Inhibition of Glycolysis in the Denervated Dog Heart

ANGELA J. DRAKE, DEMETRIOS E. PAPADOYANNIS, ROGER G. BUTCHER, JOHN STUBBS, AND MARK I.M. NOBLE

SUMMARY We measured glucose metabolism in five dogs before and 3 weeks after cardiac denervation; after this time myocardial norepinephrine is depleted. The discharge of 14CO2 from infused 14C-D-glucose (U), decreased following denervation (P = 0.05). The ratio of 14CO2 to total CO2 production, which measured the proportion of glucose to total substrate oxidized, also decreased following denervation (P = 0.05). The inhibition of glucose oxidation by denervation was not due to an increase in arterial lactate concentration. There was an associated increase in myocardial content of fructose-6-phosphate in an additional seven dogs (P < 0.01). We postulate that myocardial tissue norepinephrine is one of the controllers of the activity of phosphofructokinase. Circ Res 47: 338-345, 1980

CHRONIC denervation of the heart leads to depletion of tissue catecholamines. Such denervation has been claimed to cause metabolic abnormalities (Barta et al., 1966, 1967; Barta and Pappova, 1968). However, it has not been possible to find any abnormality of enzyme content in hearts from dogs with selective cardiac denervation (Noble et al., 1972), in which general abnormalities of the whole body are avoided. In this study we have used this preferred method of denervation (Donald and Shepherd, 1963) to study directly the metabolism of glucose by infusion of 14C-D-glucose and measurement of 14CO2. These measurements indicated an inhibition of glucose oxidation. Therefore, in an attempt to find the step in the glycolytic pathway at which this inhibition occurred, we made measurements of some glycolytic intermediates.

From the The Midhurst Medical Research Institute, Midhurst, West Sussex, England.
Address for reprints: Dr. A.J. Drake, The Midhurst Medical Research Institute, Midhurst, West Sussex, GU29 OBL, England.
Received December 11, 1979; accepted for publication April 3, 1980.

Methods

Twelve male, mongrel dogs were studied. They were divided into two groups: series I, five dogs, weighing 15.0-17.0 kg for glucose oxidation studies, and series II, seven dogs, weighing 14.5-21.0 kg for tissue biopsy studies.

Series I (Glucose Oxidation Group)

The dogs were subjected to a standardized environment and diet for 3 weeks before as well as throughout the period of study. The first study was carried out 1 week prior to cardiac denervation. The dogs were anesthetized with intravenous methohexitone sodium (10 mg/kg for induction, wearing off in 5 minutes), followed by a standard dose of chloralose (Arfors et al., 1971).

The left jugular vein was exposed through a small incision and a cardiac catheter inserted. The catheter was advanced and positioned in the coronary sinus under fluoroscopic control. The position of the catheter was checked by visualizing the coronary sinus with a bolus injection of 5.0 ml of Uro-
To avoid any contamination with right atrial blood (Gregg et al., 1972), the catheter was advanced more than 15 mm inside the coronary ostium (Koberstein et al., 1969). Also, the sampling rate through the coronary sinus catheter was kept to 2.0 ml/min. A cannula was inserted into a branch of the femoral artery and connected to a 3-way tap. A cannula was also inserted into a peripheral vein and connected to a 3-way tap for the infusion of 14C-D-glucose (U).

Arterial pressure was measured via the arterial cannula with an Elcomatic EM 750 pressure transducer, with a Hewlett-Packard 8850B carrier-amplifier. An electrocardiogram was obtained from a Medelec AA6 Mk. III AC amplifier. Variables were recorded on a Medelec MS6 recording oscilloscope.

A control pair of samples was taken for measurement of Po2, PCO2, pH, oxygen content, lactate, glucose, and free fatty acids (FFA). An infusion of sterile saline (0.9%) containing 125 μCi of 14C-D-glucose (Radiochemical Centre) was begun at a rate of 1.2 ml/min, after a bolus injection of 2.0 ml. After 10 minutes of infusion, four pairs of arterial and coronary sinus blood samples were taken at 4-minute intervals for measurement of Po2, PCO2, pH, oxygen content, lactate, glucose, total CO2 and 14CO2, and one pair of samples for FFA at the end of the experiment. One week later, the dog was subjected to cardiac denervation, using the technique of regional neural ablation (Donald and Shepherd, 1963, 1964a, 1964b, 1965; Donald et al., 1968; Donald and Samuehoff, 1966). Evidence for denervation has been presented (Noble et al., 1972; Drake et al., 1978). The post-denervation study was carried out 3 weeks subsequent to this, an identical protocol to the control study being followed.

Measurement of Total CO2 and 14CO2

Total CO2 was measured by the manometric method of Natelson (1951). Error of the measurement was about 1%. 14CO2 was measured as described by Riemersma et al. (1971/72); the procedure was performed in triplicate. After 3 hours of absorption, the glass cup containing the ethanolamine methanol mixture was transferred to a clean glass counting vial and 10.0 ml of NE260 scintillant (Nuclear Enterprises) were added. Recovery of 14CO2 from NaH14CO3 by this method was 89.9 ± 2.0%. To determine the specific activity of the 14C-D-glucose in blood, 0.5 ml of the perchloric acid (PCA) supernatant was taken, to which 10.0 ml of NE260 were added. The CO2 content of the PCA supernatant was less than 0.1 mM (i.e., below the limit of detection of total CO2 measurement). All radioactive samples were counted in an NE8312 spectrometer and corrected for quenching with an external standard. Efficiency of counting was 36-40%.

Calculations

The results of the radioactive studies were calculated from the following formulas: (1) A-V 14CO2 = A-V14CO2 counts × (arterial glucose/arterial 14C-glucose) where A-V14CO2 = the difference between arterial and coronary sinus blood for 14CO2 corrected for the specific activity of the injectate, in μmol/ml. A-V14CO2 counts are in counts/min, arterial glucose in μmol/ml, and arterial 14C-glucose in counts/min. (2) CO2 produced from glucose/CO2 production = [(6 × A-V 14CO2) × (coronary blood flow)]/[(A-V total CO2) × (coronary blood flow)], where CO2 produced from glucose and CO2 production are in μmol/min and A-V14CO2 is in μmol/ml. Coronary blood flow is in ml/min, but because it cancels out, it was not measured. These results were expressed as percentages. Six × A-V14CO2 was necessary, as there are six carbon atoms per mole of D-glucose, and it was U-labeled with 14C. The standard deviation of individual measurements of the pairs of samples was ± 4.6%. The mean of four such values was calculated for each study and these values are presented in Figure 1.

Figure 1 A: The difference between arterial and coronary sinus 14CO2 concentration, normalized for the specific activity of arterial glucose. Each line connects the pre- and post-denervation studies on individual dogs. There was a decrease following denervation in five dogs. B: CO2 produced from glucose as a percentage of total CO2 production, i.e., the percentage of total substrate oxidized which was glucose. Presentation and results were similar to those in A.
All venous CO₂ and ¹⁴CO₂ values were higher than arterial values; the A-V differences were expressed as positive values.

Critique of the ¹⁴C-Glucose Method

The only assumption made in this method of assessing myocardial glucose oxidation is that the radioactivity in the PCA supernatant is due solely to ¹⁴C-glucose. The PCA expels all CO₂, but ¹⁴C-lactate produced from ¹³C-glucose by peripheral tissues (particularly brain and skeletal muscle) could have been present. The difference in counts between arterial ¹³C-glucose and arterial ¹⁴CO₂ was of the order of 200:1. Therefore, the ratio of ¹⁴C-glucose to ¹⁴C-lactate or any other substrate would have been more than this (aerobic conditions). Thus, the possible contribution of such metabolites to the PCA supernatant is negligible. In addition conversion of ¹⁴C-glucose to ¹⁴C-lactate throughout the infusion period (25 minutes overall, including equilibration and sampling times) would have been related to peripheral lactate production rate and, therefore, to arterial lactate level. We have checked this in a separate series of dogs under the same anesthesia by measuring the ¹⁴CO₂-to-total CO₂ production rate ratios, at the various spontaneous arterial lactate levels. An inverse relationship between the ratio and arterial lactate was found (Drake et al., 1980) whereas, if a significant arterial level of ¹⁴C-lactate had been present, the opposite result would be obtained (Drake et al., 1980). Finally, Issekutz et al. (1965) infused ¹⁴C-glucose (U) into intact dogs for 50 minutes. Lactate was separated from glucose by elution on resin columns. When the glucose eluate carried 600 counts/min per 2 ml, no measurable radioactivity (less than background) was found in the lactate eluate.

In another series of dogs, we measured pyruvate consumption by the heart and found it to be less than 7%. Therefore a small amount of peripheral conversion of ¹⁴C-glucose to ¹⁴C-pyruvate would not affect the ¹⁴CO₂-to-total CO₂ production rate ratios obtained in the present study. Apart from FFA, no measurable uptake of any other potential myocardial substrate occurs in these dogs. It seems to us unlikely that ¹⁴C-glucose would be converted to ¹⁴C-FFA to any significant extent during the infusion period.

Series II (Tissue Biopsy Group)

As the post-denervation studies were to be made under chloralose anesthesia, the left ventricular biopsies were taken under similar conditions, immediately prior to cardiac denervation. The dogs were anesthetized with intravenous methohexitone sodium (10 mg/kg), followed by chloralose (100 mg/kg). The lungs were ventilated by an intermittent positive pressure ventilator (Blease-Manley) with a mixture of N₂ and O₂ through a cuffed endotracheal tube. Surgical cardiac denervation was then performed, work on the left side being performed first.
FFA pernatant (see above) was diluted with 0.3 M PCA until analysis. Lactate was measured enzymatically, supernatant was decanted and stored at —20°C elapsed between the two studies could have resulted performed here because the 3 weeks that had in vivo conditions of the experiment. They were only by the amount of enzyme present and give no information about the activity of the enzyme under in vitro conditions are optimized, they are influenced only by the amount of enzyme present and give no information about the activity of the enzyme under the in vivo conditions of the experiment. They were performed here because the 3 weeks that had elapsed between the two studies could have resulted in depletion of the enzyme protein.

Enzymes

Total enzyme activities were measured histochemically using the linkage of the reduced coenzyme nicotinamide adenine dinucleotide (NADH2) to a hydrogen acceptor with the formation of an insoluble colored formazan which was precipitated in the section. Sections 10 µm thick were cut from the frozen biopsy on a Bright cryostate. The unfixed sections were incubated at 37°C in media saturated with nitrogen. Details of the method and incubation media for measurement of phosphofructokinase (PFK) levels have been published recently (Butcher and Papadoyannis, 1979; DE Papadoyannis, B Henderson, and RG Butcher, unpublished observations). Glyceraldehyde-3-phosphate dehydrogenase (G3PDH) activity was measured by the method of Henderson (1976). Enzyme activities were quantified with a Vickers M85 microdensitometer, and the results were expressed as nmol H2 · cm−2 per 10 minutes. These assays are similar to those carried out on myocardial extracts in vitro. Since the in vitro conditions are optimized, they are influenced only by the amount of enzyme present and give no information about the activity of the enzyme under the in vivo conditions of the experiment. They were performed here because the 3 weeks that had elapsed between the two studies could have resulted in depletion of the enzyme protein.

Measurement of Metabolites in Blood

Lactate

Approximately 1.0 ml of blood was injected into a preweighed tube containing 2.0 ml of 0.6 M PCA, kept in crushed ice. The tube was shaken well immediately. At the end of the experiment, all the tubes were reweighed and centrifuged at +4°C. The supernatant was decanted and stored at —20°C until analysis. Lactate was measured enzymatically, using a Boehringer kit (Boehringer Corporation London, Lactate, U-V method using lactate dehydrogenase only).

Glucose

One hundred microliters of the frozen PCA supernatant (see above) was diluted with 0.3 M PCA in the ratio of 1:2.8. This was assayed according to the BCL hexokinase U-V method for glucose.

FFA

Five milliliters of blood were chilled in ice immediately, centrifuged at +4°C, and the plasma stored at —20°C until analysis. The plasma was then thawed at room temperature and chilled immediately in crushed ice before assay. The FFA levels were measured by the microtitration method of Chlouverakis (1963), using the dye of Gordon (1957) and the extraction method of Dole and Meiertz (1960). Gases

PO2, PCO2, and pH were measured in all samples with a Corning-165 pH/blood gas analyzer. Oxygen content measurements were made with a Lex O2-ConTL.

Statistical Analysis

Statistical evaluation was made according to the method of Snedecor and Cochran (1973). The probability of difference in paired studies being due to chance was calculated by the Sign test (Dixon and Mood, 1946), with a correction for continuity (Snedecor and Cochran, 1973). Probability values of less than 0.05 were accepted as statistically significant, and values over 0.05 as not significant.

Results

Glucose Oxidation Studies (Series I)

The results of the paired studies of the oxidation of 14C-d-glucose are shown in Figure 1. There was a decrease in the myocardial arteriovenous difference for 14CO2 (Fig. 1A; P < 0.05) and in 14CO2 production as a percentage of total CO2 production (Fig. 1B; P < 0.05) after denervation, indicating an inhibition of the oxidation of glucose (glycolysis). In four experiments there was a decrease in arterial lactate, whereas this level rose in the fifth experiment; mean values (±1 SD) were 1.13 ± 0.41 mmol/liter pre-denervation and 0.85 ± 0.27 mol/liter post-denervation. Lactate consumption as a percentage of oxygen consumption was identical to that found previously in normal innervated hearts (Fig. 2). Data for body weight, temperature, heart rate, mean arterial pressure, arterial pH, PaCO2, PaO2, arterial glucose, lactate, and FFA for the pre- and post-denervation studies are given in Table 1. There were no significant differences between the pre- and post-denervation studies of any of these variables.

Tissue Analysis (Series II)

The results of the paired tissue biopsy analyses of the dogs of this series are shown in Figure 3 and Table 2.

Figure 3A shows the F6P levels found pre- and post-denervation expressed as nmol/mg protein. In every dog there was an increase in F6P post-denervation (P < 0.01). The mean values are summarized in Table 2. The level of G6P in the same biopsies is shown in Table 2. The level of G6P post-denervation expressed as nmol/mg protein. In every dog there was an increase, and in three a decrease. These changes were not significant. There was no overall significant change in the levels of ATP and CP from pre-
FIGURE 2. Lactate metabolism following chronic cardiac denervation. Each symbol represents one dog. The normal relationship between normalized lactate consumption and arterial lactate (dashed lines) was established in a large series of normal innervated hearts (Drake et al., 1980).

This conclusion is based on the following findings in the post-denervation data. There was (1) a decreased discharge of 14CO$_2$ from the myocardium during 14C-glucose (U) infusion (Fig. 1), (2) a decreased 14CO$_2$ production by the myocardium as a percentage of total CO$_2$ production (Fig. 1), (3) increased tissue levels of F6P (Fig. 3; Table 2), and (4) a much smaller increase in tissue levels of G6P which did not reach statistical significance (Fig. 3; Table 2).

An increased tissue level of F6P could be attributed to increased glycolytic flux but would then be associated with increased levels of G6P of the same magnitude. The increased levels of F6P therefore suggest a block in glycolysis between F6P and pyruvate. Do the 14C-glucose studies truly indicate an inhibition of glycolysis? It should be emphasized that lactate always is extracted from blood by the normal dog heart (i.e., the heart never produces lactate) (Griggs et al., 1966; Drake et al., 1980). Lactate metabolism in series I denervated hearts has been shown to be identical to that found in the normal hearts studied with 14C-lactate (Fig. 2). Therefore, we do not consider that the absence of measurements of 14C-lactate in the coronary sinus blood after 14C-glucose infusion introduces any error into the assumption that 14C-glucose conversion to 14CO$_2$ is a valid index of glycolysis.

It is possible that the decrease in 14CO$_2$ discharge found in this study (Fig. 1A) could have been outweighed by a greater increase in coronary blood flow so that absolute glucose oxidation was not decreased. However, coronary blood flow is not increased sufficiently in denervated hearts for this to occur, even at constant heart rate (Drake et al., 1978). It is also evident that the increase in metabolic rate found in denervated hearts (Drake et al., 1978) is insufficient to cause the decrease in glucose oxidation as a parameter of CO$_2$ production (Fig. 1). Another factor which could lead to a false indication of reduced glycolysis is a rise in arterial lactate. We previously found an inverse relationship between 14CO$_2$ production as a percentage of CO$_2$ production and arterial lactate (Drake et al., 1980). However, the arterial lactate was lower in the denervated dogs (Table 1). This should have produced an increase in glucose oxidation as a percentage of CO$_2$ production (Drake et al., 1980) so that the reduction in that ratio found after denervation is accentuated.

Discussion

This study shows that nerves must be present in cardiac tissue for the normal oxidation of glucose.

![Graph showing Lactate metabolism following chronic cardiac denervation](https://example.com/graph)

Table 1 Data Derived from Pre- and Post-denervation Studies

<table>
<thead>
<tr>
<th>Dog no.</th>
<th>Weight (kg)</th>
<th>Heart rate (beats/min)</th>
<th>Mean arterial pressure (mm Hg)</th>
<th>pH</th>
<th>Pco$_2$ (mm Hg)</th>
<th>Po$_2$ (mm Hg)</th>
<th>Glucose (mmol/liter)</th>
<th>Lactate (mmol/liter)</th>
<th>FFA (μEq/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>16.5</td>
<td>17.0</td>
<td>137</td>
<td>120</td>
<td>130</td>
<td>116</td>
<td>7.34</td>
<td>7.38</td>
<td>51.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.3</td>
</tr>
<tr>
<td>2</td>
<td>17.0</td>
<td>17.0</td>
<td>172</td>
<td>127</td>
<td>118</td>
<td>123</td>
<td>7.31</td>
<td>7.40</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.6</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>16.0</td>
<td>120</td>
<td>127</td>
<td>118</td>
<td>123</td>
<td>7.31</td>
<td>7.40</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.6</td>
</tr>
<tr>
<td>4</td>
<td>16.0</td>
<td>17.0</td>
<td>100</td>
<td>127</td>
<td>117</td>
<td>111</td>
<td>7.36</td>
<td>7.42</td>
<td>40.0</td>
</tr>
<tr>
<td>5</td>
<td>15.0</td>
<td>15.0</td>
<td>122</td>
<td>126</td>
<td>126</td>
<td>7.37</td>
<td>7.40</td>
<td>40.0</td>
<td>500</td>
</tr>
<tr>
<td>6</td>
<td>15.0</td>
<td>15.0</td>
<td>122</td>
<td>126</td>
<td>126</td>
<td>7.37</td>
<td>7.40</td>
<td>40.0</td>
<td>500</td>
</tr>
</tbody>
</table>

Each measurement is the mean of five estimations at the time of the control (C) and post-denervation (D) study. Normal range for free fatty acids (FFA), n = 100; mean 372 μEq/liter ± 224 (1 std); range, 67-1460.
GLYCOLYSIS BY DENERVATED HEARTS/Drake et al.

The three regulatory enzymes of glycolysis in the aerobic heart are hexokinase (HK), PFK, and pyruvate kinase (PK). Although it has been shown that G3PDH may have a regulatory effect in hearts in which the work-load is increased (Kobayashi and Neely, 1979; Mochizuki and Neely, 1978) these measurements were made in isolated rat hearts, perfused without red blood cells. The maximum arterial oxygen content possible under such circumstances is 2 vols%, whereas the normal arterial oxygen content is 18 vols%. The hearts in our intact dog experiments were completely aerobic as judged by arterial and coronary sinus Po2 and oxygen content measurements in both the control and denervated condition. Moreover, the normality of the PCO2 and pH in these samples indicate that there was no intracellular acidosis.

If the mass action ratios of all the enzymes in the glycolytic pathway are considered, HK, PFK, phosphoglycerate kinase (PGK), and PK are displaced by more than two orders of magnitude from the thermodynamic equilibrium. Reactions displaced from their equilibrium are predisposed to exhibit flux control of a pathway. The glycolytic pathway thus contains more than one of these reactions, and those operating at the beginning of the pathway are liable to exert more influence than those at the end. Therefore, HK and PFK can be expected to be more important rate-controlling enzymes than PGK or PK. HK activity is subject to feedback inhibition by the level of G6P (Sols and Crane, 1954) and the availability of glucose (Table 1). G6P is converted to F6P by the 6-phosphogluco-isomerase reaction (Hoffman, 1976), but there was no consistent increase in the level of G6P in this study. HK activity is subject to multiple control by a series of positive and negative effectors. It possesses an allosteric nature with the consequent cooperative kinetics, giving PFK the highest effector strength of all glycolytic enzymes (Rapoport et al., 1974).

It was not possible, in these small tissue samples, to measure fructose-16-diphosphate (F16P). If the rise in F6P had been accompanied by a decrease in F16P, an inhibition of PFK would have been implicated strongly. PFK activity is inhibited by the levels of adenosine triphosphate found in aerobic tissue (Mansour, 1963; Passonneau and Lowry, 1962). The levels of ATP in this study were identical pre- and post-denervation. F6P is a stimulator and F16P a stabilizer of PFK activity. Increased levels of F6P are important in reducing the inhibition of PFK by ATP (Mansour, 1972). The high F6P and

<table>
<thead>
<tr>
<th>Substance</th>
<th>Units</th>
<th>Control (nmol/mg protein)</th>
<th>Denervated (nmol/mg protein)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>F6P</td>
<td></td>
<td>0.126 ± 0.027</td>
<td>0.319 ± 0.181</td>
<td>0.025 > P < 0.01</td>
</tr>
<tr>
<td>G6P</td>
<td></td>
<td>0.329 ± 0.140</td>
<td>0.461 ± 0.332</td>
<td>NS</td>
</tr>
<tr>
<td>ATP</td>
<td></td>
<td>21.0 ± 5.8</td>
<td>22.3 ± 4.9</td>
<td>NS</td>
</tr>
<tr>
<td>CP</td>
<td></td>
<td>27.1 ± 6.5</td>
<td>30.4 ± 9.4</td>
<td>NS</td>
</tr>
<tr>
<td>PFK</td>
<td>mmol H2 cm⁻² per 10 min</td>
<td>23.3 ± 9.7</td>
<td>25.2 ± 3.4</td>
<td>NS</td>
</tr>
<tr>
<td>G3PDH</td>
<td>mmol H2 cm⁻² per 10 min</td>
<td>22.5 ± 3.5</td>
<td>25.8 ± 9.2</td>
<td>NS</td>
</tr>
</tbody>
</table>

Values in columns 3 and 4 are expressed as mean ± 1 standard deviation. NS = not significant.
normal ATP levels found should, in theory, stimulate PFK, but since glucose oxidation was inhibited, the large increase in F6P levels found must result from inhibition of an enzyme below this metabolite in the pathway and points, in particular, toward an inhibition of the PFK.

The levels of tricarboxylic acid cycle intermediates also influence the rate of glycolysis. Citrate exerts an inhibitory influence of PFK (Garland et al., 1963; Newsholme et al., 1977; Mansour, 1972) and could have been increased by denervation. However lactate consumption (Fig. 2) was normal. The influence on glycolysis (cysolic) by the trichloracetic acid (TCA) cycle (mitochondrial) is via shuttle systems such as the malate-aspartate shuttle (Safer, 1975), which provides a rapid mechanism for linking the TCA cycle to the cytosolic compartment. This shuttle requires cytosolic NADH, which can be supplied by the conversion of lactate to pyruvate. PFK is also very sensitive to cyclic adenosine 3',5' monophosphate (cAMP) (Passonoune and Lowry, 1962; Mansour, 1972; Hoffman, 1976). The enzyme is activated by low concentrations of cAMP at the normal pH of the cell (6.9-7.0). cAMP has been shown to render PFK less susceptible to inhibition by ATP (Mansour, 1963). Fluctuations in the levels of cAMP, AMP, ATP, and inorganic phosphate would cause differences in the modulating ratios of these substances and, therefore, different degrees of activation of the enzyme. The levels of the various modulators of PFK activity in chronically denervated hearts would therefore be worthy of study.

The denervated heart is depleted of norepinephrine (Cooper et al., 1961; Noble et al., 1972; Drake et al., 1978) and uninfluenced by β-blockade (Noble et al., 1972; Drake et al., 1978). There is very little information available on any direct effect of noradrenaline on the metabolism of cardiac muscle. The local concentration of norepinephrine in myocardial tissue increases with sympathetic stimulation, which causes an increase in cAMP levels (Wastila et al., 1972). Such an increase in cAMP with adrenaline stimulation is well documented (Kaufman and Birnbaumer, 1974; Sutherland and Robinson, 1966). However, no metabolic consequences appear to have been demonstrated in the myocardium which are not secondary to the positive inotropic and chronotropic effects with attendant increase in metabolic rate (Mohrmann and Fiegl, 1978).

References
Barta E, Fizelova A, Breuer E, Fizel A (1967) Participation of the nervous system in the control of protein and nucleic acid metabolism in the heart muscle. Cor Vasa 9: 282-287
Donald DE, Shepherd JT (1963) Response to exercise in dogs with cardiac denervation. Am J Physiol 205: 393-400
Donald DE, Shepherd JT (1964a) Initial cardiovascular adjustment to exercise in dogs with chronic cardiac denervation. Am J Physiol 207: 1325-1329
Donald DE, Shepherd JT (1964b) Effect of cardiac denervation on the maximal capacity for exercise in the racing greyhound. J Appl Physiol 10: 640-646
Donald DE, Shepherd JT (1965) Supersensitivity to l-norepinephrine of the denervated sinaloadal node. Am J Physiol 208: 255-259
Kobayashi K, Neely JR (1979) Control of maximum rates of metabolism in the heart for myocardial metabolism of electrolytes and water. Cor Vasa 10: 73-82
Kobayashi K, Neely JR (1979) Control of maximum rates of metabolism in the heart for myocardial metabolism of electrolytes and water. Cor Vasa 10: 73-82
Kobayashi K, Neely JR (1979) Control of maximum rates of metabolism in the heart for myocardial metabolism of electrolytes and water. Cor Vasa 10: 73-82
glycolysis in rat cardiac muscle. Circ Res 44: 166-175
Mochizuki S, Neely JR (1976) Control of glyceraldehyde-3-phosphate dehydrogenase in cardiac muscle. J Mol Cell Cardiol 11: 221-236
Inhibition of glycolysis in the denervated dog heart.
A J Drake, D E Papadoyannis, R G Butcher, J Stubbs and M I Noble

Circ Res. 1980;47:338-345
doi: 10.1161/01.RES.47.3.338

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1980 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/47/3/338

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation Research* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation Research* is online at:
http://circres.ahajournals.org/subscriptions/