Antagonistic Effects of Theophylline and Adenosine on Adrenergic Neuroeffector Transmission in the Rabbit Kidney

PER HEDQVIST, BERTIL B. FREDHOLM, AND SIW ÖLUNDH

SUMMARY The actions of adenosine and theophylline on adrenergic neuroeffector transmission were studied in the rabbit kidney perfused with Tyrode's solution in which the norepinephrine stores had been labeled with (-)-norepinephrine[3H] (−)-NE[3H]). We found that adenosine inhibited (-)-NE[3H] release induced by nerve stimulation, increased basal perfusion pressure, and enhanced the vasoconstrictor response to nerve stimulation and norepinephrine in a dose-dependent manner. Theophylline per se had effects on neuroeffector transmission opposite to those of adenosine. All effects of adenosine were antagonized effectively or annulled by theophylline in concentrations having little or no effect on rabbit kidney phosphodiesterase activities. Two other compounds, Ro 20-1724 and ZK 62.711, being equally potent or more potent than theophylline as phosphodiesterase inhibitors, failed to antagonize adenosine-mediated inhibition of (-)-NE[3H] release by nerve stimulation. Ro 20-1724 in high concentration (10^-4 m) inhibited the vasoconstrictor response to nerve stimulation, but it had little additional effect on the enhancement by adenosine. These findings suggest that theophylline specifically antagonizes the effects of adenosine on pre- and postjunctional transmission in the kidney. The results also are consistent with the view that endogenous adenosine may play a role as modulator of adrenergic neuroeffector transmission.

RECENTLY it was shown that adenosine causes a dose-dependent and reversible inhibition of norepinephrine (NE) release evoked by nerve impulses in the rabbit kidney, canine subcutaneous adipose tissue, and guinea pig vas deferens. Although adenosine depressed transmitter release, it caused enhancement of vasoconstrictor responses to nerve stimulation in the kidney. This was shown to be due to a postjunctional potentiation of the effects of administered NE, in agreement with earlier findings in the dog.

Adenosine is a potent vasodilator in most vascular beds, but it causes vasoconstriction in the kidney. Independently of whether adenosine is vasoconstrictor or vasodilator, its vascular effects seem to be competitively antagonized by theophylline. Several other effects of adenosine, such as enhanced cyclic AMP accumulation in brain slices, inhibition of cerebral cortical neurons, inhibition of cyclic AMP accumulation in fat cells, and enhancement of contractility in vas deferens, also are inhibited by theophylline.

The present investigation was undertaken to assess the capacity of theophylline to antagonize the modulating actions of adenosine on adrenergic neuroeffector transmission in the rabbit kidney. Data are presented indicating that theophylline, in concentrations having little or no effect on kidney phosphodiesterase activities, antagonizes both the inhibitory and stimulant effects of adenosine. A preliminary account of some of the results has been presented elsewhere.

Methods

Rabbits of either sex, weighing 2–3 kg, were anesthetized with sodium pentobarbital, 40–50 mg/kg, iv. The left kidney, with its nervous and vascular supply, was dissected free from surrounding tissue. After administration of heparin (1000 IU/kg body weight), the vessels and the ureter were cannulated and the kidney was flushed with ice-cold, O2-gassed 0.9% NaCl, containing 50 IU of heparin per ml. The preparation was then transferred to a perfusion chamber, and perfused with Tyrode’s solution (concentration in mM: NaCl, 136.7; KCl, 2.7; CaCl2, 1.8; MgCl2, 1.0; NaHCO3, 11.0; NaH2PO4, 0.4; glucose, 5.5; ascorbic acid, 0.1), containing 2% dextran and gassed with 5% CO2 and O2, at 37°C. Perfusion flow was kept constant at a rate of 10 ml/min and pressure was recorded arterially, close to the kidney, with a Statham (P23 AC) pressure transducer and a Grass polygraph.

The nerve was placed on platinum wire electrodes and stimulated with a Grass S4 stimulator, delivering 15-sec trains of pulses (5–6 Hz, 1 msec, 10 V) at intervals usually of 10 minutes.

The NE stores were labeled by a 40-minute infusion of 50 μCi of (−)-NE[3H] (specific activity, 5.4 Ci/mmol; New England Nuclear) in 0.9% NaCl. Before the experiment was started, the kidney was perfused with isotope-free Tyrode’s for 30–45 min-
utes to remove surplus tritiated NE. It has been shown that in the Tyrode-perfused rabbit kidney, prelabeled with (-)-NE[3H], stimulation of the adrenergic nerves is associated with an increased release of tracer, of which more than 80% is accounted for by intact NE.17

The following drugs were used: adenosine and norepinephrine bitartrate (Sigma), 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724) (Hoffman-LaRoche AG), theophylline ethylenediamine (ACO, Stockholm), and 4-(3-cyclopentyl-oxy-4-methoxyphenyl)-2-pyrrolidone (ZK 62.711) (Schering AG). All drugs were diluted in 0.9% NaCl and administered by close arterial injection. Concentrations of administered drugs refer to the base.

The perfusate was collected in 1-minute fractions (10 ml) and the radioactivity was determined by counting 1.0-ml samples in 10 ml of Instagel (Packard Instruments) in a Packard liquid scintillation spectrometer. The values were expressed as counts/min. Quenching was monitored by external standardization.

Cyclic nucleotide phosphodiesterase (EC 3.1.4.17c) was determined, essentially, according to the method of Selstam and Rosberg,18 as described elsewhere,19 using 32P-labeled adenosine 3',5'-cyclic monophosphate triethylammonium salt (specific activity, 20-33 Ci/mm mol; New England Nuclear) as substrate, and separation of products and substrate by inorganic salt precipitation with ZnSO4-Ba(OH)2. Kidney cortex was homogenized in 80 mM Tris-Cl (pH 7.8) containing 7 mM 2-mercaptoethanol. Final cyclic AMP concentration was 0.2 μM. The assay was performed at 30°C for 10 minutes, using enzyme diluted so that less than 20% of the substrate was converted. The assay was linear with time up to 40 minutes and with the amount of enzyme protein.

Statistical analysis

Experimental data were expressed as means ± SE. Statistical hypotheses were tested by Student's t-test for paired and unpaired variates, and by linear regression analysis.

Results

In confirmation of our previous report,1 it was noted that adenosine (10^-6 M) consistently and reversibly depressed the release of (-)-NE[3H] in response to nerve stimulation (15-sec trains of pulses at 5 Hz) in the Tyrode-perfused rabbit kidney. In this concentration, adenosine also increased basal perfusion pressure and enhanced the vasoconstrictor responses to nerve stimulation (Fig. 1). Both

Statistics

Experimental data were expressed as means ± SE. Statistical hypotheses were tested by Student's t-test for paired and unpaired variates, and by linear regression analysis.

Results

In confirmation of our previous report,1 it was noted that adenosine (10^-6 M) consistently and reversibly depressed the release of (-)-NE[3H] in response to nerve stimulation (15-sec trains of pulses at 5 Hz) in the Tyrode-perfused rabbit kidney. In this concentration, adenosine also increased basal perfusion pressure and enhanced the vasoconstrictor responses to nerve stimulation (Fig. 1). Both
effects were rapid in onset and disappeared quickly after the infusion of theophylline. Enhancement of \((-\text{NE}\)\(^{3H}\)) release was not a very prominent phenomenon but reached the level of statistical significance with \(10^{-2}-10^{-4}\) M theophylline (Fig. 2). In these concentrations, theophylline inhibited markedly and dose dependently the vasoconstrictor response to nerve stimulation, as well as that to injection of NE (0.4 \(\mu g\)) (Figs. 2, 3).

Theophylline (\(10^{-5}-10^{-4}\) M) markedly and dose dependently depressed adenosine \((10^{-6}\) M) enhanced vasoconstrictor responses to both nerve stimulation and injected NE (Fig. 4). At \(10^{-5}\) M theophylline, the antagonism resulted in vasoconstrictor responses close to the control level, i.e., responses obtained in the absence of adenosine and theophylline; \(10^{-4}\) M theophylline abolished the enhancing effect of adenosine \((10^{-6}\) M), as witnessed by the finding that the vasoconstrictor responses were as small as those obtained in the presence of theophylline alone. The direct pressor effect of adenosine \((10^{-6}\) M) was markedly reduced already by \(10^{-6}\) M theophylline (Fig. 1). Theophylline also counteracted effectively the inhibitory effect of adenosine \((10^{-6}\) M) on \((-\text{NE}\)\(^{3H}\)) release induced by nerve stimulation. This is perhaps surprising in view of the relatively small effects of theophylline per se on this parameter. Nevertheless, theophylline \((10^{-5}\) M) partially removed the inhibition by adenosine \((10^{-6}\) M) on \((-\text{NE}\)\(^{3H}\)) release. At \(10^{-4}\) M theophylline nullified the inhibitory effect of adenosine \((10^{-6}\) M), leading to \((-\text{NE}\)\(^{3H}\)) output figures statistically indistinguishable from those obtained with nerve stimulation in the presence of theophylline alone (Fig. 5). Raising the adenosine concentration to \(10^{-5}\) M surmounted the antagonistic effect of theophylline. In these cases the inhibition of \((-\text{NE}\)\(^{3H}\)) release was unaffected by \(10^{-5}\) M theophylline and only partially antagonized by the 10 times higher concentration.

Since theophylline is known as a phosphodiesterase inhibitor, two other phosphodiesterase inhibitors, Ro 20-1724 and ZK 62.711, were tested for effects on adenosine-mediated modulation of adrenergic neurotransmission in the kidney. Neither Ro 20-1724 \((10^{-6}-10^{-4}\) M) nor ZK 62.711 \((10^{-6}-10^{-5}\) M) affected the inhibitory effect of adenosine \((10^{-6}\) M) on release of \((-\text{NE}\)\(^{3H}\)) induced by nerve stimu-

![Figure 2](https://circres.ahajournals.org/doi/fig/10.1161/01.CIR.43.4.594)

Figure 2 Effects of theophylline on \((-\text{NA}\)\(^{3H}\)) release and vasoconstriction induced by nerve stimulation (6 Hz, 90 pulses). Data presented in % of a preceding control stimulation and given as means ± SE: Numbers in parentheses = number of experiments. \(\star P < 0.05, \star\star P < 0.01, \star\star\star P < 0.001\).

![Figure 3](https://circres.ahajournals.org/doi/fig/10.1161/01.CIR.43.4.594)

Figure 3 Effect of theophylline on vasoconstriction induced by rapid infusion (10 second) of a standard dose of NA (0.4 \(\mu g\)). Data presented in % of a preceding control stimulation and given as means ± SE. Numbers in parentheses = number of experiments. \(\star\star\star P < 0.01, \star\star\star\star P < 0.001\).

![Figure 4](https://circres.ahajournals.org/doi/fig/10.1161/01.CIR.43.4.594)

Figure 4 Effects of theophylline on adenosine-enhanced vasoconstriction in response to nerve stimulation (6 Hz, 90 pulses) and NA (0.4 \(\mu g\)). Data presented in % of a control stimulation in the absence of adenosine and theophylline. Symbols to the left denote enhancing effect of adenosine. Mean values ± SE. Numbers in parentheses = number of experiments. \(\star\star\star P < 0.001\).
THEOPHYLLINE, ADENOSINE, AND NOREPINEPHRINE RELEASE/Hedqvist et al.

Vasoconstriction and NA Release

Figure 5 Effects of Theophylline-adenosine interaction on (–)-NA[^3H] release and vasoconstrictor responses to nerve stimulation (6 Hz, 90 pulses). Data presented in % of a preceding control stimulation in the absence of adenosine and theophylline. Symbols to the left denote effects of adenosine alone on responses to nerve stimulation. Mean values ± SE. Numbers in parentheses = number of experiments. **P < 0.01, ***P < 0.001.

Effects of Adenosine (10^-6 M) and Ro 20-1724 (10^-1 M), Alone and in Combination, on Vasoconstrictor Responses to Renal Nerve Stimulation (6 Hz, 90 Pulses).

<table>
<thead>
<tr>
<th>Control</th>
<th>Adenosine</th>
<th>Ro 20-1724</th>
<th>Ro 20-1724 + Adenosine</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>166.8 ± 14.5 (P < 0.01)</td>
<td>106.6 ± 9.6 (NS)</td>
<td>67.0 ± 4.2 (P < 0.01)</td>
</tr>
</tbody>
</table>

Data presented in % of a preceding control stimulation. Mean values ± se; n = 8. P values within parentheses denote difference from control. NS = not significant.
Theophylline 1.2 x 10^{-6} 6.0 x 10^{-4} from Table 1). Net effect of adenosine in the presence of antagonistic drug (data from Figs. 2, 5, and 6, and from Table 1). Net effect of adenosine in the presence of antagonistic drug is subsequently expressed in % of the effect of adenosine alone.

Discussion

In the present study the NE stores in the rabbit kidney were labeled with (-)-NE[3H] and outflow of tracer was used as an index of transmitter release. Previously we have shown that 81% of the radioactivity overflowing from the kidney during nerve stimulation is accounted for by intact (-)-NE[3H]. Adenosine decreased and theophylline increased total overflow of radioactivity during nerve stimulation, without affecting basal outflow of radioactivity. This indicates that adenosine decreased and theophylline increased the release of transmitter in response to nerve stimulation. The possibility that the two compounds might in addition have altered the metabolic degradation of released (-)-NE[3H] was not specifically looked for. It has been shown, however, that adenosine, within the concentration range used in the present study, does not affect the enzymatic degradation of (-)-NE[3H] in the perfused canine saphenous vein.

The major finding of the present study is that theophylline antagonized the inhibitory effect of adenosine on NE release as well as its enhancing effect on vasoconstriction induced by nerve stimulation and administered NE. Since these effects of theophylline were dose dependent, reversible, and surmounted by raising the adenosine concentration, a competitive antagonism is indicated. In addition, theophylline antagonized the direct pressor effect of adenosine, which is in keeping with observations in dog and rat kidney.

Previously we have found that the prejunctional effect of adenosine in the rabbit kidney is unaffected by drugs that block prostaglandin synthetase or the \(\alpha \)-adrenoceptors. Since \(\alpha \)-adrenoceptor blockade completely inhibits vasoconstrictor responses to nerve stimulation and NE, it is unlikely that inhibition of NE release by adenosine is secondary to its enhancing effect on the vasoconstrictor responses. The present observation that there was no significant correlation between adenosine-mediated enhancement of the vasoconstrictor response and inhibition of NE release further stresses the opinion that the two effects are independent.

Theophylline is a phosphodiesterase inhibitor and hence may cause increased levels of cyclic AMP. Both methylxanthines and dibutyryl cyclic AMP have been reported to increase catecholamine secretion from the adrenal medulla and NE release from vas deferens and spleen, although in the vas deferens the effect has been considered very small. In the present study, theophylline concentrations having little or no effect on kidney phosphodiesterase antagonized the effects of adenosine on perfusion pressure and adrenergic neuroeffector transmission, and abolition of the adenosine effects was obtained with theophylline in a concentration producing no more than 25% inhibition of phosphodiesterase. Moreover, Ro 20-1724 and ZK 62.711, equal or more potent phosphodiesterase inhibitors than theophylline in several tissues, including rabbit kidney, equal or more potent phosphodiesterase inhibitors than theophylline in several tissues, including rabbit kidney, were found to be devoid of action on the adenosine-mediated inhibition of NE release. Notably, Ro 20-1724 (10^{-4} M) depressed the adenosine-enhanced vasoconstrictor response to nerve stimulation. However, Ro 20-1724 per se inhibited the vasoconstrictor response, and the net effect of adenosine was largely unaffected by Ro 20-1724 (cf. Fig. 8). It may be concluded, therefore, that the observed effects of theophylline cannot be explained in terms of phosphodiesterase inhibition. On the other hand, the results are compatible with the opinion that theophylline specifically interacts with effects of adenosine on neuroeffector transmission in the kidney.

It has been proposed that theophylline is an antagonist acting on an adenosine receptor located on the cell surface. The present finding that theophylline antagonized the pre- and postjunctional effects of adenosine in an almost parallel manner (cf. Fig. 8) suggests the presence of such adenosine receptors of similar type and sensitivity on the membrane of both the nerve terminal and the effector cell.
The observed interactions of theophylline and adenosine on adrenergic neurotransmitter release involve the synthesis of adenosine, and these effects are inhibited by adenosine antagonists, indicating that endogenous adenosine plays a role in the regulation of adrenergic neurotransmission. The results are in agreement with previous studies showing that adenosine inhibits noradrenaline release, and these findings support the possibility that adenosine may be involved in the control of sympathetic nerve activity.

References

1. Hedqvist P, Fredholm BB: Effects of adenosine on adrenergic neurotransmission
2. Hashimoto K, Kokubun H: Adenosine-catecholamine interaction in the renal vascular resistance
3. Haddy FJ, Scott JB: Metabolically linked vasopressinergic mechanisms in local regulation of blood flow
4. Thurau K: Renal hemodynamics
5. Scott JB, Daugherty RM Jr, Dabney JM, Haddy FJ: Role of chemical factors in regulation of flow through kidney, hindlimb and heart
6. Tagawa H, Vander AJ: Effects of adenosine compounds on renal function and renin secretion in dogs
7. Afonso S: Inhibition of coronary vasodilating action of di-pyridamole and adenosine by aminophylline in the dog
8. Schaumann W, Juhrau W, Dietmann K: Antagonism of both the pre- and postjunctional effects of adenosine
9. Phillis JW, Kostopoulos GK: Adenosine as a putative transmitter in the cerebral cortex
10. Osswald H: Renal effects of adenosine and their inhibition by theophylline in dogs
11. Selstam G, Rosberg S: Stimulation of FSH in vitro on the extracellularly active cyclic AMP phosphodiesterase in the preputial rat ovary
12. Fredholm BB, Hedqvist P, Vernet L: Effects of methylxanthines on cyclic nucleotides and related compounds on rabbit renal cyclic nucleotide phosphodiesterase
13. Fredholm BB, Hedqvist P, Vernet L: Effect of methylxanthines and related compounds on rabbit renal cyclic nucleotide phosphodiesterase, 5'-nucleotidase and adenosine deaminase
14. Robison GA, Butcher RW, Sutherland EW: Cyclic AMP
15. Verhaeghe RH, Vanhoutte PM, Shepherd JT: Inhibition of sympathetic neurotransmission in the rabbit kidney
16. Wooten GF, Thoa NB, Kopin IJ, Axelrod J: Enhanced dopamine β-hydroxylase and norepinephrine from sympathetic nerves by dibutyryl cyclic adenosine 3',5'-monophosphate and theophylline
18. Schumann W, Juhrau W, Dietmann K: Antagonism of both the pre- and postjunctional effects of adenosine
19. Fredholm BB, Rosberg S: Stimulation of FSH in vitro on the extracellularly active cyclic AMP phosphodiesterase in the preputial rat ovary
20. Tagawa H, Vander AJ: Effects of adenosine compounds on renal function and renin secretion in dogs
21. Afonso S: Inhibition of coronary vasodilating action of di-pyridamole and adenosine by aminophylline in the dog
22. Schaumann W, Juhrau W, Dietmann K: Antagonism of both the pre- and postjunctional effects of adenosine
23. Hashimoto K, Kokubun H: Adenosine-catecholamine interaction in the renal vascular resistance
24. Haddy FJ, Scott JB: Metabolically linked vasopressinergic mechanisms in local regulation of blood flow
25. Thurau K: Renal hemodynamics
26. Scott JB, Daugherty RM Jr, Dabney JM, Haddy FJ: Role of chemical factors in regulation of flow through kidney, hindlimb and heart
27. Tagawa H, Vander AJ: Effects of adenosine compounds on renal function and renin secretion in dogs
28. Schaumann W, Juhrau W, Dietmann K: Antagonism of both the pre- and postjunctional effects of adenosine
29. Hashimoto K, Kokubun H: Adenosine-catecholamine interaction in the renal vascular resistance
30. Haddy FJ, Scott JB: Metabolically linked vasopressinergic mechanisms in local regulation of blood flow
31. Thurau K: Renal hemodynamics
32. Scott JB, Daugherty RM Jr, Dabney JM, Haddy FJ: Role of chemical factors in regulation of flow through kidney, hindlimb and heart
33. Tagawa H, Vander AJ: Effects of adenosine compounds on renal function and renin secretion in dogs
34. Afonso S: Inhibition of coronary vasodilating action of di-pyridamole and adenosine by aminophylline in the dog
35. Schaumann W, Juhrau W, Dietmann K: Antagonism of both the pre- and postjunctional effects of adenosine
36. Hashimoto K, Kokubun H: Adenosine-catecholamine interaction in the renal vascular resistance
37. Haddy FJ, Scott JB: Metabolically linked vasopressinergic mechanisms in local regulation of blood flow
38. Thurau K: Renal hemodynamics
39. Scott JB, Daugherty RM Jr, Dabney JM, Haddy FJ: Role of chemical factors in regulation of flow through kidney, hindlimb and heart
40. Tagawa H, Vander AJ: Effects of adenosine compounds on renal function and renin secretion in dogs
41. Afonso S: Inhibition of coronary vasodilating action of di-pyridamole and adenosine by aminophylline in the dog
42. Schaumann W, Juhrau W, Dietmann K: Antagonism of both the pre- and postjunctional effects of adenosine
43. Hashimoto K, Kokubun H: Adenosine-catecholamine interaction in the renal vascular resistance
44. Haddy FJ, Scott JB: Metabolically linked vasopressinergic mechanisms in local regulation of blood flow
45. Thurau K: Renal hemodynamics
46. Scott JB, Daugherty RM Jr, Dabney JM, Haddy FJ: Role of chemical factors in regulation of flow through kidney, hindlimb and heart
47. Tagawa H, Vander AJ: Effects of adenosine compounds on renal function and renin secretion in dogs
48. Schaumann W, Juhrau W, Dietmann K: Antagonism of both the pre- and postjunctional effects of adenosine
49. Hashimoto K, Kokubun H: Adenosine-catecholamine interaction in the renal vascular resistance
50. Haddy FJ, Scott JB: Metabolically linked vasopressinergic mechanisms in local regulation of blood flow
51. Thurau K: Renal hemodynamics
52. Scott JB, Daugherty RM Jr, Dabney JM, Haddy FJ: Role of chemical factors in regulation of flow through kidney, hindlimb and heart
53. Tagawa H, Vander AJ: Effects of adenosine compounds on renal function and renin secretion in dogs
54. Afonso S: Inhibition of coronary vasodilating action of di-pyridamole and adenosine by aminophylline in the dog

Contribution of Systemic Venous Hypertension to the Development of Pulmonary Edema in Dogs

WARREN C. MILLER, WARREN W. SIMI, AND DAVID L. RICE

SUMMARY Systemic venous hypertension (SVH) is a frequent finding in pulmonary edema. To study the possible contributory or even causal role of SVH in pulmonary edema, a dog model was developed in which balloon catheters were placed in the left and right atria. Inflation of the left atrial balloon produced a tendency to pulmonary edema by causing pulmonary venous hypertension (PVH) (pulmonary artery wedge pressure of 20 mm Hg). Inflation of the right atrial balloon produced SVH (central venous pressure of 15 mm Hg). After 2 hours, dogs with SVH with or without PVH demonstrated a greater amount of lung fluid accumulation (P < 0.01) compared to controls or PVH alone. There was no significant difference in lung water in SVH dogs with or without PVH. Pulmonary blood flow was not significantly different between the experimental groups, each of which was less than control. Impairment of pulmonary lymphatic flow is one possible mechanism producing the worsening edema; however, bronchial venous hypertension or neurogenic reflexes cannot be excluded. We conclude that the contribution of systemic venous hypertension to the development of pulmonary edema may have therapeutic implications.

INCREASED extravascular lung water (pulmonary edema) has been demonstrated in humans with cor pulmonale, a condition characterized by systemic venous hypertension (SVH), rather than the pulmonary venous hypertension (PVH) seen in classic cardiogenic pulmonary edema due to left heart failure. The latter may additionally show systemic venous hypertension recognized by the clinician as distended neck veins, hepatic congestion and edema of the extremities. Various forms of noncardiogenic pulmonary edema also are accompanied by elevation of central venous pressure (CVP) which is independent of the level of pulmonary venous pressure. It has been postulated that the lung fluid accumulation seen in cor pulmonale is a consequence of SVH which produces back-pressure on bronchial veins that leads to pulmonary edema. Because of the frequent association of an elevated CVP and pulmonary edema and the suggestions that it may play a primary causal role, we have examined the contribution of systemic venous hypertension to the development of pulmonary edema in a canine model.

Methods

Healthy mongrel dogs weighing 22.5-29.3 kg were anesthetized with intravenous pentabarbitral (30 mg/kg, iv), secured in a supine position, intubated and ventilated with a volume ventilator (Harvard Apparatus). Control of CVP in the upper body was obtained by variable inflation of a balloon catheter placed at the junction of the superior vena cava and right atrium via a jugular vein. Pulmonary capillary wedge pressure (PCWP), was elevated by a balloon catheter placed directly in the left atrium through a left thoracotomy; the incision was closed airtight.
Antagonistic effects of theophylline and adenosine on adrenergic neuroeffector transmission in the rabbit kidney.

P Hedqvist, B B Fredholm and S Olundh

doi: 10.1161/01.RES.43.4.592

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1978 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/43/4/592