by submerging the ventricle in saline and taking the surface of the "saline lake" as the reference 0 point. Under such conditions subatmospheric pressures in the ventricle represent negative transmural pressures.

Nineteen acute experiments were performed in open chest dogs, ranging in weight from 9.2 to 25.9 Kg. The animals were anesthetized intravenously with sodium pentobarbital (30 mg./Kg.) and then heparinized. The experimental arrangement used for the left ventricle is illustrated in figure 1. The chest was entered between the fourth and fifth rib on the left side and the pericardium was widely incised. A rigid plastic cannula of 4 mm. internal diameter with 4 holes in the tip was inserted into the ventricle through the left atrial appendage. Through it the ventricle could be filled with known amounts of saline from buret B by opening and closing stopcock S (fig. 1). In 5 experiments intraventricular pressures were recorded with a Gregg type optical manometer M of high sensitivity. In 14 experiments pressures were read on water manometers. Pressures were registered via a polyethylene catheter (no. 260) passed inside the intraventricular cannula and extended 5 mm. beyond the cannula tip. Multiple holes at the catheter tip minimized occlusion by intraventricular structures. To establish 0 pressure, the heart was completely submerged by filling the chest with saline. A tube leading from the saline in the chest to the manometer M permitted recording of 0 pressure by closing stopcock V and opening stopcock Z.

Since it was the purpose of these experiments to determine the ventricular pressure-volume relationships under conditions of normal and near normal ventricular wall elasticity, all procedures up to this point were undertaken with the circulation still intact. The pressure-volume measurements were then started immediately after the circulation stopped, while the myocardium was still viable. The measurements were repeated twice to verify that no significant changes of the myocardium occurred. To achieve a quick circulatory standstill the ventricular inflow was stopped by tightening a ligature L around the atrioventricular junction, and the ventricular outflow was blocked by applying a clamp to the aorta and pulmonary artery at their roots.
myocardium either fibrillated, continued its rhythmical contractions, or became quiescent while the atria continued to beat. Immediately after stopping the circulation, the remaining ventricular content was expressed manually into the buret. Pressures were recorded first while the ventricle contained an inexpressible residual volume and then while it was filled from the buret with saline by increments of 1 ml. every 10 sec. In these intervals the pressures stabilized sufficiently for accurate measurements. Eight experiments were carried out for the left ventricle alone and 11 experiments for both ventricles simultaneously, using 2 burets. The saline was kept at body temperature throughout the experiment.

At the end of each experiment the content of the ventricle was again manually expressed and any remaining fluid recovered. This inexpressible amount of fluid is called "minimum residual volume." It was taken as the base fluid content of the ventricle before any amounts of saline were added for the pressure-volume determinations.

RESULTS

Figure 2 depicts a segment of an original record from a representative experiment illustrating the effect of increasing ventricular volumes on left intraventricular transmural pressures. This segment was taken 8 min. after the ventricular inflow and outflow tracts had been occluded and the ventricle had just stopped beating, although the atria were still contracting. The impacts of the atrial contractions on the manometer system can be seen as ripples in the horizontal part of the tracing. Part A is the tracing of 0 pressure. At the place marked B the ventricular content was expressed by hand whereupon the intraventricular transmural pressure fell to −128 mm. of water pressure as seen in part C. Upon the addition of 1 ml. of fluid the pressure rose from −128 to −56 mm. of water (marked D). Further increments in ventricular content of 1 ml. each resulted in relatively smaller pressure rises as illustrated by the progressively smaller steps of the tracing in part E. The intraventricular pressures remained negative until 7 ml. had been added. At that point, marked F, intramural and extramural pressures reached equilibrium and transmural pressure became 0. Further fluid additions led to positive pressures, as seen in part G.

From this one may conclude that under static conditions the negative intraventricular transmural pressure is caused by elastic forces of the ventricular wall and that the degree of negativity is inversely related to the ventricular volume.

It was of interest to see whether the elastic force would be greater immediately following ventricular contractions and would thereby alter the pressure-volume relationship existing in the quiescent ventricle. This point is illustrated in figure 3. It depicts another segment of the same record shown in figure 2. However, it was taken immediately after ventricular inflow and outflow were stopped, while the ventricles were still beating. Part A indicates 0 pressure. The tracing begins at B after the ventricular content had been expressed. Part C shows the lowest pressure level of −157 mm. of water ob-
FIG. 3. Effect of stepwise increases in ventricular volume on intraventricular transmural pressures in the weakly contracting left ventricle of a dog. Calibration as in figure 2.

CAPTION:

The fact that this level is lower than that shown in part C of figure 2 may be explained by a slight difference in evacuating the ventricle by hand. The downward directed systolic spikes in this part of the record are attributable to movement artifacts when the cannula tip came in contact with some structures during the contraction of the empty ventricle.

From this it may be concluded that any increase in the elastic force which might follow	

weak myocardial contractions does not appear to alter significantly the general level of the negative intraventricular transmural pressures prevailing under static conditions.

The typical pressure-volume relationships in both ventricles are graphically represented in figure 4. After expressing both ventricles manually, a minimal residual volume of 0.3 ml. was found in the left ventricle and 2 ml. in the right ventricle. These figures were entered in the graph as the minimal volumes at the lowest obtained pressure. Pressures in both ventricles rose with fluid additions, at first steeply, then more gradually. When the right ventricle contained 7 ml. of saline the transmural pressure became 0, whereas with the identical fluid volume the left ventricular pressure was still on the negative side (—11 mm. of water). Left ventricular pressure reached the 0 level with 12 ml. filling, although the same content on the right side produced a positive pressure of 10 mm. of water. With further fluid additions the curves cross, since the left ventricular pressure-volume curve is steeper than the right. The final upturn of the curves is indicated in figure 4 by arrows only, since those parts of the curves are well-known.5,7

The plot in figure 4 reveals (1) that a complete ventricular pressure-volume curve is S-shaped with a negative limb for small
volumes and the familiar positive limb for large volumes, (2) that the suction force of the left ventricle is greater than that of the right, (3) that the wall tension changes least in the range of 0 and slightly positive pressures (least inclination of slope) and (4) that conversely the modulus of elasticity of the walls increases with extreme degrees of emptying as well as filling.

The amount of fluid, contained in the ventricles when transmural pressure became 0 after saline additions, is given in table 1 for 17 technically reliable experiments. The average volume at 0 transmural pressure was 5.1 ml. in the right ventricle and 8.2 ml. in the left ventricle. The average heart weight was 126.2 Gm. In no case did the right or left negative intraventricular transmural pressure exceed —300 mm. of water when the ventricle was emptied as completely as possible under the experimental conditions. There does not appear to be a close correlation between ventricular volume at 0 transmural pressure and heart weight. The small sample number may explain the lack of correlation.

DISCUSSION

It has been demonstrated by these experiments that under static conditions elastic forces of the ventricular walls tend to expand the ventricular cavities and thereby produce negative intraventricular transmural pressures. The effect of these forces becomes greater the smaller the ventricular volume.

These observations can be applied with some reservation to the beating heart. They indicate that a ventricle with a small residual volume would create a negative transmural pressure and hence suction when the myocardium is relaxed, such as would be the case toward the end of diastole. The existence of an elastic force under static conditions explains the previously described phenomenon of negative intraventricular pressures and ventricular filling by suction which lasted throughout the entire diastole.

The elastic forces may be the same as those which Rushmer and his co-workers have postulated to occur during ventricular contractions because of stretching of connections between different ventricular muscle layers and because of the compression of the myocardial fibers of the inner layers of the myocardium by the relatively greater contraction of the outer as compared to the inner layers. Rushmer has called these forces "interfascicular tension" which tend to restore the ventricular cavities.

Table 1—Ventricular Volume Present at Zero Intraventricular Transmural Pressure

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>Negative intraventricular pressure after expressing ventricle (ml.)</th>
<th>Minimal residual volume after expressing ventricle (ml.)</th>
<th>Added volume to attain zero pressure (ml.)</th>
<th>Total volume to attain zero pressure (ml.)</th>
<th>Weight of heart (Gm.)</th>
<th>Weight of dog (Kg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-23</td>
<td>0.7</td>
<td>5.8</td>
<td>6.5</td>
<td>87.0</td>
<td>12.4</td>
</tr>
<tr>
<td>2</td>
<td>-83</td>
<td>2.3</td>
<td>20.2</td>
<td>22.5</td>
<td>282.0</td>
<td>30.6</td>
</tr>
<tr>
<td>3</td>
<td>-208</td>
<td>1.5</td>
<td>3.3</td>
<td>4.8</td>
<td>20.0</td>
<td>14.0</td>
</tr>
<tr>
<td>4</td>
<td>-70</td>
<td>7.3</td>
<td>10.0</td>
<td>17.3</td>
<td>142.0</td>
<td>15.9</td>
</tr>
<tr>
<td>5</td>
<td>-160</td>
<td>0.5</td>
<td>8.0</td>
<td>8.5</td>
<td>63.0</td>
<td>9.2</td>
</tr>
<tr>
<td>6</td>
<td>-186 -207</td>
<td>0.3</td>
<td>3.7</td>
<td>2.5</td>
<td>4.0</td>
<td>2.8</td>
</tr>
<tr>
<td>7</td>
<td>-200 -40</td>
<td>0.3</td>
<td>3.7</td>
<td>2.5</td>
<td>4.0</td>
<td>2.8</td>
</tr>
<tr>
<td>8</td>
<td>-242 -235</td>
<td>0.6</td>
<td>4.6</td>
<td>2.6</td>
<td>5.2</td>
<td>3.8</td>
</tr>
<tr>
<td>9</td>
<td>-275 -180</td>
<td>1.6</td>
<td>8.0</td>
<td>2.0</td>
<td>9.6</td>
<td>6.3</td>
</tr>
<tr>
<td>10</td>
<td>-300 -80</td>
<td>0.8</td>
<td>9.2</td>
<td>3.6</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>11</td>
<td>-130 -120</td>
<td>1.4</td>
<td>3.6</td>
<td>2.4</td>
<td>5.0</td>
<td>3.7</td>
</tr>
<tr>
<td>12</td>
<td>-255</td>
<td>0.4</td>
<td>3.4</td>
<td>3.8</td>
<td>164.0</td>
<td>20.6</td>
</tr>
<tr>
<td>13</td>
<td>-300 -240</td>
<td>0.2</td>
<td>5.5</td>
<td>3.4</td>
<td>6.0</td>
<td>4.0</td>
</tr>
<tr>
<td>14</td>
<td>-150 -180</td>
<td>0.4</td>
<td>5.0</td>
<td>3.4</td>
<td>5.4</td>
<td>4.2</td>
</tr>
<tr>
<td>15</td>
<td>-288 -85</td>
<td>0.6</td>
<td>5.0</td>
<td>3.2</td>
<td>5.6</td>
<td>2.2</td>
</tr>
<tr>
<td>16</td>
<td>-75 -109</td>
<td>1.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>8.2</td>
</tr>
<tr>
<td>17</td>
<td>-250 -250</td>
<td>0.6</td>
<td>5.0</td>
<td>4.2</td>
<td>8.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Average</td>
<td>-192</td>
<td>1.2</td>
<td>7.0</td>
<td>3.4</td>
<td>8.2</td>
<td>5.1</td>
</tr>
</tbody>
</table>
toward their diastolic dimensions. It is reason-
able to assume that similar physical forces of
interfascicular tension would develop regard-
less of the process which induces the compres-
sion and wrinkling of the deeper layers of the
myocardium, that is, whether it is brought
about by artificial means such as manual ex-
pression or aspiration of the ventricular content
or by a relatively greater contraction of the
external layers of the myocardium. In either
case some portion of the myocardium is
elastically deformed in such manner that it
tends to expand the ventricular cavity.

The elastic force demonstrated under static
conditions may be smaller than that existing
immediately following ventricular relaxation,
especially if the relaxation occurs quickly after
a strong myocardial contraction. Our experi-
ments cannot reveal information on this point.
It can only be stated that weak myocardial
contractions do not appear to change the
elastic forces from those observed under static
conditions (compare figs. 2 and 3).

Our results indicate that the elastic forces
responsible for ventricular filling by diastolic
suction under relatively static conditions can
only come into play when the residual volume
of the ventricle is below a certain amount, and
that knowledge of this volume would aid in
predicting the possible contribution of diastolic
suction to ventricular filling under various
conditions.

Summary

The relationship of negative intraventricular
transmural pressure to ventricular volume was
studied under static conditions in acute
experiments on anesthetized open chest dogs.
Ventricular inflow and outflow were blocked
and intraventricular transmural pressures of
the quiescent but still viable ventricles were
measured after 0 transmural pressure was
established by submerging the heart in saline.

Manual expression of the ventricular content
always resulted in negative intraventricular
transmural pressures. For 17 experiments the
average amount of fluid added to the right and
left ventricles to raise negative transmural
pressures to 0 was 5.1 and 8.2 ml respectively,
in hearts of 126.2 Gm. average weight.

The relationship of volume to negative
transmural pressure represents a negative limb
in addition to the known positive limb of the
ventricular pressure-volume curve. Both limbs
form an S-shaped curve in which the least
pressure-volume change occurs approximately
at 0 transmural pressure.

It is concluded that elastic forces tend to
restore diastolic ventricular dimensions under
static conditions in the nearly empty ventricle
and that these forces are in part responsible
for the intraventricular suction, which has
been demonstrated previously to occur
throughout the duration of diastole when the
ventricular residual volume is small.

Summario in Interlingua

Le relation inter negative pression trans-
mural intraventricular e volumine ventricular
eseva studiate sub conditiones static in
experimentos acute con anesthesiate canes a
thorace aperte. Influxo e effluxo ventricular
eseva blocate, e le pressiones transmural
intraventricular del quiescente sed ancora
viable ventriculos eseva mesurate post que le
pression transmural zero habeva esseva establite
per submerger le corde in solution salin.

Le expression manual del contento ventricu-
lar resultava semper in negative pressiones
transmural intraventricular. In 17 experi-
mentos, le quantitate medie de fluido addite al
dextere e sinistre ventriculos pro elevar nega-
tive pressiones transmural al nivello zero
eseva 5,1 e 8,2 ml respectivemente, con
cordes de un peso medie de 126,2 g.

In le curva pro pression e volumine ventricu-
lar, le relation inter volumine e negative
pression transmural permette le addition de un
branca negative al cognoscite branca positive.
Le duo brancas insimul produce un curva in
forma de S. In illo le alteration minimal de
pression como function de volumine occurre
approximativemente al nivello zero del pression
transmural.

Es formulate le conclusion que fortias elastic
tende a restaurar le dimensiones ventricular
diastolic sub conditiones static in le quasi vacue
ventriculo e que iste fortias es in parte respons-
sable pro le succion intraventricular que ha
previemente esseva demonstrate como occurr-
entia coincidente con le integre duration del
diastole quando le residue volumine ventricular
es parve.
Medical Reading and Writing

The success of a scientific article is not measured by the number of reprints requested, nor by the number of persons who read the communication. Its impact is determined by the number who read it critically and gain by comparing what they and the author, respectively, have observed and inferred.

In an essay on how to read medical literature Allan Gregg has stressed the point that "knowing what not to read becomes a cardinal point of progress in the general task of learning how to read." Contributors to the cardiovascular literature who hope that their work will add a brick or two to the building of the wall of knowledge, can profit from perusal of Gregg's admirable exposition. He examines a number of faults of medical writing:

1. Expression of ideas in terms familiar to the author but not to most of his readers.
2. Conversion of the simple into the more complex by means of formulas, instead of the reverse.
3. Failure to make the vague more precise.
4. Tiresome use of notational systems difficult to grasp.
5. Lack of correct modifiers of the subject, verb and object, such as all or some, always or sometimes, only, etc.
6. Obliviousness of the fact that "results usually come from many causes not one."
7. Use of "good horse sense" instead of laws of probability in assessing the plausibility of deductions.
8. Inability to keep on the track in reasoning, facetiously styled "derailment of reason."

Relation of Negative Intraventricular Pressure to Ventricular Volume
GERHARD A. BRECHER and ABBOTT T. KISSEN

Circ Res. 1957;5:157-162
doi: 10.1161/01.RES.5.2.157

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/5/2/157

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/