ARTERIAL CHEMORECEPTORS ON CEREBRAL BLOOD FLOW

RICHARD J. TRAYSTMAN, ROBERT S. FITZGERALD, AND SUSAN C. LOSCUTOFF

SUMMARY Cerebral hemodynamic responses to arterial hypoxia were studied in 13 normal and 9 chemodenervated anesthetized, paralyzed dogs. Arterial O2 content was lowered from control (18.0 vol%) to 14.0, 8.0, and 4.0 vol%, respectively, by either decreasing arterial P O2 (hypoxic hypoxia) or increasing carboxyhemoglobin saturation (CO hypoxia) at normal P O2. Both hypoxic hypoxia and CO hypoxia at each value of the lowered arterial O2 content resulted in progressive significant increases in cerebral blood flow (134, 169, 276, and 146, 206, 244% of control, respectively). Before chemoreceptor denervation, arterial blood pressure increased with hypoxic hypoxia but decreased with CO hypoxia. After chemodenervation, hypoxic hypoxia and CO hypoxia at each value of lowered arterial O2 content resulted in similar significant increases in cerebral blood flow. These increases were not significantly different from those observed prior to chemodenervation. After chemodenervation, hypoxic hypoxia and CO hypoxia both resulted in similar decreases in arterial blood pressure and cerebral vascular resistance, whereas, before chemodenervation, cerebral vascular resistance decreased more with CO hypoxia than with hypoxic hypoxia. These data show that cerebral vasodilation induced by both forms of hypoxia in chemodenervated dogs resembles that in animals with CO hypoxia and intact chemoreceptors in which P O2 is high and the carotid chemoreceptors may not be activated. We also have shown that the transient responses to both types of hypoxia are not altered by carotid chemodenervation, and conclude that the carotid chemoreceptors do not play a role in the mechanism by which cerebral blood flow increases during decreased blood O2 content.

IN THE PAST several years, there has been renewed interest in the possible role of the autonomic nervous system in the regulation of cerebral blood flow. Despite much evidence supporting an autonomic nerve supply to parts of the cerebral vasculature, the functional significance of these nerves remains uncertain. Neural regulatory mechanisms for the cerebral circulation have been assumed to be negligible or nonexistent because of the failure of autonomic stimulation and denervation to affect cerebral blood flow significantly. The effect of the sympathetic nervous system on cerebral blood flow remains especially controversial. Many investigators have failed to show any significant effects of sympathetic stimulation on cerebral blood flow, whereas others using similar techniques have demonstrated pronounced cerebral vasoconstriction. The effect of arterial hypoxia on cerebral blood vessels and flow has been studied for many years, and there can be no doubt that hypoxia produces cerebral vasodilation and an increase in cerebral blood flow. However, the precise mechanism by which hypoxia produces this vasodilation is unclear. There is evidence that oxygen can act directly on the smooth muscle of the cerebral vessels, with a low PO2 resulting in vasodilation. It has also been suggested that local factors, such as cerebral parenchymal acidosis secondary to anaerobic metabolism caused by hypoxia, may be responsible for cerebral vasodilation. Finally, Sokoloff pointed out that neurogenic mechanisms may be involved in the cerebral vasodilator response to hypoxia, and most recently Ponte and Purves have suggested that the carotid chemoreceptors acting through neurogenic mechanisms are responsible for virtually all of the cerebral vasodilation in response to hypoxia. Their conclusion indicates that the neurogenic (chemoreflex) control of cerebral blood flow in response to hypoxia is the most important mechanism responsible for cerebral vasodilation.

In this investigation, we studied cerebral hemodynamic...
responses (steady state and transient) to two different types of arterial hypoxia in normal and carotid chemodenervated dogs. The purpose of these studies was to test the hypothesis that carotid chemoreceptor stimulation produces the cerebral vasodilation which occurs with hypoxia. The types of hypoxia studied were: (1) hypoxic hypoxia (decreased partial pressure and content) which stimulates the carotid chemoreceptor, and (2) carbon monoxide hypoxia (normal partial pressure but decreased content) which would not be expected to stimulate the carotid chemoreceptor.

Methods

General Procedures

Experiments were done on 13 normal and 9 chemodenervated adult, mongrel dogs of either sex (16-23 kg) anesthetized with sodium pentobarbital (30 mg/kg, iv). Heparin (500 units/kg, iv) was used as the anticoagulant, with additional doses given every 90 minutes. Dogs were paralyzed with succinylcholine (Sucostin) (40 mg) and ventilated with a positive pressure respirator (Harvard respiration pump 607) connected to a tracheal cannula. Tidal volume and respiratory rate were adjusted to give an alveolar (end-expiratory) carbon dioxide of 4.0%, as monitored by a CO2 gas analyzer (Godart Capnograph). The CO2 analyzer was calibrated regularly with mixtures of CO2 in air analyzed to a precision of 0.01%. Dissection to expose the femoral artery and vein, carotid arteries, and cranium was done with an electric cautery. Arterial blood pressure (iliac arterial pressure) was measured via a cannula advanced from the femoral artery. To prevent cooling, the dogs were covered with a plastic sheet and all surgical areas, where possible, were sutured with skin clips. Rectal temperature was maintained around 38°C throughout the experiment by a heat lamp. All pressures were measured with Statham P-23 transducers, and all data were recorded on an Electronics for Medicine recorder.

Measurement of Blood Flows

The technique used to measure cerebral venous blood outflow has been described by Rapela and Green. The confluence of the cerebral sinuses was cannulated, and the lateral sinuses and occipital emissary veins were occluded with bone wax to prevent communication between the intracranial and extracranial venous circulations. From the confluence of the sinuses the blood then passed through a previously calibrated electromagnetic flow probe, before returning to the dog via the femoral vein (Fig. 1). With this technique, approximately 50-70% of the mass of the brain is drained at the confluence of the sagittal and straight sinuses. Blood flow measured at the confluence of the sinuses before and after occlusion of the lateral sinuses will be designated, respectively, as "venous outflow" and "cerebral venous outflow." Blood flow from the confluence of the sinuses, regardless of the condition of the lateral sinuses, will be referred to as "cerebral venous outflow." Venous and cerebral venous outflow pressures were measured upstream from the flowmeter. This pressure merely measures the resistance to the flow of blood induced by the flow transducer, since the outflow cannula was set at the level of the right atrium and all pressures were referred to this common zero reference plane.
reference plane. Brain perfusion pressure was estimated as systemic arterial pressure minus cerebral venous outflow pressure. Intracranial vascular resistance was calculated by dividing brain perfusion pressure by cerebral venous outflow.

Extracranial blood flow was estimated by means of a noncannulating electromagnetic flow probe placed around the left, right, or both common carotid arteries (Fig. 1). Systemic arterial pressure was taken as extracranial perfusion pressure and used to calculate extracranial vascular resistance.

Denervation of Carotid Bifurcations

Chemodenervation was accomplished by cutting the carotid sinus nerves bilaterally. Both carotid bifurcations were exposed before the surgical approach to the confluence of the cerebral venous sinuses. After identification of the external carotid artery, the internal carotid artery, carotid sinus, and the occipital artery, the mass of nerves and fascia, including the carotid sinus nerve, was exposed in each side for subsequent ligation and section. This procedure denervated not only the carotid bodies but also the carotid sinuses. The integrity of the receptors of the carotid body and carotid sinus was tested in each dog by observing respiratory changes which occurred when 5 μg of NaCN were injected into the common carotid arteries. This test was performed before the dogs were paralyzed with succinylcholine.

Administration of Hypoxia and Blood Gas Analysis

Arterial O₂ content was lowered by one of two methods: (1) by inhalation of various O₂ mixtures in nitrogen at constant ventilation (hypoxic hypoxia), or (2) by inhalation of various levels of carbon monoxide, also at constant ventilation, to produce equivalent reductions in arterial O₂ content (CO hypoxia). Oxygen content for both types of hypoxia was reduced from 18.0 vol% (control) to approximately 14.0, 8.0, and 4.0 vol% (random order). An important point to emphasize is that, although arterial O₂ content is reduced with both types of hypoxia, with CO hypoxia there is no reduction in the arterial O₂ tension. For steady state measurements, dogs were maintained at a given level of hypoxic hypoxia for 15-20 minutes and CO hypoxia for 35-40 minutes to allow equilibration of ventilatory and blood gases before final gas samples were taken, and to allow time for hemodynamic responses to occur and to be maintained. Arterial and cerebral venous blood samples were taken from the femoral artery and cerebral venous outflow cannulas, respectively. The experimental protocol was such that each dog acted as its own control for different levels of both hypoxic hypoxia and CO hypoxia. Oxygen tension (PO₂), carbon dioxide tension (PCO₂), and pH were measured at 37°C immediately after the samples were obtained, using Instrumentation Laboratories electrodes and analyzer (IL-113). The electrodes were calibrated with air (20.08 O₂), and mixtures of oxygen in nitrogen (around 8%) and carbon dioxide in air (around 5 and 10% CO₂) were analyzed to a precision of 0.01%. The pH electrode was calibrated with standard phosphate buffers (6.840; 7.381). Oxygen and carboxyhemoglobin saturation and hemoglobin also were measured immediately after samples were taken with an IL CO-oximeter (model 182). Electrodes were calibrated before and after each set of samples was taken. End-expiratory CO₂ was maintained constant throughout the experiment.

Verification of the Measurement of Cerebral Blood Flow

The verification procedure for this technique has been described in detail elsewhere. However, because of its importance, it will be briefly described here. In each dog, a hemodynamic test was carried out to verify that intracranial venous outflow was not contaminated with venous blood from extracranial sources. This test consists of occluding the venous outflow tube and observing the response of venous outflow pressure and other the highest level that venous outflow pressure reaches following occlusion of the venous outflow tubing. Prior to occlusion of the lateral sinuses, occlusion of the venous outflow tube results in only a small rise in venous outflow pressure (10 mm Hg). When the venous outflow tube was occluded following the occlusion of the lateral sinuses, venous outflow pressure increases immediately to very high levels. In every case, venous outflow pressure rises to values above 50 mm Hg. This hemodynamic test supports the concept that, prior to occlusion of the lateral sinuses, numerous anastomotic channels exist between the intracranial and extracranial venous circulations. These extracranial drainage routes, open to the venous outflow when the outflow tube is occluded prior to occlusion of the lateral sinuses, account for the slight increase in venous outflow pressure observed under this condition. After occlusion of the lateral sinuses, the major proportion of these anastomotic channels is eliminated, and thus, on outflow tube occlusion, there is a considerable rise in cerebral venous outflow pressure. A second verification procedure involves the effect of occlusion of both jugular veins (increased extracranial venous pressure) on venous outflow from the confluence of the sinuses before and after occlusion of the lateral sinuses. Occlusion of both jugular veins results in a significant increase in venous outflow only when performed prior to occlusion of the lateral sinuses. Under these conditions, jugular vein occlusion increases resistance to blood flow via normal channels draining extracranial venous blood which in part is diverted via patent intervenous anastomotic channels and thus adds up to the flow measured out of the confluence of the sinuses. Occlusion of the lateral sinuses prevents communication between the intra- and extracranial circulation. Thus, jugular vein occlusion produces no change in cerebral venous outflow from its control value. This second hemodynamic test supports further the concept that the anastomosis between extra- and intracranial venous circulations ceases to be functionally significant after occlusion of the lateral sinuses.
Results

The effects of hypoxic hypoxia and CO hypoxia on cerebral blood flow (intracranial) in control and carotid chemodenervated conditions is shown in Figure 2. In all cases, cerebral blood flow was significantly increased above control as arterial O₂ content was reduced from control (18.0 vol%) to 14.0, 8.0, and 4.0 vol%. Hypoxic hypoxia and CO hypoxia in control dogs increased cerebral blood flow to 134, 169, 276 and 146, 206, 244% of control, respectively, with each lowering of arterial O₂ content. After chemodenervation, with each successive reduction of arterial O₂ content, hypoxic hypoxia and CO hypoxia increased cerebral blood flow to 136, 148, 222 and 141, 205, 220% of control, respectively. These increases in flow were not significantly different from those observed in dogs with intact chemoreceptors.

Figure 3 shows the effects of both types of hypoxia on arterial blood pressure in control and chemodenervated conditions. Blood pressure with hypoxic hypoxia in control dogs progressively increased to a maximum of 116% of control as arterial O₂ content was reduced to 4 vol%. CO hypoxia in either control or chemodenervated dogs decreased systemic blood pressure to a maximum of about 70% of control at 4 vol%. In chemodenervated dogs given hypoxic hypoxia, blood pressure decreased to 76% of control at 4 vol%. Thus, blood pressures after carotid chemodenervation with hypoxic hypoxia or CO hypoxia or with CO hypoxia in control dogs all resemble one another and are not significantly different. Only in the case of hypoxic hypoxia in control dogs does blood pressure increase, making it significantly different from the other three conditions. Since cerebral blood flow increased approximately equally with all conditions (Fig. 2), and considering the changes in systemic arterial blood pressure (Fig. 3), it is inescapable that cerebral vascular resistance decreases to a lesser extent with hypoxic hypoxia in control dogs than in all other conditions. Cerebral vascular resistance decreased equally with hypoxic hypoxia or CO hypoxia after chemodenervation, or with carbon monoxide in control dogs. This is seen in Figure 4.

The effects of both types of hypoxia, in control and chemodenervated conditions on cerebral O₂ consumption, are shown in Figure 5. These curves are not significantly different from one another, and it can be seen that O₂ consumption actually is fairly well maintained even at the very low levels of O₂ content. Hypoxic hypoxia in control or chemodenervated dogs initially increases O₂ consumption by 30-40% at the milder hypoxia range (14 vol%). This increase possibly may be attributed to the release of
Common carotid blood flow decreased to 74% of control of 4 vol%. CO hypoxia in either control or chemodenervated dogs reduced common carotid blood flow. Common carotid blood flow with hypoxic hypoxia in control dogs progressively increased to a maximum of 120% of control as arterial O₂ content was lowered to 4 vol%. CO hypoxia in either control or chemodenervated dogs reduced common carotid blood flow to 77% and 66% of control, respectively, at 4 vol%. In chemodenervated dogs subjected to hypoxic hypoxia, carotid blood flow decreased to 74% of control of 4 vol%. Common carotid resistance showed no change in any of the four conditions of decreased oxygen content. The same point is to be made here about carotid blood flow that was made in Figure 3 about arterial blood pressure, which is that carotid blood flow measurements after chemodenervation, with hypoxic hypoxia or CO hypoxia, or with CO hypoxia in control dogs, all resemble one another and are not significantly different. Only in the case of hypoxic hypoxia in control dogs does carotid blood flow increase, and it is only this condition which is significantly different from the other three conditions.

The effects of hypoxic hypoxia and CO hypoxia on common carotid blood flow in control and chemodenervated dogs exposed to two different levels of hypoxic hypoxia (6 dogs at each hypoxic level). The left side of the figure shows the transient cerebral blood flow responses when arterial O₂ content was reduced from control (around 18.0 vol%) to about 8.8 vol%, and the right side shows these responses when arterial O₂ content was reduced from control (around 18.5 vol%) to around 13.7 vol%. Cerebral blood flow increased progressively and equally with time, as arterial O₂ content decreased with hypoxic hypoxia, in control and chemodenervated dogs. It should be noted that the percentage increases in cerebral blood flow observed during the transient responses to hypoxic hypoxia at given arterial O₂ content were not significantly different from those cerebral blood flow increases observed under steady state conditions at equivalent levels of arterial O₂ content (Fig. 2) for either control or chemodenervated dogs. Figure 8 shows the transient responses of cerebral vascular resistance in control and chemodenervated dogs exposed to two levels of hypoxic hypoxia. At both content levels, the control graph differs significantly from the chemodenervated graph.

Figure 9 shows the transient responses of cerebral blood flow in 12 control and carotid chemodenervated dogs exposed to two different levels of CO hypoxia (6 dogs at each level). The left side of the figure shows the transient cerebral blood flow responses when arterial O₂ content was reduced from control (around 18.0 vol%) to about 8.0 vol%, while the right side shows these responses when arterial O₂ content was reduced from control (19.6 vol%) to around 14.3 vol%. Arterial O₂ contents are shown as the numbers in parentheses and are not statistically different at any given time. Cerebral blood flow increased progressively and equally with time, as arterial O₂ content decreased with CO hypoxia in control and chemodenervated dogs. As before, the percentage increases in cerebral blood flow observed during the transient responses to CO hypoxia at given arterial O₂ content (Fig. 9) were not significantly different from those cerebral blood flow increases observed under steady state conditions at equivalent levels of arterial O₂ content (Fig. 2) for either control or chemodenervated dogs. Figure 10 shows the transient responses of cerebral vascular resistance in control and chemodenervated dogs exposed to two levels of CO hypoxia. The two curves for both medium and high O₂ content are not significantly different, nor do these two
 transient responses of cerebral blood flow in control and chemodenervated dogs. Each point represents the mean ± se of six dogs. The values in parentheses are the arterial O₂ content measured at that time period.

Figure 8 Transient responses of cerebral vascular resistance in control and chemodenervated dogs exposed to hypoxic hypoxia. Analysis of variance showed a significant difference between control and chemodenervated hypoxic hypoxia for both medium and high O₂ content.
be drawn concerning the regulation of cerebral blood flow of the measured flow. The erroneous conclusions that can resulted in an increase in cerebral blood flow and that chemodenervated dogs exposed to CO hypoxia. Each point represents the mean ± SE of six dogs. The values in parentheses represent the arterial O₂ content measured at that time period.

Our results and conclusions are in direct contrast with those of Ponte and Purves who reported that arterial chemoreceptor stimulation with hypoxia in baboons resulted in an increase in cerebral blood flow and that chemoreceptor denervation completely abolished the vasodilator response. The divergence of results between Ponte and Purves' study and our study might well be accounted for on the basis of extracranial contamination of the measured flow. The erroneous conclusions that can be drawn concerning the regulation of cerebral blood flow when the responses of two distinctively different vascular systems, intracranial and extracranial, are not carefully and completely separated have been discussed previously. Specific reference was made in that report to experimental procedures in which extracranial contamination may have been facilitated by surgical techniques which include ligation, or blockage of numerous vessels either on the arterial or venous side of the circulation. In the study of Ponte and Purves, in addition to the complex and extensive surgery to the head and neck region, numerous arterial vessels to the head were ligated, thus leading to considerable extracranial contamination of their measured blood flow. They report that hypoxia produced an increase in the measured blood flow in their animals. However, the increase in blood flow could just as well have been produced by an increase in extracranial blood flow. We show that hypoxic hypoxia increases both cerebral and extracranial blood flow, while arterial blood pressure increased (Fig. 3). After carotid chemodenervation, hypoxic hypoxia resulted in the same increase in cerebral blood flow, but decreased both extracranial blood flow and arterial blood pressure. Depending upon the extent of extracranial contamination, Ponte and Purves easily could have observed no change in blood flow, the observation they actually reported, or even a decrease in the measured blood flow.

Two other differences between our work and Ponte and Purves' study also could account for the opposite findings: (1) we used a venous outflow technique to measure cerebral blood flow and they used a ¹³³Xe clearance technique; and (2) our studies were done with dogs; theirs, with baboons. We used a venous outflow technique which averages the blood flow from several regions of the brain. It is possible that chemoreceptor denervation may eliminate the cerebral vasodilator response to hypoxia in specific regional areas of the brain which are not reflected in the mean outflow measurement. Thus, the vasodilator response to hypoxia and the subsequent elimination of that response in certain regions by chemodenervation may be overlooked with the technique we used. In addition, this technique has been estimated to measure approximately 50-70% of total brain venous outflow. Therefore, if the response to hypoxia and chemodenervation occurred primarily in areas that are not represented using this technique, then we could not observe any change in total venous outflow. This, however, does not appear to be a plausible explanation for the difference between our work and that of Ponte and Purves. Heistad et al. used radioactive-labeled microspheres to measure total and regional cerebral blood flow and demonstrated that the cerebral vasodilator response to hypoxia was unaffected by carotid chemodenervation. In these experiments, both dogs and baboons were used and the results for each were the same; i.e., chemodenervation did not alter the cerebral vasodilator response to hypoxia. This would also appear to rule out the second possible difference, the species difference, as a reason for the two opposing viewpoints.

In trying to account for our results, we have proposed that the cerebral hemodynamic response during hypoxia is due to the local effects of hypoxia on cerebral tissue, and that the carotid chemoreceptor-initiated reflexes were unnecessary for this response. This proposition is based on two assumptions: (1) that carbon monoxide does not
stimulate carotid arterial chemoreceptors to any appreciable degree if \(P_{O_2} \) is maintained at a normal level, and (2) that the aortic chemoreceptors do not play a major role in the cerebrovascular response to both types of hypoxia.

The fact that the cerebrovascular responses to carbon monoxide in the control dogs resembled the responses to both types of hypoxia in the carotid body denervated dogs suggested the possibility that carbon monoxide does not stimulate the carotid body. The question of whether carbon monoxide stimulates the carotid chemoreceptors has been debated for close to 40 years. This field of investigation is still controversial. Some investigators have suggested that carbon monoxide does not stimulate the carotid bodies, although Paintal has demonstrated that the aortic bodies are responsive to carbon monoxide. The study of Mills and Edwards gives quantitative results from only one carotid fiber and four aortic fibers responding to carbon monoxide in cats. They concluded that both chemoreceptors are sensitive to carbon monoxide. However, Meyer et al. showed that the neural output from carotid chemoreceptors did not respond even when carboxyhemoglobin levels reached 50% as long as \(P_{O_2} \) remained normal. Lahiri and Delaney showed essentially the same result. Recently, Dehghani and Fitzgerald reported for cats that the aortic bodies respond as much to carbon monoxide hypoxia as to hypoxic hypoxia, whereas the carotid body shows no response to carbon monoxide hypoxia but does respond to hypoxic hypoxia. The observations of Mitchell on the effect of anemia on chemoreceptor output support the possibility that the aortic body is sensitive to decreases in oxygen content, whereas the carotid body does not respond to a decrease in content if the partial pressure of oxygen is normal.

In the present study during all four hypoxic challenges, the aortic bodies were intact. Inasmuch as leaving the carotid chemoreceptor area intact or removing it had no effect on the responses of the cerebral circulation to hypoxia or CO, we conclude that if peripheral arterial chemoreceptors were responsible for these responses, then the whole effect must be due to the aortic chemoreceptors. In view of the fact that in these studies and elsewhere we have observed significant differences in other cardiovascular variables before and after carotid body denervation, it seemed unlikely to us that the aortic bodies, unable to influence these changes, would be totally responsible for an identical increase in cerebral blood flow in the four experimental conditions.

Data supporting our suspicions are provided by the recent study of Bates and Sundt in cats. Their study shows that the increase in cerebral blood flow in response to decreases in \(P_{O_2} \) is the same before and after sectioning of the IX and X cranial nerves. Therefore, since hypoxic hypoxia certainly stimulates both carotid and aortic chemoreceptors and since the presence or absence of these receptors made no difference to cerebral blood flow in the cat during hypoxic hypoxia, we do not think the aortic bodies play a significant role in controlling cerebral blood flow in response to either hypoxic hypoxia or CO hypoxia in anesthetized, paralyzed, ventilated dogs. We feel further that the analysis of the time course of the cerebral blood flow and resistance responses to hypoxic hypoxia and CO hypoxia again confirms the lack of any significant but transitory influence of the peripheral arterial chemoreceptors on cerebral circulation.

Our data support the concept that cerebral vessels are relatively unresponsive to reflex stimuli and that the physiological role of the cerebral innervation is of only minor significance. Although the precise mechanism of action of hypoxic hypoxia and CO hypoxia to increase cerebral blood flow and to maintain oxygen consumption relatively constant has not been established in this paper, it is clear that information traveling via the carotid sinus nerve is not involved in the mechanism.

Acknowledgments

The authors gratefully acknowledge the excellent technical assistance of Eleonora Aldersen. We also acknowledge Janet Dorer for her superb typing and Clyde Ray for his faithful and cheerful support.

References

21. Paintal AS: Mechanism of activation of arterial chemoreceptors by...
Regional Choline Acetyltransferase Activity in the Guinea Pig Heart

PHILLIP G. SCHMID, BARBARA J. GREIF, DONALD D. LUND, AND ROBERT ROSKOSKI, JR.

SUMMARY Choline acetyltransferase is the enzyme that catalyzes the biosynthesis of acetylcholine, the neurotransmitter of the pre- and postganglionic parasympathetic system. To assess the extent of parasympathetic innervation, enzyme activity was measured in specialized and contractile regions throughout the guinea pig heart. Enzyme activity in the right atrial appendage was 137 nmol g"1 hr"1. Activity was greatest in the region of the sinoatrial node (187 nmol g"1 hr"1). Also, enzyme activity was high in the regions of the atrioventricular node (153 nmol g"1 hr"1), the proximal conduction bundles (133 nmol g"1 hr"1), and the base of the anterior papillary muscle of the left ventricle (179 nmol g"1 hr"1), which contains the moderator band and Purkinje fibers. In contrast, the enzyme activity in the region of the atrioventricular node was 67 ± 6, 108 ± 14, and 56 ± 11 nmol g"1 hr"1, respectively. Activity was significantly lower in the right atrial appendage. These results suggest that the density of parasympathetic innervation is similar in all the components of the conduction system, from the sinoatrial node to Purkinje tissues. Furthermore, the parasympathetic innervation of regions specialized for conduction is up to four times more dense than that of contractile regions.

ACETYLCHOLINESTERASE activity2-7 and the effects of efferent vagal nerve stimulation9-14 vary considerably throughout the heart. Therefore, it is inferred that the parasympathetic innervation of the heart is non-uniform. However, these variations are difficult to quantify. For example, acetylcholinesterase activity is identified histochemically and variations cannot be readily quantitated; furthermore, acetylcholinesterase activity may be non-specific, since it is found in red blood cells and other non-neural tissues.9-10 In a similar context, the magnitude of chronotropic, dromotropic, and inotropic effects of efferent vagal nerve stimulation may not be representative solely of the density of parasympathetic innervation.

These responses also could be affected by regional variability in cholinergic receptors and sympathetic neural influences. In view of these considerations, it seemed appropriate to examine another index of the parasympathetic innervation that might be more specific and also quantifiable.

Accordingly, in guinea pig heart, we have investigated the activity of choline acetyltransferase, the enzyme that catalyzes the biosynthesis of acetylcholine in neural tissues and to compare the activity in specialized and contractile regions.

From the Cardiovascular Center and the Departments of Internal Medicine and Biochemistry, University of Iowa College of Medicine, and the Veterans Administration Hospital, Iowa City, Iowa.

Supported by Program Project Grant HL-14388 and Grants HL-20768 and NS-11310 from the U.S. Public Health Service and by Grant MR15 7737 from the Veterans Administration.

Address for reprints: Phillip G. Schmid, M.D., Room 10 W 50, Veterans Administration Hospital, Iowa City, Iowa 52240.

Received June 20, 1977; accepted for publication January 6, 1978.
Cerebral circulatory responses to arterial hypoxia in normal and chemodenervated dogs.
R J Traystman, R S Fitzgerald and S C Loscutoff

doi: 10.1161/01.RES.42.5.649

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1978 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circres.ahajournals.org/content/42/5/649.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in
Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the
Editorial Office. Once the online version of the published article for which permission is being requested is
located, click Request Permissions in the middle column of the Web page under Services. Further information
about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/