Evoked Release of Endogenous Norepinephrine in the Canine Saphenous Vein

Inhibition by Acetylcholine

P.M. VANHOUTTE, E.P. COEN, W.J. DE RIDDER, AND T.J. VERBEUREN

SUMMARY Most of the information concerning adrenergic neurotransmission in the blood vessel wall has been obtained from isolated blood vessels previously incubated with radiolabeled norepinephrine. In the present study, we determined the tissue content of norepinephrine and dopamine in the dog's saphenous vein using a radioenzymatic assay; tissue content of dopamine was 30 times less than tissue content of norepinephrine, and no epinephrine could be detected. During superfusion of isolated canine saphenous vein preparations, superfusate samples were collected for subsequent radioenzymatic analysis of norepinephrine, epinephrine, and dopamine. The basal efflux of endogenous norepinephrine declined slightly with time. Nerve stimulation caused frequency-dependent increases in tension, paralleled by increases in efflux of endogenous norepinephrine. The changes in tension were correlated significantly with the changes in norepinephrine overflow. Acetylcholine at 5 x 10^-7 M had no effect on basal tension or basal norepinephrine overflow. During nerve stimulation at 2 Hz and at 5 Hz, it significantly depressed the contractile response and the evoked overflow of endogenous norepinephrine. Neither dopamine nor epinephrine was detected during these superfusion studies. The present experiments introduce the means for measuring endogenous norepinephrine overflow in the canine saphenous vein, validate earlier work on this blood vessel, and, in particular, provide direct evidence for the inhibitory effect of acetylcholine on adrenergic neurotransmission in the blood vessel wall.

Circ Res 45: 608-614, 1979

THE canine saphenous vein has been used frequently as a model of adrenergically innervated vascular smooth muscle (Osswald, 1978; Shepherd and Vanhoutte, 1975; Vanhoutte, 1978). Most of the information obtained so far has been derived from studies in which the tissue uptake or the overflow of norepinephrine was measured after incubation with exogenous radiolabeled transmitter. In such studies, the question remains as to whether or not the alterations in overflow of labeled norepinephrine truly reflect the movements of endogenously synthesized transmitter. Therefore, in the present study, we determined tissue content and overflow of endogenous norepinephrine using a sensitive radioenzymatic assay (Peuler and Johnson, 1977).

Methods

All experiments were performed on lateral saphenous veins, taken from mongrel dogs (15-25 kg) anesthetized with pentobarbital (30 mg/kg, iv).

Measurement of Catecholamine Content

Tissue catecholamines were extracted by placing strips of saphenous veins (2 mm wide, 3-4 cm long) in test tubes containing 0.5 ml of ice-cold 1 N acetic acid, 0.95 mg of Na2EDTA, and 0.60 mg of reduced glutathione (Levin, 1973). The test tubes were mixed for 30 minutes in a vortex mixer, and the preparations then were transferred to another set of test tubes containing the same extraction fluid; after another 30 minutes of continuous vortexing, the strips were removed, and the two 0.5-ml portions were pooled and frozen until assayed. Immediately before the assay, the samples were thawed and diluted 100 times with distilled water containing glutathione (1.2 mg/ml). For the blanks, the...
same amount of acetic acid and protectives as used to extract the catecholamines was diluted 100 times. Earlier work performed on saphenous vein strips incubated with 3H-norepinephrine has shown that the extraction procedure used in the present study recovers 95% of the total radioactivity taken up by the tissue (Muldoon et al., 1978).

Superfusion Studies

Vein strips (4 mm wide, 10 cm long) were suspended in a tunnel-shaped chamber kept at 37°C and continuously superfused (1 ml/min) with aerated (95% O$_2$-5% CO$_2$) Krebs-Ringer bicarbonate solution of the following millimolar composition: NaCl, 118.3; KCl, 4.7; MgSO$_4$, 1.2; KH$_2$PO$_4$, 1.2; CaCl$_2$, 2.5; NaHCO$_3$, 25; glucose, 11.1; and CaEDTA, 0.026. To stimulate the adrenergic nerves in the vessel wall, two platinum wires (0.5 mm in diameter, 15 cm long) were placed parallel to the veins (Vanhoutte et al., 1967; Vanhoutte et al., 1973). Electrical impulses consisted of rectangular waves (9 V, 2 msec) provided by a direct current power supply and switching transistor (MBLE BD 139) triggered by a stimulator (Grass Instruments). In some experiments acetylcholine, in a final concentration of 5×10^{-7} M, was infused in the circuit upstream from the roller pump.

The preparations were connected to a force transducer (Grass FT 03) for isometric tension recording; the initial tension was set at 3 g. After this initial stretch, tension decreased and stabilized within 30 minutes; the first superfusate sample was collected 30 minutes later. The superfusate was collected at selected intervals during 3 minutes into cooled test tubes containing 5.7 mg of EGTA and 3.6 mg of reduced glutathione (Peuler and Johnson, 1977). Blanks were obtained by collecting superfusate in the cooled test tubes in the absence of vein strips in the superfusion apparatus. The samples were frozen at $-23°C$ until they were assayed; the enzymatic assay always was performed within 3 days after the superfusion experiment.

Radioenzymatic Assay

We measured norepinephrine, epinephrine, and dopamine levels in the superfuse and extraction samples, as described by Peuler and Johnson (1977), using a commercially available kit ("Cat-a-kit", Upjohn Diagnostics). Briefly, 100 µl of the thawed samples were incubated for 1 hour at 37°C in a medium containing 10 µl of COMT* solution, 100 µM Tris buffer, 10 mM EGTA, 30 mM MgCl$_2$, 1 mM reduced glutathione, 0.1 mM benzylxoyamine, and 5 µg of 3H-methyl-S-adenosyl-L-methionine (New England Nuclear, specific activity, 8.8-11.5 Ci/mmol). The total incubation volume was 150 µl and the pH was 8.1–8.3. For each sample, an internal standard was prepared by adding 100 pg of each of the catecholamines to a duplicate incubation mixture containing 100 µl of sample. All assays were performed in duplicate. After incubation, the reaction was stopped by adding 50 µl of boric acid containing carrier normetanephrine, metanephrine, and 3-methoxytyramine. The 3H-O-methylated metabolites were first extracted into toluene:isoamylalcohol (3:2) and then reextracted into 0.1 M acetic acid. Ethanol was added, and the O-methylated compounds were separated by thin layer chromatography on silica gel. After chromatography, the zones containing the O-methylated metabolites were scraped into scintillation vials.

Dopamine was assayed by eluting 3H-3-methoxytyramine with ammonium hydroxide and subsequent addition to the vial of 10 µl of a scintillation mixture (toluene:isoamylalcohol (3:2) containing 7 g/liter of 2-(4-tert-butylyphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (Butyl-PBD) and 0.1 g/liter of 1,4-bis-[2-(5-phenyloxazolyl)]-benzene (POPOP). Nor-epinephrine and epinephrine were assayed by eluting their O-methylated derivatives with ammonium hydroxide, subsequent conversion of the metabolites to 3H-vanillin by periodate oxidation, and by extracting the vanillin into 10 ml of scintillation mixture (toluene, containing 7 g/liter of Butyl-PBD and 0.1 g/liter of POPOP). The radioactivity of the samples was measured in a liquid scintillation spectrometer (Packard model 2450). The samples were counted for 10 minutes; corrections for quenching were made with an external standard.

The linearity of the enzymatic assay was tested by dissolving increasing amounts of the three catecholamines in Krebs-Ringer bicarbonate solution containing 1.90 mg of EGTA and 1.20 mg of reduced glutathione per milliliter. Final concentrations ranging from 1 to 100 pg/100µl, were analyzed. The results are summarized in Figure 1. In the concentration range tested, the assay is linear for the three catecholamines yielding a mean of 22.1 ± 0.7 counts/min (CPM) per pg of norepinephrine, 24.9 ± 1.3 CPM/pg for epinephrine, and 17.1 ± 0.7 CPM/pg of dopamine. When the assay was performed on blanks (Krebs-Ringer solution; n = 19), the procedure to determine norepinephrine yielded 48.7 ± 5.7 CPM, for epinephrine, 37.1 ± 3.5 CPM, and for dopamine, 118.1 ± 6.7 CPM. The amounts of catecholamines for which the yield was twice the blank were considered to be the limits of sensitivity. This was 3 pg for norepinephrine, 2 pg for epinephrine, and 5 pg for dopamine.

Calculation of Results

The concentration of catecholamines present in the samples was calculated using the formula: $[(C_{PM_{sample}} - C_{PM_{blank}})/(C_{PM_{external standard}} - C_{PM_{sample}})] \times \left(\frac{100 \times 10^{-12} g}{0.1 ml}\right) = C \times 10^{-12} g/ml$. By taking into account the wet weight of the tissue, the molecular weight of the catecholamine, and the flow in the superfusion, the results

COMT = catechol-O-methyltransferase.
were standardized and converted to moles per milligram of tissue per minute of superfusion.

Statistical Analysis

For each group of preparations, the number of strips reported is also the number of dogs used. The data are expressed as means ± SE. For statistical analysis of the data, Student’s t-test for paired or unpaired observations was used. P values < 0.05 were considered to be significant. Correlations were evaluated by use of linear regression analysis.

Results

Endogenous Catecholamine Content

Six saphenous vein preparations (mean weight: 54.6 ± 3.6 mg) were analyzed. In these strips, the norepinephrine content was 5.77 ± 0.72 µg/g, the dopamine content averaged 0.168 ± 0.042 µg/g, and no epinephrine could be detected.

Overflow of Endogenous Norepinephrine

Twenty-three preparations (mean weight: 185.8 ± 7.9 mg) were studies in the superfusion apparatus.

Unstimulated Preparations

No basal efflux of epinephrine and dopamine could be detected in any of the preparations. During superfusion in basal conditions, detectable amounts of norepinephrine were present in the superfusate samples from all veins (mean basal efflux: 4.21 ± 0.59 × 10^{-15} mol/mg per min). In five saphenous vein strips, the concentration of norepinephrine in basal efflux averaged 3.89 ± 0.76 × 10^{-15} mol/mg per min at the start of the experiment. This efflux slightly declined with time and averaged 2.70 ± 0.77 × 10^{-15} mol/mg per min after 20 minutes, 1.55 ± 0.29 × 10^{-15} mol/mg per min after 40 minutes, and 1.14 ± 0.24 × 10^{-15} mol/mg per min after 60 minutes. The latter value was just above the sensitivity limit of the assay.

Nerve Stimulation

Electrical stimulation at 2 Hz or at 5 Hz was applied for 5 minutes; samples for the analysis of catecholamines were collected before the start and during the last 3 minutes of stimulation. The results are summarized in Table 1. Both frequencies caused an increase in tension and an increased overflow of endogenous norepinephrine; the augmentation of the latter was significantly larger at 5 Hz.

When three successive 5-minute periods of 2-Hz, 5-Hz, and 10-Hz stimulation were applied in the same preparation, increasing stimulation frequencies caused progressive increases in tension and overflow of endogenous norepinephrine (Table 1). When two successive 5-minute periods of 5-Hz stimulation were applied at a 30-minute interval in the same vein, no significant difference in contractile response or evoked release of endogenous norepinephrine could be noted (Table 1).

When saphenous veins were subjected to prolonged (30 minutes) stimulation at 2 Hz and samples for analysis collected after 3, 15, and 27 minutes of stimulation, there was a slight decrease in tension and overflow of endogenous norepinephrine with time (Table 1); the increases in tension and in overflow of endogenous transmitter during the collection of the second sample (15th to 18th minute of stimulation) were not significantly different (94.7 ± 1.5 and 97.9 ± 7%, respectively) from those obtained by averaging the increases observed during the first (3rd to 6th minute) and the third (27th to 30th minute) period of collection.

If, for the 23 strips reported, the overflow of endogenous norepinephrine is plotted against the contractile response, no correlation is found (Fig. 2, upper). However, if changes in tension and in norepinephrine overflow are compared within the same preparations using the first response as control (100%), a linear and significant correlation is found between both parameters (Fig. 2, lower).

Detectable amounts of epinephrine and dopamine were not found in the superfusate at any of the frequencies of electrical stimulation.

Effect of Acetylcholine

In five saphenous veins, acetylcholine 5 × 10^{-7} M, was infused during sustained contractions.
evoked by a 2-Hz electrical stimulation (Table 1). Acetylcholine caused a decrease in tension (to 49.1 ± 5.1% of control) and in the overflow of endogenous norepinephrine (to 27.7 ± 5.7% of control). These effects of acetylcholine were reversible (Fig. 3).

In four veins, a first response to 5 Hz (5 minutes) was obtained. After 20 minutes, acetylcholine (5 × 10⁻⁷ M) was added to the superfusing solution. Acetylcholine had no effect on basal tension and basal overflow of endogenous norepinephrine, but significantly depressed the contractile response (to 49.6 ± 4.1% of control) and the evoked release of transmitter (to 35.0 ± 1.0%) during 5-Hz electrical stimulation (Table 1). In the concentration used, acetylcholine did not interfere with the radioenzymatic assay.

Discussion

The purpose of the present study was to determine the tissue content and the overflow of endogenous norepinephrine in the saphenous vein of the dog in order to validate earlier conclusions reached in preparations for which the efflux of ³H-norepinephrine was followed after incubation with exogenous labeled transmitter (Vanhoutte et al., 1973; Vanhoutte et al., 1977; Muldoon et al., 1976; Vanhoutte and Verbeuren, 1976; Verbeuren et al., 1978). The experimental conditions of superfusion and determination of tissue content of norepinephrine were identical to those used in these studies (Vanhoutte et al., 1973; Vanhoutte et al., 1977; Muldoon et al., 1976; Vanhoutte and Verbeuren, 1976; Verbeuren et al., 1978).

The radioenzymatic assay used in the present study is specific for catecholamines (Peuler and Johnson, 1977). When known amounts of epinephrine, dopamine, and norepinephrine were dissolved in Krebs-Ringer bicarbonate solution, the radioenzymatic assay, which was originally designed for measurement of plasma catecholamines (Peuler and Johnson, 1977), yielded linear relationships for

Table 1 Effect of Nerve Stimulation on Tension and Norepinephrine Overflow in Dog's Saphenous Veins

<table>
<thead>
<tr>
<th></th>
<th>Changes in tension (g)</th>
<th>Norepinephrine overflow (10⁻¹⁰ mol/mg per min)</th>
<th>Differences from control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Absolute</td>
<td>Differences from control</td>
</tr>
<tr>
<td>Control</td>
<td>13</td>
<td>2.82 ± 0.36</td>
<td>3.67 ± 0.74</td>
</tr>
<tr>
<td>E.S. 2 Hz</td>
<td></td>
<td>10.47 ± 1.42*</td>
<td>6.80 ± 1.03</td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td>3.16 ± 0.57</td>
<td>4.91 ± 0.94</td>
</tr>
<tr>
<td>E.S. 5 Hz</td>
<td></td>
<td>23.82 ± 3.91*</td>
<td>18.91 ± 3.55</td>
</tr>
<tr>
<td>Control</td>
<td>3</td>
<td>2.07 ± 0.23</td>
<td>4.74 ± 1.09</td>
</tr>
<tr>
<td>E.S. 5 Hz</td>
<td></td>
<td>12.63 ± 3.58*</td>
<td>7.89 ± 1.38</td>
</tr>
<tr>
<td>Control</td>
<td>3</td>
<td>2.77 ± 0.31</td>
<td>20.87 ± 1.75*</td>
</tr>
<tr>
<td>E.S. 5 Hz</td>
<td></td>
<td>18.17 ± 1.08*</td>
<td>18.17 ± 1.08*</td>
</tr>
<tr>
<td>Control</td>
<td>2</td>
<td>3.10 ± 0.27</td>
<td>7.89 ± 1.38</td>
</tr>
<tr>
<td>E.S. 10 Hz</td>
<td></td>
<td>23.82 ± 3.91*</td>
<td>18.91 ± 3.55</td>
</tr>
<tr>
<td>Control</td>
<td>4</td>
<td>6.80 ± 1.03</td>
<td>20.14 ± 4.95</td>
</tr>
<tr>
<td>E.S. 5 Hz</td>
<td></td>
<td>25.17 ± 4.46*</td>
<td>22.05 ± 4.51</td>
</tr>
<tr>
<td>Control</td>
<td>4</td>
<td>2.20 ± 0.53</td>
<td>5.07 ± 1.43</td>
</tr>
<tr>
<td>E.S. 5 Hz</td>
<td></td>
<td>22.38 ± 6.58*</td>
<td>17.31 ± 5.27</td>
</tr>
<tr>
<td>5 × 10⁻⁷ M ACh</td>
<td></td>
<td>3.18 ± 0.98</td>
<td>17.31 ± 5.27</td>
</tr>
<tr>
<td>E.S. 5 Hz</td>
<td></td>
<td>9.41 ± 3.00*</td>
<td>22.05 ± 4.51</td>
</tr>
<tr>
<td>Control</td>
<td>4</td>
<td>2.06 ± 0.06</td>
<td>3.50 ± 0.88</td>
</tr>
<tr>
<td>E.S. 2 Hz</td>
<td></td>
<td>8.88 ± 1.21*</td>
<td>3.50 ± 0.88</td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>1.73 ± 0.08</td>
<td>8.25 ± 0.82*</td>
</tr>
<tr>
<td>E.S. 2 Hz</td>
<td></td>
<td>7.98 ± 0.90*</td>
<td>8.25 ± 0.82*</td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>1.60 ± 0.09</td>
<td>2.15 ± 0.66*</td>
</tr>
<tr>
<td>E.S. 2 Hz + ACh</td>
<td></td>
<td>2.53 ± 0.57</td>
<td>10.58 ± 2.58*</td>
</tr>
<tr>
<td>5 × 10⁻⁷ M ACh</td>
<td></td>
<td>2.92 ± 0.80*</td>
<td>10.58 ± 2.58*</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>2.42 ± 0.54</td>
<td>9.78 ± 1.45*</td>
</tr>
<tr>
<td>E.S. 2 Hz</td>
<td></td>
<td>1.14 ± 0.46*</td>
<td>9.78 ± 1.45*</td>
</tr>
</tbody>
</table>

Values shown as mean ± SE. ACh = acetylcholine. E.S. = electrical stimulation.

* Difference from preceding value statistically significant (P < 0.05; Student’s t-test for paired observations).
† Difference from value at 2 Hz statistically significant (P < 0.05; Student’s t-test for paired observations).
‡ Difference from value at 5 Hz statistically significant (P < 0.05; Student’s t-test for paired observations).
§ Difference from control 5 Hz response statistically significant (P < 0.05; Student’s t-test for paired observations).
∥ This response to nerve stimulation was obtained 30 minutes after the previous one.
FIGURE 2. Upper: No significant correlation was found between tension development and overflow of endogenous norepinephrine (expressed as 10^{-15} mol/mg per min) for the 23 saphenous vein preparations used ($r^2 = 0.01$). Lower: Correlation between changes in tension and changes in norepinephrine overflow (expressed as 10^{-15} mol/mg per min) due to different stimuli in the same preparation; the first response was used as control ($n = 26$; $r^2 = 0.89$). ○ = responses to nerve stimulation; ● = responses to acetylcholine (5×10^{-7}M) during nerve stimulation. Tension: 100% = 2.42 ± 0.39 g. Norepinephrine overflow: 100% = 9.27 ± 0.95 $\times 10^{-16}$ mol/mg per min.

Despite the absence of inhibitors of the disposition mechanisms for norepinephrine, small but significant amounts of the transmitter were detected in the superfusate from unstimulated preparations. In veins previously incubated with 3H-norepinephrine, most of the basal 3H-efflux is due to metabolites, but intact 3H-norepinephrine accounts for 5–10% of the total (Vanhoutte, 1978; Vanhoutte et al., 1973; Vanhoutte et al., 1977; Muldoon et al., 1976; Vanhoutte and Verbeuren, 1976; Verbeuren et al., 1978). Of the metabolites, 3,4-dihydroxyphenylglycol (DOPEG) is the largest fraction, which prompted the conclusion that the intact norepinephrine present in the superfusate in basal conditions originates from the storage sites and escapes to the extracellular space without being deaminated by intraneuronal mitochondrial monoamine oxidase.
RELEASE OF ENDOGENOUS NOREPINEPHRINE/Vanhoutte et al.

(e.g., Vanhoutte, 1978). The basal efflux of both endogenous norepinephrine (present study) and \(^3\)H-norepinephrine (Vanhoutte et al., 1973; Muldoon et al., 1976; Vanhoutte and Verbeuren, 1976; Verbeuren et al., 1978) decreases with time. This could be due to the trauma to the preparation which temporarily augments the spontaneous leakage of transmitter. An alternative explanation is that norepinephrine leaking out of the storage sites is displaced by newly synthesized transmitter (Kopin et al., 1968), and that in our experimental conditions no synthesis of new transmitter is possible.

Electrical stimulation augments the overflow of endogenous norepinephrine. Earlier experiments had shown that the contractile response to electrical impulses as used in the present study is abolished by sympathectomy, reserpin, bretylium tosylate, tetrodotoxin, and \(\alpha\)-adrenolytic drugs (Vanhoutte et al., 1967; Vanhoutte et al., 1977; Vanhoutte and Verbeuren, 1976; Vanhoutte, 1970; Vanhoutte and Shepherd, 1973). Electrical stimulation also augments the overflow of \(^3\)H-norepinephrine in saphenous veins previously incubated with the labeled transmitter (e.g. Vanhoutte et al., 1973; Vanhoutte et al., 1977; Verbeuren et al., 1978). The present study provides direct evidence that the electrical stimulation causes activation of the adrenergic nerve endings in the vein wall, resulting in release of endogenous norepinephrine. Both the increases in tension and the increases in overflow of the neurotransmitter during nerve stimulation were frequency dependent. These responses are reproducible and can be sustained for 30 minutes with only minimal parallel decreases in both parameters with time. When different veins are compared, there is no direct correlation between the absolute increase in tension obtained with electrical stimulation at a given frequency and the amount of norepinephrine overflowing. This may be due in part to the fact that all strips studied were submitted to an identical load, rather than being placed at the optimal point of their length-tension curve (Vanhoutte and Leusen, 1969). However, the changes in contractile responses of the same strips to repeated or sustained stimulation are highly significantly correlated to the amount of adrenergic neurotransmitter escaping into the superfusate solution. This correlation validates the conclusion that the amount of endogenous transmitter detected in the superfusate reflects the amount made available to the effector cells during activation of the sympathetic nerve endings.

If, in the same strips, increasing stimulation frequencies (2, 5, and 10 Hz) are applied, and the response to 5 Hz is expressed as percent of that to 2 Hz, the contractile response augments by about 35%, and the overflow of norepinephrine increases by about 140%; if a similar comparison is made between responses to 5 and 10 Hz, the increases approximate 13 and 16%, respectively. In the perfused cat spleen, previously incubated with \(^3\)H-norepinephrine, the perfusate contains progressively more intact \(^3\)H-norepinephrine and progressively less norepinephrine metabolites when the sympathetic nerves are stimulated at increasing frequencies (0.5–5 Hz). In samples collected immediately after the stimulations, the pattern of metabolites is the same, regardless of the stimulation frequency applied. The frequency-dependent dissociation between the amounts of intact \(^3\)H-norepinephrine and its metabolites disappears after blockade of neural uptake (Dubocovich and Langer, 1976). Earlier work in the dog's saphenous vein supported the premise that the neuronal uptake pump operates mainly between nerve impulses and is switched off during depolarization of the nerve endings to allow for optimal transmitter diffusion (Vanhoutte, 1978; Verbeuren et al., 1978). If this hypothesis is correct, neuronal uptake should be more effective at 2 Hz than at higher frequencies, and hence, less intact norepinephrine should escape into the superfusate, as seen in the present study.

In the dog's saphenous veins, as in most blood vessels studied (Vanhoutte, 1977), acetylcholine depresses the response to sympathetic nerve stimulation and decreases the overflow of \(^3\)H-norepinephrine during activation of the sympathetic nerves (Vanhoutte et al., 1973; Vanhoutte and Verbeuren, 1976; Vanhoutte, 1970; Vanhoutte and Shepherd, 1973). These earlier studies suggested that acetylcholine has an inhibitory effect on the evoked release of norepinephrine. In the present study, acetylcholine, in a concentration that did not interfere with the radioenzymatic assay, and that did not affect the basal efflux of endogenous norepinephrine, caused a marked and reversible inhibition of the release of the latter during sympathetic nerve stimulation.

Thus, the present experiments not only demonstrate the possibility of detecting the overflow of endogenous norepinephrine in blood vessels where the disposition mechanisms for the adrenergic transmitter are operative, but also validate earlier conclusions concerning the effect of acetylcholine. They provide direct evidence that, when the cholinergic transmitter reaches adrenergic nerve endings while they are activated, it causes an abrupt reduction in the release of norepinephrine. This prejunctional effect of acetylcholine greatly reinforces the direct inhibitory effect it has on certain vascular smooth muscle cells (Vanhoutte, 1977).

Addendum

After the submission of the present manuscript, a paper appeared by S.M. Muldoon, C.M. Tyce, T.P. Moyer, and D.K. Rorie (Measurement of endogenous norepinephrine overflow from canine saphenous veins. Am. J. Physiol 238:H263-H267, 1979) which describes in the canine saphenous vein that electrical stimulation
causes the overflow of endogenous norepinephrine measured by high pressure liquid chromatography.

Acknowledgments
We wish to thank P. Bossuyt, F. Jordaens, L. Zonnekeyn, and Y. Onsea for their valuable technical assistance and L. Van den Eynde for typing the manuscript.

References

Dubocovich ML, Langer SZ (1976) Influence of the frequency of nerve stimulation on the metabolism of 3H-norepinephrine released from the perfused cat spleen: Differences observed during and after the period of stimulation. J Pharmacol Exp Ther 188: 83–101

Vanhoutte PM, Lorenz RR, Tyce GM (1973) Inhibition of norepinephrine-3H-release from sympathetic nerve endings in veins by acetylcholine. J Pharmacol Exp Ther 185: 386–394

Evoked release of endogenous norepinephrine in the canine saphenous vein. Inhibition by acetylcholine.
P M Vanhoutte, E P Coen, W J De Ridder and T J Verbeuren

Circ Res. 1979;45:608-614
doi: 10.1161/01.RES.45.5.608

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1979 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/45/5/608.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/