The Electrocardiographic Recognition of Cardiac States at High Risk of Ventricular Arrhythmias
An Experimental Study in Dogs

PAUL M. URIE, MARY JO BURGESS, ROBERT L. LUX, ROLAND F. WYATT, AND J. A. ABILDSKOV

SUMMARY Recognition of states in which the heart is vulnerable to arrhythmia would be a helpful guide to prophylaxis. The possibility of recognizing such states from the ECG is suggested by the already established relationships between abnormally disparate recovery to both vulnerability to arrhythmia and ECG waveform. In this study, canine QRS, T, and QRST isoarea maps were determined from ECGs recorded at 192 body sites during control states and conditions of enhanced susceptibility to arrhythmia. Vulnerable states were produced by ouabain intoxication, hypothermia, premature beats, and epinephrine infusion. A hypothetical series of QRST isoarea maps that would be expected to occur without increased local inequalities of recovery was derived by adding the control QRST isoarea map to a fraction (a) of the control T isoarea map and allowing the fraction to vary from a = 0 to a = 1. One QRST isoarea map selected from the derived series was subtracted from a QRST isoarea map during each state of enhanced arrhythmia vulnerability. Derived maps were selected to minimize the average amplitude of the residual maps. RMS values of the residual maps systematically increased with increasing prematurity of depolarization, with time after a toxic injection of a dose of ouabain, with increasing hypothermia, and during the first 3 minutes of epinephrine infusion. Also, the RMS values of the residual maps decreased in hypothermic dogs during rewarming. Our findings suggest that states of vulnerability to arrhythmia due to increased disparity of recovery can be identified by analysis of ECG waveforms recorded from lead systems sensitive to electrical activity in local cardiac regions.

A RELATIONSHIP between disparate recovery of excitability in cardiac muscle and vulnerability to arrhythmias has been established. Inequalities of ventricular recovery also are responsible for the ST-T waveform in the electrocardiogram. These relationships suggest that conditions associated with a high risk of ventricular arrhythmias might be evident from the ST-T deflection. We examined this possibility through experiments on dogs in which we used interventions known to enhance vulnerability to arrhythmia. Multiple body surface leads were used to detect the electrical state in local cardiac regions, since the relationship of recovery and arrhythmia vulnerability which has been demonstrated is that of disparate recovery in localized cardiac areas. A new method of analysis of the QRST deflection recorded from multiple leads was developed. In this analysis, the QRST area was...
used as an index of disparate recovery to minimize the secondary influence of activation sequence on that of recovery. In addition, we formulated an hypothesis that normal ventricular recovery properties could change without including abnormal disparity of recovery. The body surface distributions of QRST areas to be expected with such states of abnormal recovery, but without increased local disparity of recovery, were predicted and compared to those recorded during conditions of enhanced arrhythmia vulnerability. Our findings suggested a relationship between vulnerability to ventricular arrhythmia and electrocardiographic features detectable by this analysis. Since the analysis was designed to detect increased disparity of ventricular recovery, the results indirectly suggest that ECG findings were due to this feature of ventricular states with enhanced arrhythmia vulnerability.

Methods

Experiments were performed on 10 closed-chest dogs anesthetized with pentobarbital, 30 mg/kg, iv. Bipolar pacing catheters were placed in the right atrium, right ventricle, and left ventricle to maintain heart rate control and introduce premature stimuli. For the experiments in which ouabain and hypothermia were employed, ventricular stimuli were used to permit observations to be continued despite the appearance of slow atrioventricular (AV) conduction and AV dissociation. Premature beats also were initiated from ventricular sites. When the ventricular sites were driven, the atrial site was stimulated simultaneously to decrease the possibility of reentry and to keep constant the effects of atrial activation on ECG waveform. In all experiments, control and postintervention records were obtained at the same heart rate.

States of altered vulnerability to arrhythmia were produced by hypothermia, ouabain intoxication, premature beats, and epinephrine infusion. Hypothermia was produced by canulizing the femoral artery and vein and shunting the blood through a heat exchanger submerged in an ice water bath. Rewarming was accomplished by placing the heat exchanger in a warm water bath. Body temperature was measured by a thermistor-tipped catheter placed in the central venous system. Ouabain intoxication was produced by a single intravenous injection of ouabain, 0.084 mg/kg. Premature beats were induced by stimuli delivered to the ventricular driving sites with varying coupling intervals. Epinephrine was administered as an intravenous infusion of 2.0 μg/kg per minute.

When stimuli were applied only to the atrium, area maps included the P wave as well as the QRST. When atrium and ventricle were stimulated simultaneously, atrial excitation and recovery potentials were superimposed on those due to ventricular excitation. In the analysis to be described, maps based on deflection area during the control state were subtracted from maps recorded after interventions intended to alter vulnerability. Since atrial deflections were included in both control and test states, effects of atrial events were eliminated by the subtraction of maps.

Map Acquisition and Processing

All data were collected, using multiplexing hardware designed and developed in our laboratory for acquisition of body surface potential maps. The multiplexing system consisted of six time division multiplexers, each of which amplified and switched 32 low level signals onto a single channel once every 1 msec. Each of the six multiplexer outputs was recorded on a single channel of a wide band FM instrumentation recorder at a speed of 120 inches per second (ips). A seventh tape channel was used to record a clock, synchronized to the multiplexers, and used for later demultiplexing of the data. The system effectively recorded 192 simultaneous ECGs with a 500-Hz bandwidth. A real time display of all 192 simultaneously recorded leads permitted verification that all ECG channels were operative. To eliminate ECG variation due to ventilation, the ventilator was held in expiration during the 10-second recording period. The recording system provided a flexible means of acquiring a great many maps over a short interval of time. Furthermore, the fact that data were recorded simultaneously permitted the acquisition of maps during rapidly changing cardiac states.

Recorded data were computer processed to yield scalar waveforms, isopotential maps, and isoarea maps. Data tapes were played back at 7.5 ips, digitized, and stored on digital magnetic tape. A single cardiac cycle was chosen for each run. Each of the 192 ECGs then was adjusted to baseline using linear interpolation between corresponding times of adjacent TP segments, and corrected for gain using a prerecorded calibration signal. In the event that a given lead was in error because of noise, electrode movement, or amplifier failure, potentials at that site were estimated, using an average of potentials at neighboring sites.

The resulting map data then were stored permanently on tape, filmed as isopotential maps on 16-mm film at 1- and 5-msec intervals during the QRS and T, respectively. Isoarea maps were calculated and plotted for QRS and T. An RMS voltage vs. time curve was plotted for each run. Onset of QRS, end of QRS, and end of T were selected manually. Due to the smoothing nature of the integrating process used to calculate area maps, slight differences in placement of these fiducial markers did not contribute significantly to the area maps. Areas of stimulus artifact obtained by integrating over its duration were found to be insignificant in comparison to changes observed in QRS, T, and QRST area maps due to the different experimental interventions. For the sake of consistency, stimulus artifacts were included in the area calculations for all premature beats and represented a small but constant error.

The control QRS and T area maps were determined for each dog prior to interventions known to alter vulnerability to arrhythmia. These maps were used to calculate a series of QRST area maps which were considered to be the control records for the vulnerability analysis.

Figure 1 illustrates the concept of the vulnerability analysis. A diagrammatic set of transmembrane action potentials and a single ECG lead are shown. Action potentials 1 and 2 are considered to represent adjacent cardiac areas, as are action potentials 2 and 3. Differences in the moment-by-moment time phase of phase 3 repolarization of action potentials 1 and 2 and of 2 and 3 are intended to represent the disparity of recovery between
For the purposes of this report, the term "disparity" of ventricular recovery will be used to indicate moment-to-moment differences in the degree of repolarization of various ventricular areas. If the entire ventricular mass repolarized simultaneously, no disparity of recovery would exist. Any other mode of recovery, including the normal, would exhibit disparity of recovery. The degree of disparity would vary with time and be determined by the voltage-time course of repolarization of the transmembrane action potential. The definition of disparity of recovery as varying with time is used in this report because the variation is one of the determinants of ST-T deflection waveform and area. We recognize that the principal evidence of a relation between the degree of disparity of recovery and vulnerability to arrhythmia has been obtained by measurements of refractory periods which establish only a single phase of recovery. It is likely, however, that greater than normal degrees of disparity also occur during other portions of the recovery process. The term "increased" disparity of recovery will be used to indicate greater degrees of disparity than exist in normal or control states. The term "local" disparity of recovery as used in this report requires explanation. The relation of disparate recovery and vulnerability has been established by refractory period measurements in localized cardiac areas. Within such areas, the range of refractory periods has been shown to be increased by interventions which enhance vulnerability to arrhythmia. These include local stresses such as ischemia and interventions which affect the entire cardiac mass, such as ouabain intoxication and hypothermia. For the purposes of this report, the term "increased local" disparity of recovery will be used to indicate conditions of greater than normal or control degrees of recovery disparity at cardiac sites in close proximity to each other; whether these conditions exist in a local area only or in the entire ventricle.

The concept illustrated in Figure 1 for a single electrocardiographic lead was applied to the body surface pattern of QTST areas sampled with 192 leads. The control QTST area pattern was taken as one extreme of the hypothetical series. Other maps in the series consisted of the control QTST area map plus various fractions of the control T area map to the extreme of -100% of the T area map. Map patterns in this series were regarded as those which could occur without increased local disparity of recovery times and without increased vulnerability to arrhythmia on that basis. The control QTST isoarea map and those calculated from it will be referred to as the "nonvulnerable" map series.

QTST isoarea maps after interventions known to alter vulnerability to arrhythmia (test maps) were compared to those in the nonvulnerable series, and the "best match" was determined. In that determination, the QTST area in each lead of the test map was compared to that of the same lead in maps from the nonvulnerable series. The best match was taken as that map from the series with the smallest total QTST area difference from all leads of the test map. Finally, the difference between the test map and its best match from the nonvulnerable series was determined and displayed as a map that was labeled the "vulnerability map." The following equations were used to calculate the vulnerability map:

\[
\alpha = \frac{\text{tAQRST} - (\epsilon AQRS + \alpha cAT)}{V} = 0
\]

where \(\alpha\) is determined by minimizing squared differences.

\[
\frac{d}{d\alpha} [\text{tAQRST} - (\epsilon AQRS + \alpha cAT)]^2 = 0
\]

\[
\alpha = \frac{\text{tAQRST} cAT - \epsilon AQRS cAT}{cAT cAT}
\]
where:
- \(t_{AQRST} \) = QRST area of the test map
- \(c_{AQRS} \) = QRS area of the control map
- \(c_{AT} \) = T area of the control map
- \(V \) = vulnerability map
- \(\alpha \) = the fraction of the control T area combined with the control QRS area to yield a QRST area map in the non vulnerable series.

A vulnerability index with units of mV·msec was calculated by taking the square root of the sum of the squares of the 192 values contained in the vulnerability map. The meaning of the vulnerability map and index can be illustrated by considering the case in which the control QRST isoarea map assumes the role of the test state. In this case, the vulnerability map would contain all zeros, and the vulnerability index would be zero.

Results

Figure 2 is an example of control isoarea maps from one experiment. The QRS isoarea map is shown in panel A and the T isoarea map in panel B. Panel C shows the QRST isoarea map and panel D the QRS-T isoarea map which represent the extremes of the "nonvulnerable" QRST isoarea map series for this dog. As described above, vulnerability maps were calculated by selecting the map from the "nonvulnerable" series showing the smallest difference from a test QRST isoarea map and subtracting it from the test QRST isoarea map.

In three dogs, vulnerability maps and indices were obtained at 2-minute intervals following a single intravenous injection of ouabain, 0.084 mg/kg. Heart rate control was maintained by catheter electrode drive of the right ventricle. Figure 3 shows a plot of the vulnerability index as a function of time for these dogs. In one dog, the vulnerability index showed a monotonic increase with time from 4 to 40 minutes after injection. In this dog, spontaneous ventricular fibrillation occurred 1 minute after the 40-minute record. The increase in vulnerability index with time also was evident in the other two dogs, but fewer records were obtained because of loss of heart rate control. Also displayed on this plot is the \(P < 0.001 \) confidence limits of the beat-to-beat variation in vulnerability index. This value was calculated from 10 successive QRST areas from five experiments. These confidence limits indicated that the increase in vulnerability index with ouabain could not be explained by beat-to-beat physiological variation.

Examples of the QRST isoarea maps and their best match from the nonvulnerable QRST isoarea map series are shown in Figure 4. The examples are from one of the experiments illustrated by vulnerability indices in Figure 3. Panel A shows the QRST isoarea map 4 minutes after injection of ouabain and panel B the best match for this map from the nonvulnerable series. It is apparent that major features of the maps are similar and subtraction could be expected to yield a small difference. Panel C of
Figure 4 shows the QRST isoarea map 40 minutes after ouabain injection, and panel D shows the best match for this map from the calculated nonvulnerable series. There are gross differences between the QRST isoarea map and its best match from the nonvulnerable series, and subtraction would be expected to show a large difference. Figure 5 shows the vulnerability maps from the experiment illustrated in Figure 4. These maps showed an increasing density of contour lines with increasing time following injection of ouabain. Sequential vulnerability maps from the other two dogs showed similar patterns and time course.

In three dogs, states of enhanced vulnerability were produced by premature depolarizations initiated by stimuli delivered simultaneously to atria and ventricles. The isoarea map of a single premature beat was determined by subtracting the QRST isoarea map during regular basic drive from one including the areas of both the premature complex and preceding basic drive complex. The QRST isoarea map of the second of two premature beats was obtained by subtracting the map of a combined basic drive and a single premature complex from a map including the area of a basic drive complex and both premature complexes. In these dogs, basic driving stimuli with a cycle length of 400 msec and premature stimuli were delivered to the same ventricular sites. Figure 6 shows the vulnerability maps of three premature beats with varying coupling intervals. The premature stimuli were delivered 300 msec after the basic drive in map A, 250 msec after the basic drive in map B, and 200 msec after the basic drive in map C. The amplitude of the vulnerability maps increased with increasing prematurity.
of the stimuli. Increasing prematurity of stimuli to a right ventricular site and to a combination of right and left ventricular sites in this dog showed a similar increase in the density of contour lines in the vulnerability maps. Similar results were obtained for the other two dogs. An example of the vulnerability maps during the first and second of two premature beats is shown in Figure 7. The first map was taken following a premature stimulus delivered to the left ventricle and delayed by 300 msec from a basic drive with a 400-msec cycle length. The second map was of a premature beat with a cycle length of 160 msec after the 300-msec premature beat. The density of the vulnerability map was greater for the second of two premature beats than the first. Similar results were obtained with successive premature beats in the other two dogs.

Hypothermia and rewarming were performed in experiments on two dogs. Heart rate control was maintained by catheter electrode drive of the left ventricle. Figure 8 is a plot of the vulnerability index as a function of temperature of a dog that was cooled to 27°C and rewarmed. The vulnerability index increased during cooling and returned to control values following rewarming with a slight increase in the index at the beginning of rewarming. A similar pattern of the vulnerability index was observed during other episodes of cooling and rewarming in this and the other dog.

An infusion of epinephrine, 2.0 μg/kg per minute, was administered intravenously in two dogs. A constant heart rate was maintained by catheter electrode drive of the right atrium. Figure 9 displays the changes of the vulnerability index during a 10-minute infusion in one dog. During the first 3 minutes of infusion, the vulnerability index was high. This corresponded to the period of increased disparity of recovery of excitability previously reported by Han et al.4 and attributed to the initial inhomogeneous distribution of the drug to the myocardium. Following this initial period, the vulnerability index remained at near zero values while the infusion was continued and after it was terminated. A similar pattern of changes in the vulnerability index was observed in the other dog.

Discussion

Our findings in this study suggest that conditions of increased local disparity of ventricular recovery which increase vulnerability to arrhythmia can be detected by analysis of the body surface electrocardiogram. Detection requires leads with sensitivity selective to various cardiac areas, since the established relation of vulnerability to arrhythmia and ventricular recovery is that of disparate recovery in localized areas. In this study, ECGs recorded from 192 electrodes on dogs were used, but evidence has been reported that considerably fewer electrodes are
required for regional cardiac examination in humans. Lead systems using 24 and 32 electrodes at selected sites have been reported to furnish up to 99% of the information contained in the body surface potential patterns determined with 150-192 electrodes. Use of the smaller number of electrodes for body surface potential mapping would facilitate not only electrode placement but also the simultaneous acquisition of data from all electrodes.

The electrocardiographic detection of disparate recovery related to vulnerability to arrhythmia also must take into account the possibility that abnormal recovery properties and the resulting abnormal T waves do not necessarily involve abnormal local disparity of recovery. This possibility was recognized in our study by calculating a hypothetical series of "nonvulnerable" QRST area maps. The series included abnormal T waves attributable to abnormal recovery properties but without abnormal regional disparity of recovery times.

Detection of locally disparate recovery affecting vulnerability to arrhythmia also requires an electrocardiographic index that is not substantially affected by activation sequence. Abnormalities of the T wave, secondary to changes in activation order only, are not likely to result in locally disparate recovery. Normal ventricular excitation begins near the center of the cardiac mass and proceeds in multiple directions simultaneously. Abnormal activation such as that occurring during ventricular ectopic beats proceeds from the site of origin, which may be eccentric, requires a longer time for completion, and causes prolongation of the QRS complex. The abnormal activation sequence affects the recovery sequence and results in secondary changes of the ST-T deflection. The abnormal recovery sequence probably involves increased disparity of earliest and latest recovery times in the entire ventricular mass, but, within local areas, the time required for excitation and the degree of disparity of recovery times are not necessarily affected. The QRST area of the electrocardiogram fulfills the requirement of being largely independent of activation sequence. Small differences of this quantity associated with varied activation orders probably are the result of varied electrotonic interactions during repolarization and thus reflect actual differences of ventricular recovery properties which should be included in the detection of local disparity of recovery.

Limitations of the proposed method of assessing vulnerability include all those inherent in a regional cardiac examination by means of the electrocardiogram. For example, differences in the sensitivity of body surface leads to various cardiac regions have been demonstrated in previous studies. It is therefore unlikely that equal degrees of abnormally disparate recovery in different cardiac areas will have equal effects on estimates of
vulnerability. It is likely that some conditions of increased disparity of recovery cannot be detected by electrocardiographic means. Signals resulting from these conditions are subject to cancellation because of opposing directions of recovery, as are other electrocardiographic events. Application of estimates of vulnerability to humans will add other limitations. In this study, the record from a given dog prior to a particular intervention was considered to be the control and was compared to records obtained after vulnerability to arrhythmia had been altered. Use of the method to study humans will require a different standard, such as the average normal QRS and T isoarea maps. The range of normal variation also will have to be considered and undoubtedly will limit the method's sensitivity and specificity. It also should be recognized that this study does not constitute proof that cardiac conditions responsible for vulnerability to arrhythmia were responsible for the electrocardiographic findings reported. It is possible that altered vulnerability and the ECG

![Figure 7](image)

Figure 7 Panel A shows the vulnerability map of a single premature depolarization at 300 msec during basic drive with a cycle length of 400 msec. Panel B shows the vulnerability map of a second premature depolarization at 160 msec following the 300-msec premature depolarization. Both basic and premature stimuli were delivered to the left ventricle. Contour lines were drawn at 20-mv-msec intervals. The maps show increased density with the second early premature beat.

![Figure 8](image)

Figure 8 The graph showing changes in vulnerability index during hypothermia and rewarming in one dog. The confidence limits as shown in Figure 3 are indicated in the lower lefthand corner.

![Figure 9](image)

Figure 9 Graph showing changes in vulnerability index during and following a 10-minute iv infusion of epinephrine, 2.0 \(\mu \)g/kg per minute. Within 1 minute of infusion, the vulnerability index increased but returned to near control values after 5 minutes. The confidence limits, as shown in a previous figure, are indicated in the upper righthand corner.

findings were independent effects of the various interventions. This seems unlikely in view of the previously demonstrated relation of disparate recovery to vulnerability to arrhythmia and the fact that the ECG analysis used in this study was specifically designed to detect disparate recovery. It also seems unlikely since the vulnerability index was increased by multiple interventions with different effects on recovery properties but all known to alter vulnerability. More direct proof that results of the ECG analysis are directly due to cardiac conditions responsible
Adenosine Metabolism in Canine Myocardial Reactive Hyperemia

R. A. Olsson, J. A. Snow, and M. K. Gentry

SUMMARY In pentobarbital-anesthetized open-chest dogs, myocardial adenosine content is elevated by 5 or 15 seconds of left coronary artery occlusion and falls exponentially to control levels during reactive hyperemia. The rate constants for adenosine dissipation are (mean ± SEM): -0.08 ± 0.01 and -0.034 ± 0.007 sec⁻¹ after 5- and 15-second occlusion, respectively. Kinetic analysis of the reactive hyperemia flow curves (Circ Res 14/15 (suppl I): 81-85, 1963) predicts rates of -0.069 ± 0.009 sec⁻¹ and -0.04 ± 0.009 sec⁻¹, indicating that changes in adenosine levels can account for the way coronary flow changes during this response. The log (dose-) response curve relating reactive hyperemia flow to tissue adenosine concentration has a steeper slope and is half-maximal at a lower adenosine concentration than the dose-response curve obtained by intracoronary infusions of adenosine in oxygenated hearts, indicating that the coronary vasoactivity of adenosine is enhanced during reactive hyperemia. This could explain why theophylline antagonizes the coronary vasodilatory effect of adenosine in oxygenated hearts but has relatively little effect on reactive hyperemia.

Adenosine has been detected in coronary venous blood during myocardial reactive hyperemia, a finding which has been interpreted as evidence that this nucleoside may regulate coronary vascular tone during the hyperemia response. In support of this, adenosine has been demonstrated in oxygenated heart muscle, the amount found increasing rapidly during myocardial ischemia. However, the adenosine content of heart muscle and coronary venous blood have not been related to coronary blood flow rate during reactive hyperemia, so that these findings must be considered as only circumstantial support for the adenosine hypothesis. Indeed, reports that doses of aminophylline which strongly antagonize the coronary vasodilatory effect caused by adenosine have a disproportionately smaller effect on myocardial reactive hyperemia suggest that adenosine may have no role at all in the hyperemia response.

The studies reported herein examine two questions. (1) How do cardiac adenosine levels change with time during myocardial reactive hyperemia? (2) Is the relationship between cardiac adenosine levels and coronary flow during posts ischemic reactive hyperemia the same as it is during an intracoronary infusion of this nucleoside in an oxygenated heart? The experiments designed to answer the first question were based on a preliminary study from this laboratory which showed that if one assumes that coronary blood flow rate during myocardial reactive hyperemia is regulated by a vasodilatory metabolite which accumulates during ischemia and that the log (dose-) response approximation describes the relationship between flow and the concentration of this metabolite, the metabolite should have the following properties: (1) it is present in oxygenated as well as ischemic heart muscle; (2) it accumulates...
The electrocardiographic recognition of cardiac states at high risk of ventricular arrhythmias. An experimental study in dogs.
P M Urie, M J Burgess, R L Lux, R F Wyatt and J A Abildskov

Circ Res. 1978;42:350-358
doi: 10.1161/01.RES.42.3.350

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1978 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/42/3/350.citation