Note on the Anisotropy of Extracellular Resistivity in Cardiac Muscle

In their recent paper, Roberts et al. (1979) report the following values of intracellular (i), extracellular (o), longitudinal (L), and transverse (T) resistivity for canine ventricular muscle: \(r_i = 450 \) ohms-cm, \(r_o = 750 \) ohm-cm, \(r_L = 360 \) ohm-cm, and \(r_T = 3800 \) ohm-cm. The ratio \(r_T/r_L \) is 1.67.

In an earlier paper, Clerc (1976) reported the following resistivity ratios for trabecular bundles from the right ventricle of calf heart: \(r_T/r_L = 9.4 \pm 1.0 \) (mean \(\pm \) SE) and \(r_T/r_o = 2.69 \pm 0.26 \). Clerc gives his resistivity data in terms of the specific resistivity of the intracellular and extracellular fluids. On the other hand, Roberts et al. use an effective resistivity, where the intracellular and extracellular compartments are each taken to occupy the entire tissue space (see also Miller and Geselowitz, 1978). Clerc’s data can be converted to this form using his value of 30% for the volume fraction of extracellular space with the result: \(r_L = 160 \) ohm-cm, \(r_o = 423 \) ohm-cm, \(r_T = 574 \) ohm-cm, and \(r_i = 5170 \) ohm-cm.

In his paper, Clerc presents a model for the anisotropy of intracellular resistivity. With regard to extracellular anisotropy, he simply states that the ratio “being 2.7 may be explained by the tortuous pathway around tightly packed fibres encountered by transverse current.” The purpose of this note is to provide a theoretical basis for the ratio \(r_T/r_o \).

To calculate extracellular resistivity, the muscle can be modeled by an array of insulating circular cylinders in a suspending fluid of conductivity, \(\sigma_o \). For current flow in the longitudinal direction, the current path is parallel to the axes of the cylinders, and \(\sigma_L = (1 - p)\sigma_o \), where \(p \) is the volume fraction occupied by the cylinders. The analysis of transverse current flow is much more complex. Fortunately, this problem was solved by Lord Rayleigh (1892). His result is

\[
\frac{\sigma_T}{\sigma_o} = 1 - \frac{2p}{1 + p - 0.3058p^4 - \ldots}.
\]

Taking the value, \(p = 0.70 \), used by Clerc, we find \(r_T/r_o = \sigma_T/\sigma_o = 2.15 \), which is intermediate between the values reported by Clerc and Roberts et al.

The theory may be expected to underestimate the anisotropy ratio for several reasons. For one, the fiber packing order deviates from the ideal rectangular array analyzed by Rayleigh. For another, the volume fraction, 70%, is approaching the maximum possible value of 78.6% for a rectangular array. As the volume fraction increases, the Rayleigh approximation will deteriorate, and \(\sigma_T/\sigma_o \) may be expected to rise sharply. For example, Sperelakis and MacDonald (1974) measured the resistivity ratio for an array of glass rods in Ringer’s solution and found a value of 7 for a volume fraction of 76.5%, as compared with 3.0 predicted by the Rayleigh equation. Clerc’s experimental results would thus appear to be in closer agreement to those expected theoretically than would those of Roberts.

David B Geselowitz, Ph.D.
Bioengineering Program
Pennsylvania State University
University Park, Pennsylvania 16802

References

Clerc L (1976) Directional differences in impulse spread in trabecular muscle from mammalian heart. J Physiol (Lond) 225: 335
Rayleigh Lord (1892) On the influence of obstacles arranged in rectangular order upon the properties of the medium. Phil Mag 34: 481
Roberts DE, Hersh LT, Scher AM (1979) Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog. Circ Res 44: 701-712

This work was done at Duke University, Durham, North Carolina, while Dr. Geselowitz was a Guggenheim Fellow, and was supported in part by Grant HL 21283 from the National Heart, Lung, and Blood Institute.
Note on the anisotropy of extracellular resistivity in cardiac muscle.
D B Geselowitz

Circ Res. 1979;45:429
doi: 10.1161/01.RES.45.3.429
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1979 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/45/3/429.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/