Role of Prostacyclin in the Preservation of Ischemic Myocardial Tissue in the Perfused Cat Heart

HARUO ARAKI AND ALLAN M. LEREF

SUMMARY Prostacyclin (PGI₂) and some of its major breakdown products (6-keto-PGF₁α, 6-keto-PGE₁α, and 13,14-dihydro 6,15-diketo-PGF₁α) were studied in an isolated perfused cat heart preparation during myocardial ischemia. At an infusion rate of 10 ng/g heart weight per minute, PGI₂ and the related compounds caused no changes in perfusion pressure, contractile force (CF), the first derivative of the contractile force (dF/dt), and heart rate in control hearts perfused at coronary flows of 20–35 ml/min. Induction of global ischemia by perfusion at 0.6 to 0.7 ml/min for 120 minutes resulted in a significant release of creatine kinase (CK) activity and compounds having a free amino-nitrogen group into the perfusate. Ischemic hearts exhibited an increase in resting tension of 2.3 ± 0.2 g, mean ± SEM. Upon reperfusion, untreated ischemic hearts showed a partial restoration of mechanical performance, CF = 43 ± 5%, and dF/dt = 40 ± 5% of control. PGI₂ infusion inhibited the ischemic-induced CK release and the increase in perfusate amino-nitrogen concentration. Resting tension also remained low (i.e., 0.8 ± 0.1 g). Recovery of CF and dF/dt upon reperfusion was significantly higher (86 ± 8% and 88 ± 10%, respectively) than in the untreated ischemia group. Myocardial CK activity was significantly higher in PGI₂-infused hearts (35.8 ± 2.6 IU/mg protein) compared to those infused with its vehicle (26.3 ± 2.8, P < 0.01). Breakdown products of PGI₂ only slightly protected against ischemia. PGI₂ is beneficial in myocardial ischemia in vitro, even without its well known action preventing platelet aggregation and independent of its induction of coronary vasodilation. Circ Res 47: 757–763, 1980

PROSTACYCLIN (PGI₂) is produced primarily by the endothelial cells of blood vessels and is a potent inhibitor of platelet aggregation (Moncada et al., 1976), thus potentially playing an important role in maintaining flow within blood vessels. PGI₂ is also a potent vasodilator in many organs including the heart (Dusting et al., 1977; Ogletree et al., 1978). Recently, PGI₂ has been shown to be beneficial in circulatory shock (Lefer et al., 1979), myocardial ischemia (Ogletree et al., 1979), cerebral ischemia (Hallenbeck and Furlow, 1979), and in animals and patients in arteriosclerosis obliterans (Szczeklik et al., 1979). We have reported previously a cytoprotective effect of PGI₂ during hypoxic perfusion of the liver independently of its effects on platelet aggregation and vascular tone (Araki and Lefer, 1980a). The major protective mechanism in the hypoxic liver appears to be preservation of cell integrity. Others have reported the cytoprotective effect of PGI₂ on gastric mucosal lesions produced by ethanol (Robert et al., 1978). Thus it is important to examine the direct effect of PGI₂ on ischemic myocardial injury using a constant flow controlled isolated heart perfused without blood cells to eliminate the actions of PGI₂ on the coronary vasculature and on platelet aggregation. This study was performed to clarify the role of PGI₂ as well as some of its breakdown products in preserving cell integrity during myocardial ischemia and to clarify the mechanisms of any potential beneficial effect.

Methods

Cats of either sex weighing 2.6–3.3 kg were anesthetized by intravenous administration of sodium pentobarbital (30 mg/kg), and were given heparin (500 U/kg) intravenously. The heart was excised rapidly, placed in Krebs-Henseleit solution, and mounted in a siliconized glass Langendorff perfusion apparatus. The heart was perfused retrogradely through the aorta with 250 ml of Krebs-Henseleit solution titrated to pH 7.3. Oxygen tension of the perfusate was maintained at 475–500 mm Hg by bubbling a gas mixture of 95% O₂ + 5% CO₂ through the perfusate within the reservoir. A 30-minute equilibration period was employed before recirculation of the perfusate to the heart to allow all blood to be flushed out of the system. Recirculation of the perfusate was then maintained for the remainder of the experiment. The flow rate of the pump was adjusted to yield a coronary perfusion pressure of 50–60 mm Hg. This provided a fixed flow rate of 20–35 ml/min in each heart except during the ischemic period. A Haake constant-temperature circulator was used to maintain perfusate temperature at 37.0 ± 0.2°C at the inflow to the...
heart. Coronary perfusion pressure was measured by a Statham P23Db pressure transducer through a cannula positioned at the inflow tubing. Surgical silk was sutured to the apex of heart and connected to a force displacement transducer (Grass FT03C), through a pulley, thus measuring the contractile force of the heart. Diastolic tension was set at 0.5 g initially. The first derivative of contractile force (dF/dt) was measured by a differentiating coupler (Beckman, Type 9879), and all variables were displayed on an oscillographic ink-writing recorder (Beckman, type R411). Heart rate was measured by counting the contractions for 60 seconds at a paper speed of 10 mm/sec. Ischemia was induced by reducing the coronary flow to 0.6–0.7 ml/min at a perfusion pressure of 15–20 mm Hg. Two hours after the onset of ischemia, each heart was reperfused at the pre-ischemic flow rate for an additional 30 minutes. The coronary effluent was sampled each 30 minutes and used for the measurement of creatine kinase (CK) activity and amino-nitrogen concentration. At the end of each experiment, transmural tissue samples were taken from the free wall of the left ventricle and used for the measurement of tissue CK activity and water content.

Analytical Procedures

Perfusate Po2 was determined every 30 minutes by use of a blood gas analyzer (Instrumentation Labs., model 313). At the end of each experiment, approximately 0.2 g of cardiac tissue sample was minced, suspended in a solution of cold 0.25 M sucrose, containing 1 mM EDTA and 0.1 mM mercaptoethanol (1:10, wt/vol), and homogenized by a Polytron (Brinkman, PCU-2) homogenizer. Homogenates were centrifuged at 36,000 × g for 30 minutes, and the supernatant was used for the measurement of CK activity and protein concentration. Protein concentration was measured by the biuret method. CK activity was measured by the method of Rosalki (1967) at 25°C and expressed as IU/ml for perfusate or IU/mg protein for tissue. Perfusate amino-nitrogen concentrations were measured using the ninhydrin method (Kabat, 1961) and expressed as μmoles serine/ml of perfusate. To determine the water content of the tissue, about 1 g of heart sample was blotted carefully on filter paper, wet weight measured, and the tissue sample dessicated in a drying oven at 60°C for 2–3 days until the tissue weight became constant. Water content was expressed as ml/g dry tissue.

Drugs

PGI2 and some of its metabolites and breakdown products, 6-keto-prostaglandin F1α (6-keto-PGF1α), 6-keto-prostaglandin E1 (6-keto-PGE1), 13,14-dihydro-6,15-diketo-prostaglandin F1α (13,14-dihydro-6,15-diketo PGF1α) were dissolved in 100% ethanol until use. Before each experiment, PGI2 was diluted to a suitable concentration with 1 mM Tris buffered to pH 10.0, and its metabolites were diluted with 1 mM Tris solution at pH 8.0. Each drug was infused at a rate of 10 ng/g heart weight per minute starting 15 minutes prior to ischemia and continuing throughout the experiment. Heart weight ranged from 12 to 19 g. The vehicle for PGI2 (i.e., 1 mM Tris at pH 10.0) was infused at the same rate of 0.3 ml/hr as PGI2. The vehicle at both pH 8 and 10 was found to exert no detectable effect on cardiodynamic or biochemical measurements.

Statistics

All values described in the text, figures, and tables are means ± SEM. Significance of results were determined using linear regression analysis and confirmed by Student’s t-test for unpaired data. P values of less than 0.05 were considered statistically significant.

Results

Figures 1, 2, and 3 show representative tracing from three experimental groups. As shown in Figure 1, infusion of PGI2 at a rate of 10 ng/g heart weight per minute induced no significant change in the perfusion pressure, contractile force, dF/dt, and heart rate. At higher infusion rates (i.e., 30 ng/g heart weight per minute), a significant drop in coronary perfusion pressure was observed (data not shown). When normoxic hearts were perfused with PGI2, none of the variables changed significantly throughout the experiment (Fig. 1). However, in the ischemic groups, reduction of coronary flow induced a transient increase in contractile force and dF/dt in the presence of either PGI2 or its vehicle, followed by cardiac arrest in diastole within 2 minutes in both situations (Figs. 2 and 3). Upon reperfusion, the heart receiving the vehicle showed a transient increase in contractile force and dF/dt followed by cardiac arrest (Fig. 3). The PGI2 infusion was started at the arrow and continued throughout the experiment. PGI2 showed no effect on these variables in non-ischemic control hearts.
Figure 2. Effect of PGI₂ vehicle infusion (equivalent volume) on perfusion pressure (PP), contractile force (CF), and the first derivative of contractile force (dF/dt) during ischemic perfusion. Upon reperfusion, the heart showed a poor recovery of CF (40% of 0 minute) and dF/dt (20%). The vehicle was given for 150 minutes.

Figure 3. Effect of PGI₂ infusion (10 ng/g heart weight per minute) for 150 minutes on perfusion pressure (PP), contractile force (CF), and the first derivative of contractile force (dF/dt) during ischemic perfusion. Upon reperfusion, the heart showed good recovery of CF (90%) and dF/dt (80%).

In the present study, significant improvement of cardiac function and moderation of ischemic depletion of tissue CK activity by PGI₂ were observed.

**Discussion**

In the present study, significant improvement of cardiac function and moderation of ischemic depletion of tissue CK activity by PGI₂ were observed.
TABLE 1 Percent Recovery of Hemodynamic Variables after Reperfusion

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Contractile force</th>
<th>dF/dt</th>
<th>Coronary vascular resistance</th>
<th>Heart rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control + PGI₂</td>
<td>8</td>
<td>104 ± 6</td>
<td>104 ± 11</td>
<td>86 ± 4</td>
<td>97 ± 4</td>
</tr>
<tr>
<td>Ischemia + vehicle</td>
<td>10</td>
<td>43 ± 5</td>
<td>40 ± 3</td>
<td>98 ± 7</td>
<td>94 ± 5</td>
</tr>
<tr>
<td>Ischemia + PGI₂</td>
<td>9</td>
<td>86 ± 8*</td>
<td>88 ± 10*</td>
<td>81 ± 6</td>
<td>92 ± 4</td>
</tr>
</tbody>
</table>

Values are means ± SEM expressed as percent of zero time value, n = number of hearts perfused in each group.
* P < 0.001 compared to Ischemia + vehicle.

upon reperfusion following 120 minutes of ischemia. Since the perfusate included no platelets, the beneficial action of PGI₂ in the isolated perfused cat heart does not appear to depend on prostacyclin's inhibitory effect on platelet aggregation, which occurs in myocardial ischemia in vivo (Vik-Mo, 1978; Ogletree et al., 1979; Leinberger et al., 1979). In addition, total coronary flow was controlled by a constant flow pump. During reperfusion, coronary vascular resistance did not differ between the ischemic heart given PGI₂ and that given the vehicle. Thus, it seems unlikely that enhancement of tissue perfusion is a major factor in the recovery observed following PGI₂ infusion. Of course, we cannot completely exclude the possibility of effects of PGI₂ on shunt flow or distribution of myocardial flow, or on the microcirculation. Whatever the precise mechanism of action of PGI₂, its beneficial effect is manifested during the ischemic period, as evidenced by retarding CK and aminonitrogen release and by lower resting tension. Furthermore, the total coronary flow is so low (e.g., 0.6-0.7 ml/min) during the ischemic period that any potential effect of PGI₂ on nutritive flow would unlikely be of sufficient magnitude to account for the protective effect. Furthermore, PGI₂ does not improve the transmural distribution of coronary flow during ischemia (i.e., endocardial to epicardial flow ratio) (Lefer and Smith, 1979; Jentzer et al., 1979). Thus, the beneficial effect of prostacyclin in postmyocardial ischemia reperfusion is independent of its antiaggregation effect in platelets and very likely independent of its vasodilator action.

PGI₂ also showed no significant effect on contractile force, dF/dt, and heart rate at the dose employed, confirming the previous report of a lack of inotropic effect on papillary muscles (Lefer et al., 1978) and in intact dogs (Jentzer et al., 1979). The increase in contractile force and dF/dt just after the onset of ischemia was comparable in hearts given PGI₂ or its vehicle. Furthermore, the interval between the induction of ischemia and cardiac arrest was similar between the two ischemia groups; hearts from both groups uniformly arrested (i.e., standstill) throughout the entire ischemic period.

**FIGURE 4** Cardiac resting tension at 120 minutes. Brackets indicate standard errors of the mean. Numbers inside bars represent number of experiments in each group. Ischemic hearts given PGI₂ showed a significant decrease in the resting tension compared to the ischemic hearts given vehicle, P < 0.001.

**FIGURE 5** Changes in the perfusate CK activity in three experimental groups. Points represent means and brackets indicate standard errors of means. At 60, 90, and 120 minutes, ischemic hearts given PGI₂ showed significantly lower CK activity compared to ischemic hearts given vehicle (P < 0.005 or P < 0.001).
Thus, the protective effect of PGI₂ on ischemia seems not to be due to any effect on cardiac work or to modifying myocardial oxygen demand.

The precise molecular mechanism of the cyto-

protective effect of PGI₂ during ischemia and after reperfusion is not completely understood at present. Prostacyclin could metabolically enhance the glycolytic high energy phosphate generation during myocardial ischemia. However, there are no data available on an affect of PGI₂ to support or refute this possibility.

In the present experiments, cardiac resting tension increased significantly during ischemia compared to control perfusion, and those hearts with high resting tensions were found to be rigid, upon tissue sampling. The resting tension of the heart is thought to reflect the free calcium level within the cardiac myocytes. In contrast, PGI₂ inhibited the rise in resting tension, and hearts given PGI₂ were not rigid after ischemia. It is possible that PGI₂ may have an inhibitory effect on calcium accumulation within the myocyte during ischemia. Such calcium accumulation is known to be detrimental in myocardial and liver ischemia (Chien et al., 1979; Chien et al., 1978). However, no data on the effect of PGI₂ on calcium metabolism are currently available.

Cardiac lysosomes includes several acid hydro-

lyases including proteases and phospholipases. If these enzymes are released into the cytoplasm, they may contribute to the degradation of structural proteins and membrane phospholipids. During ischemia, leakage of lysosomal enzymes is reported to occur before the irreversible damage of myocardium (Wildenthal et al., 1978; Decker and Wildenthal, 1978). PGI₂ has been reported to be a potent stabilizer of lysosomes, possessing a much higher potency than glucocorticoids in lysosomal-enriched fractions of cat liver homogenates (Lefer et al., 1978). PGI₂ also stabilizes lysosomes in the isolated perfused cat liver (Araki and Lefer, 1980a) and in ischemic myocardium of intact animals (Ogletree et al., 1979). Furthermore, other agents that stabilize lysosomes were found to have cytoprotective effect in the isolated perfused cat liver (Carlson and Lefer, 1976; Araki and Lefer, 1980b). Thus, it is possible that the potent stabilizing action of PGI₂ on lysosomes is an important aspect of the mechanism responsible for the cytoprotective effect during ischemia observed in the present study.

None of the PGI₂ breakdown products studied provided a dramatic protective action against myocardial ischemia compared to the effects of prostacyclin. The major chemical breakdown product of PGI₂, 6-keto PGF₁α, showed no significant cytoprotective or hemodynamic action during ischemia. Recently, 6-keto PGE₁ has been found to be a biometabolite of PGI₂ in the liver (Wong et al., 1980), and is reported to be a potent vasodilator (Quilley et al., 1979) and inhibitor of platelet aggregation (Lee et al., 1979). Moreover, 6-keto PGE₁ has a beneficial effect in traumatic shock in rats (Araki and Lefer, 1979). However, the cytoprotective action of 6-keto PGE₁ during myocardial ischemia was minimal, exhibiting only modest preservation of cardiac function. Only perfusate CK

---

**Figure 6** Myocardial CK activities from three experimental groups. Brackets indicate standard errors of mean and numbers at the bottom of bars indicate the number of experiments. Ischemic hearts given PGI₂ showed significantly higher tissue CK activity compared to ischemic hearts given vehicle (P < 0.05).

**Figure 7** Changes in amino-nitrogen concentration during 30 and 60 minutes of ischemia. Brackets indicate standard errors of mean, and numbers at the bottom of bar represent the number of experiments. Ischemic perfused hearts given PGI₂ showed significantly smaller increases of perfusate amino-nitrogen concentration at both 30 and 60 minutes compared to ischemic hearts given vehicle, P < 0.025 and P < 0.05, respectively.
TABLE 2  Effects of Prostacyclin Breakdown Products on the Response to Global Ischemia in the Perfused Cat Heart

<table>
<thead>
<tr>
<th>Index of function or integrity</th>
<th>Control + vehicle (4)</th>
<th>Ischemia + vehicle (7)</th>
<th>Ischemia + 6-keto PGF&lt;sub&gt;1α&lt;/sub&gt; (4)</th>
<th>Ischemia + 6-keto PGE&lt;sub&gt;1&lt;/sub&gt; (6)</th>
<th>Ischemia + 13,14-dihydro 6,15-diketo PGF&lt;sub&gt;1α&lt;/sub&gt; (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfusate CK at 120 min (IU/ml perfusate)</td>
<td>0.12 ± 0.04</td>
<td>0.75 ± 0.09</td>
<td>0.82 ± 0.17</td>
<td>0.30 ± 0.13*†</td>
<td>0.59 ± 0.16</td>
</tr>
<tr>
<td>Tissue CK (IU/mg protein)</td>
<td>36.1 ± 2.3</td>
<td>26.3 ± 2.8</td>
<td>22.7 ± 2.6</td>
<td>27.8 ± 2.7</td>
<td>25.0 ± 1.8</td>
</tr>
<tr>
<td>Perfusate amino-nitrogen (A at 60 min)</td>
<td>0.10 ± 0.03</td>
<td>0.62 ± 0.09</td>
<td>0.74 ± 0.09</td>
<td>0.50 ± 0.06*</td>
<td>0.38 ± 0.12</td>
</tr>
<tr>
<td>Water content (ml/g dry wt)</td>
<td>4.46 ± 0.13</td>
<td>5.31 ± 0.19</td>
<td>5.01 ± 0.21</td>
<td>4.67 ± 0.12†</td>
<td>4.71 ± 0.08†</td>
</tr>
<tr>
<td>Contractile force (% of initial)</td>
<td>110 ± 0.12</td>
<td>43 ± 5</td>
<td>48 ± 3</td>
<td>59 ± 8††</td>
<td>43 ± 5</td>
</tr>
<tr>
<td>dF/dt (% of initial)</td>
<td>103 ± 3</td>
<td>40 ± 5</td>
<td>43 ± 9</td>
<td>56 ± 10</td>
<td>71 ± 7**†††</td>
</tr>
<tr>
<td>Resting tension at 120 min (g)</td>
<td>0.3 ± 0.1</td>
<td>2.3 ± 0.18</td>
<td>3.4 ± 0.6</td>
<td>1.8 ± 0.4*</td>
<td>1.2 ± 0.3**†††</td>
</tr>
</tbody>
</table>

All values are means ± SEM for final values (i.e., 2.5 hours post-ischemia, except where indicated as different times). Numbers in parentheses are numbers of experiments in each group.

* P < 0.05 from ischemia + 6 keto PGF<sub>1α</sub>; † P < 0.01 from ischemia + vehicle.

Acknowledgments

We gratefully acknowledge the technical assistance of Maureen Messenger during the course of these investigations. We also thank Dr. Udo Axen of The Upjohn Company, Kalamazoo, Michigan, for the generous supply of prostacyclin and its metabolites used in this study.

References


Araki H, Lefer AM (1980b) Lysoosomal stabilizing effects of two non-steroidal anti-inflammatory agents in the hypoxic liver. Naunyn Schmiedebergs Arch Pharmacol 311: 79-84

Carlson RP, Lefer AM (1976) Protection of hypoxic cytotoxicity by glucocorticoid in the liver. Inflammation 1: 347-357


Decker RS, Wildenthal K (1978) Sequential lysosomal alterations during cardiac ischemia. II. Ultrastructural and cytochemical changes. Lab Invest 38: 662-673

Dusting GD, Moncada S, Vane JR (1977) Prostacyclin (PGX) is the endogenous metabolite of arachidonic acid which relaxes coronary arteries. Prostaglandins 12: 3-15

Hallenbeck JM, Furlow TW (1979) Prostaglandin I<sub>2</sub> and indomethacin prevent impairment of post-ischemic brain reperfusion in the dog. Stroke 10: 629-637


Lefer AM, Ogletree ML, Smith JB, Silver MJ, Nicolasou KC, activity and tissue water were significantly lower than in untreated ischemic hearts. Similarly, 13,14-dihydro 6,15-diketo PGF<sub>1α</sub>, a major enzymatic breakdown product of PGI<sub>2</sub>, showed no significant protection regarding CK or amino-nitrogen release during ischemia, although it partially inhibited the rise in resting tension observed during ischemia, and dF/dt recovery was significantly improved by this metabolite. Thus, a dissociation of CK release and cardiac function was observed during the infusion of 6-keto PGE<sub>1</sub> and 13,14-dihydro 6,15-diketo PGF<sub>1α</sub>. At present, the mechanism of this dissociation is not known.

In summary, prostacyclin significantly counteracts the deleterious effects following reperfusion in the ischemic heart. PGI<sub>2</sub> seems to have a direct cytoprotective effect on ischemic myocardial independent of its inhibitory effect on platelet aggregation and of its coronary vasodilator action. This cytoprotection is consistent with the results of earlier studies of protection of ischemic tissue by prostacyclin (Ogletree et al., 1979; Robert et al., 1978) in the intact animal.

References


Araki H, Lefer AM (1980b) Lysoosomal stabilizing effects of two non-steroidal anti-inflammatory agents in the hypoxic liver. Naunyn Schmiedebergs Arch Pharmacol 311: 79-84

Carlson RP, Lefer AM (1976) Protection of hypoxic cytotoxicity by glucocorticoid in the liver. Inflammation 1: 347-357


Decker RS, Wildenthal K (1978) Sequential lysosomal alterations during cardiac ischemia. II. Ultrastructural and cytochemical changes. Lab Invest 38: 662-673

Dusting GD, Moncada S, Vane JR (1977) Prostacyclin (PGX) is the endogenous metabolite of arachidonic acid which relaxes coronary arteries. Prostaglandins 12: 3-15

Hallenbeck JM, Furlow TW (1979) Prostaglandin I<sub>2</sub> and indo- methacin prevent impairment of post-ischemic brain reperfusion in the dog. Stroke 10: 629-637


Lefer AM, Ogletree ML, Smith JB, Silver MJ, Nicolasou KC,
PROSTACYCLIN IN PERFUSED HEART/Araki and Lefer

763


Wijdenthal K, Decker RS, Poole AR, Griffin EE, Dingle JT (1978) Sequential lysosomal alterations during cardiac ischemia. I. Biochemical and immunohistochemical changes. Lab Invest 38: 656-666


Pharmacokinetic Studies of Taurine in Bovine Purkinje Fibers

STEVEN I. BASKIN, PAUL T. ZAYDON, ZEBULON V. KENDRICK, TOBI C. KATZ, AND PAUL L. ORR

SUMMARY Taurine (2-aminoethane sulfonic acid) is found in high concentrations in the heart, particularly in Purkinje fibers. We studied the transport of taurine in Purkinje fibers that were excised rapidly from the heart and placed in a vessel containing oxygenated Krebs-Henseleit solution (37°C). After equilibration, 4.4X10^{-6} M radiolabeled taurine[14C] was added to the bath. A computer compartmental analysis of the uptake and efflux indicated the presence of two pools for uptake—a pool with a rapid kinetics K1 (t1/2 = 0.80 min) and K2 (t1/2 = 176.30 min). These studies suggest that Purkinje fibers have the capacity to transport taurine rapidly. Michaelis-Menten procedures showed the presence of a high affinity and a low affinity transport process. Guanidinotaurine, at a 10:1 ratio, had no appreciable effect on taurine uptake, but 3-aminopropane phosphonic acid decreased taurine uptake by 42.7%. Verapamil (6 x 10^{-6} M) inhibited taurine uptake by 42%. Tetrodotoxin (3.4 x 10^{-5} M) decreased taurine uptake by 51%. The requirement of calcium and sodium for taurine uptake suggests an important relationship between taurine, calcium, and sodium in the function of fibers in the cardiac conducting system. Circ Res 47: 763-769, 1980

THE acidic amino acid, taurine, exists in relatively high concentrations in the hearts of animals (Scharff and Wool, 1964) and humans (Grosso and Bressler, 1976). The rat heart, in vivo, retains tau-
Role of prostacyclin in the preservation of ischemic myocardial tissue in the perfused cat heart.
H Araki and A M Lefer

*Circ Res.* 1980;47:757-763
doi: 10.1161/01.RES.47.5.757

*Circulation Research* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1980 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/47/5/757.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation Research* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation Research* is online at:
http://circres.ahajournals.org/subscriptions/