The Response of Canine Coronary Vascular Resistance to Local Alterations in Coronary Arterial P_{CO}₂

ROBERT B. CASE, M.D., AND HENRY GREENBERG, M.D.

SUMMARY The effect of hypercapnia on coronary vascular resistance (CVR) was studied in seven open-chest dogs. Coronary blood flow was supplied to the cannulated left main coronary artery from the femoral artery by a precision pump. Coronary arterial P_{CO}₂ was locally controlled with a small membrane oxygenator in the coronary perfusion circuit. Each P_{CO}₂ change was made at a constant coronary flow, and CVR was calculated from the ratio of perfusion pressure to flow. Coronary sinus (CS) P_{CO}₂ and P_O₂ were recorded continuously from blood withdrawn through a CS catheter. Normocapnia (P_{CO}₂ = 423 ± 2.8 mm Hg) was obtained with a membrane oxygenator gas composition of 95% O₂-5% CO₂, and hypocapnia was produced with 100% O₂-0% CO₂. In addition to physiologically normal coronary flow (determined by a CS P_O₂ of 20-30 mm Hg) relatively high and low flow states were studied. At a normal control CS P_O₂, a decrease in coronary arterial P_{CO}₂ from 42.3 ± 2.8 to 23.8 ± 1.3 mm Hg caused CVR to increase by 84.2%, from 1.27 ± 0.06 to 2.30 ± 0.04 units. Since pH was inversely related to P_{CO}₂, the effect on CVR may have been mediated through a pH change. CS P_{CO}₂ decreased from 65.2 ± 1.9 to 39.4 ± 1.3 mm Hg. Myocardial oxygen consumption was unchanged. Increases in CVR of 74.5, 119.5, and 69.3% occurred during hypocapnia in three additional experiments in which control arterial P_O₂ was maintained at 52-90 mm Hg. When CS P_O₂ was greater than 30 mm Hg, the normocapnic CVR was high, and was only minimally increased by hypocapnia. When coronary flow was reduced to an ischemic level there was little response in CVR to hypocapnia. Thus the level of arterial P_{CO}₂ can have an important effect on CVR independent of changes in O₂ consumption. Myocardial P_{CO}₂, derived from metabolically produced CO₂ and contributed to by arterial CO₂, may be a major factor in normal control of coronary flow.

RECENT WORK from this laboratory¹ showed that extreme changes in myocardial O₂ extraction occurred when arterial P_{CO}₂ was reduced by hyperventilation or was increased by breathing a CO₂-O₂ mixture. These changes in myocardial O₂ extraction (which varied from a low of 13% to a high of 87%) were interpreted as representing equivalent changes in coronary flow, indicating that the level of arterial P_{CO}₂ (or the concomitant pH change) had a major effect on coronary flow. The hypothesis was presented that myocardial P_{CO}₂ is a primary agent controlling coronary flow.

The experimental technique presented here was developed to obtain more definite information about the extent of any relationship between P_{CO}₂ and coronary flow dynamics. In a canine preparation with controlled, constant coronary flow, changes in coronary arterial P_{CO}₂ were introduced through a small membrane oxygenator and were restricted to the coronary circulation. This experimental design eliminated the problems introduced by mechanical hyperventilation and by variation in systemic arterial P_{CO}₂ and allowed direct measurement of the relationship between coronary vascular resistance (CVR), coronary arterial P_{CO}₂, and coronary sinus (CS) P_{CO}₂.
Hypocapnia was induced by switching the gas to 100% O₂ for 15 minutes, followed by a return to the control state with 5% CO₂-95% O₂. Individual blood samples for measurement of pH, PₐO₂, PₐCO₂, and hematocrit (Hct) were taken by a syringe just distal to the oxygenator and analyzed by an Instrumentation Laboratories electrode system (IL-113).

At a constant coronary flow, any change in coronary arterial pressure represents a change in CVR. CVR was calculated as the ratio of corrected coronary arterial pressure to coronary flow. There was no change in right or left atrial pressure during these experiments, and they were not included in this calculation.

The CS blood was continuously withdrawn through a catheter previously placed in the midportion of the CS under fluoroscopic guidance; the position was verified at autopsy. The CS blood was withdrawn at a rate of 5 ml/min with a roller pump (Technicon) and returned to the femoral vein. A catheter previously placed in the midportion of the CS under fluoroscopic guidance; the position was verified at autopsy. For some experiments, left atrial and right atrial pressures also were measured.

Initial findings showed that CVR was responsive to an alteration in arterial and CS PCO₂. This response was most sensitive when the rate of coronary flow was set so that the resultant CS PO₂ was 20-30 mm Hg. At this flow rate, mean coronary arterial pressure was close to that of aortic diastolic pressure (Table 1). At an excessive coronary flow rate, resulting in an elevated CS PO₂ and elevated coronary arterial pressure, the CVR response was diminished greatly. The data consequently are presented in two sections: the first documents the existence and sensitivity of a CVR-PCO₂ relationship as observed at a normal CS PO₂, and the second shows the effect of coronary flow on this relationship.

RESPONSE IN CVR TO CHANGES IN ARTERIAL P CO₂ WHEN CONTROL CS PO₂ IS 20-30 mm Hg

Ten separate episodes were observed, at least one from each of the seven dogs, in which control CS PO₂ was in the range of 20-30 mm Hg. For these control points a near-normocapnic state was intended, obtained by using 5% CO₂-95% O₂ as the diffusing gas in the membrane oxygenator. The resultant mean control arterial PCO₂ for the group was 42.3 ± 2.8 mm Hg (Table 1).

The sequence of events following the induction of hypocapnia is best followed in a single experiment (Fig. 2). For this experiment, coronary flow was maintained at a constant rate of 61.9 ml/min per 100 g LV, and control CS PO₂ was 27.5 mm Hg. After the oxygenator gas was switched from 5% CO₂-95% O₂ to 0% CO₂-100% O₂, coronary arterial pressure rose from 76 to 153 mm Hg, with an increase in calculated CVR from 1.23 to 2.47. This increase in CVR was slow, reaching a plateau in approximately 7 minutes. However, its rate of change seems to correlate well with the simultaneously recorded CS PCO₂, which fell to a plateau at approximately the same rate. The sequence of events was reversed when 5% CO₂-95% O₂ was readministered. Results of individual syringe samples of blood gases at equilibrium points are recorded at the bottom of Figure 2. During this intervention, CS PCO₂ fell by 20 mm Hg, and CS pH rose by 0.14 units; arterial PCO₂ fell from 36.5 to 23.4 mm Hg, and arterial pH increased by 0.15 unit. Other factors which might cause a change in CVR (myocardial O₂ consumption, heart rate, aortic pressure, arterial O₂ content, and left main coronary flow) were essentially unchanged throughout the experiment. A possible source of error might have been a
This shows a continuous inverse linear relationship between change in Pco₂ and CVR. The rapidity with which CVR adjusts to a change in Pco₂, is difficult to determine from these experiments, because an alteration in coronary arterial Pco₂ caused by the membrane oxygenator cannot be an instantaneous process. However, there is no obvious time lag apparent in these recordings between changes in CS Pco₂ and CVR; therefore it is possible for the response to be rapid.

Table 1 includes a summary of data taken at the control point and the equilibrium hypocapnic point for this group of 10 interventions. The average reduction in CS Pco₂ was 25.8 mm Hg (range = 17.5–39.4), and in each instance there resulted a rise in CVR; this averaged 84.2% (range = 39.5–127.6). Comparison of CVR during control conditions and hypocapnia showed these changes to be highly significant (paired t-test), and no significant change was present in the factors which might otherwise affect CVR (heart rate, systolic pressure, arterial O₂ content, or myocardial O₂ consumption). There also was a good correlation between CS Pco₂ and changes in CVR (r = 0.90) (Fig. 4). As mentioned previously, the change in pH cannot be eliminated in this type of experiment, therefore CS pH also bore a good correlation with the change in CVR (r = 0.83). Also of note is moderate (16.5%) but significant decrease in CS P₌O₂ during hypocapnia; this is an expected change in view of the increase in pH of the CS blood. Myocardial O₂ extraction of 69.8% for the group is close to the normal range of 70–75% and was unchanged by hypocapnia.

EFFECT OF CORONARY FLOW ON THE SENSITIVITY OF THE CVR-Pco₂ RELATIONSHIP

CVR was insensitive to alterations in Pco₂ when there was marked coronary overperfusion or when the rate of perfusion was so low that the myocardium was ischemic. These relationships are illustrated in Figure 5, in which the response of CVR to hypocapnia was studied at four different pressures and pH values. The continuously recorded changes in CS Pco₂ and CVR are shown in Figure 2. The continuously recorded data being from the same experiment as shown in Figure 2. The continuously recorded changes in CS Pco₂ and CVR during induction of hypocapnia and the return to control. This shows a continuous inverse linear relationship between Pco₂ and CVR. The rapidity with which CVR adjusts to a change in Pco₂ is difficult to determine from these experiments, because an alteration in coronary arterial Pco₂ caused by the membrane oxygenator cannot be an instantaneous process. However, there is no obvious time lag apparent in these recordings between changes in CS Pco₂ and CVR; therefore it is possible for the response to be rapid.

<table>
<thead>
<tr>
<th>Po₂ (mm Hg)</th>
<th>Control</th>
<th>Hypocapnia</th>
<th>n</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>26.1 ± 0.94</td>
<td>21.8 ± 0.78</td>
<td>10</td>
<td>*</td>
</tr>
<tr>
<td>A</td>
<td>501.2 ± 72.8</td>
<td>601.4 ± 5.3</td>
<td>5</td>
<td>NS</td>
</tr>
<tr>
<td>PCO₂ (mm Hg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>65.2 ± 1.9</td>
<td>39.4 ± 1.3</td>
<td>10</td>
<td>†</td>
</tr>
<tr>
<td>A</td>
<td>42.3 ± 2.8</td>
<td>23.8 ± 1.3</td>
<td>5</td>
<td>↑</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>7.24 ± 0.02</td>
<td>7.39 ± 0.01</td>
<td>5</td>
<td>†</td>
</tr>
<tr>
<td>A</td>
<td>7.32 ± 0.02</td>
<td>7.46 ± 0.02</td>
<td>5</td>
<td>*</td>
</tr>
<tr>
<td>nO₂ (mml/min per 100 g LV)</td>
<td>0.443 ± 0.017</td>
<td>0.428 ± 0.009</td>
<td>5</td>
<td>NS</td>
</tr>
<tr>
<td>CF</td>
<td>59.2 ± 3.0</td>
<td>59.2 ± 3.0</td>
<td>10</td>
<td>NS</td>
</tr>
<tr>
<td>Pressure aorta (mm Hg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>110.6 ± 2.6</td>
<td>109.6 ± 3.0</td>
<td>10</td>
<td>NS</td>
</tr>
<tr>
<td>Diastolic</td>
<td>87.0 ± 3.7</td>
<td>82.5 ± 2.8</td>
<td>10</td>
<td>*</td>
</tr>
<tr>
<td>Heart rate/min</td>
<td>147.9 ± 8.7</td>
<td>150.4 ± 8.1</td>
<td>10</td>
<td>NS</td>
</tr>
<tr>
<td>Pressure, coronary artery (mm Hg)</td>
<td>75.6 ± 4.5</td>
<td>132.2 ± 5.5</td>
<td>10</td>
<td>†</td>
</tr>
<tr>
<td>CAP/ADP</td>
<td>0.87 ± 0.03</td>
<td>1.61 ± 0.05</td>
<td>10</td>
<td>†</td>
</tr>
<tr>
<td>CVR</td>
<td>1.27 ± 0.06</td>
<td>2.30 ± 0.04</td>
<td>10</td>
<td>†</td>
</tr>
<tr>
<td>% ΔCVR</td>
<td>84.2 ± 8.34</td>
<td>5.5 ± 0.54</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>% ΔCVR/mm Hg ΔCS Pco₂</td>
<td>-3.57 ± 0.54</td>
<td>5.3 ± 1.3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>O₂ content (ml/100 ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>6.83 ± 0.78</td>
<td>7.54 ± 0.77</td>
<td>5</td>
<td>NS</td>
</tr>
<tr>
<td>A</td>
<td>22.61 ± 0.78</td>
<td>22.79 ± 0.79</td>
<td>5</td>
<td>NS</td>
</tr>
<tr>
<td>O₂ extraction</td>
<td>69.76 ± 3.18</td>
<td>67.00 ± 2.9</td>
<td>5</td>
<td>NS</td>
</tr>
</tbody>
</table>

Results are expressed as mean ± S.E.
A = coronary artery; nO₂ = myocardial O₂ consumption; LV = left ventricle; CF = coronary flow, n = number of dogs; CAP/ADP = ratio of coronary arterial pressure to aortic diastolic pressure; % ΔCVR/mm Hg ΔCS Pco₂ = the percent change in CVR per mm Hg change in CS Pco₂.

Significance
* P < 0.05.
† P < 0.001.
© P < 0.01.
NS = P > 0.05
constant myocardial oxygen consumption, coronary vascular resistance (CVR) is seen to vary inversely with CS PCO₂. HR = heart rate; CAP = mean coronary artery pressure; nO₂ = myocardial oxygen consumption in mmol/min per 100 g LV.

When coronary flow was reduced to 48.7 ml/min per 100 g LV (Fig. 5, second panel; control CS PO₂ = 56.1) there was a 41.6% rise in CVR during hypocapnia, from 1.73 to 2.45; with further flow reduction to 43.2 ml/min per 100 g LV (third panel; control CS PO₂ = 29.5) there was a 61.3% rise in CVR during hypocapnia, from 1.37 to 2.21. It also seems apparent (Fig. 5, panels 2 and 3) that CVR rises from a lower control value to reach approximately the same peak, which could represent the maximum CVR attainable. Thus the interpretation could be made that the reduction in CS PO₂ which occurred (approximately 20 mm Hg) was in excess of that needed to provide a maximum response, and that a much smaller degree of hypocapnia might cause the same increase in CVR.

Finally, flow was deliberately reduced to an ischemic level of 37.8 ml/min per 100 g LV (fourth panel; control CS PO₂ = 24.1), so that marked S-T depression occurred. Coronary arterial pressure was 47 mm Hg. CVR was not increased during hypocapnia at this flow and actually showed a slight decrease.
FIGURE 5 Four separate interventions on the same dog are displayed. For each intervention heart rate was constant at 120/min and systemic arterial pressure was constant at 110/75 mm Hg. In panel 1, left, there is minimal response in coronary vascular resistance (CVR) associated with a high coronary sinus (CS) Po, of 41.5 mm Hg. In panels 2 and 3, with CS Po, values of 310 mm Hg and 293 mm Hg, respectively, there is a progressively increasing CVR response to hypocapnia. In panel 4, right, the simultaneously recorded electrocardiogram revealed S-T depression consistent with ischemia and the CVR response is flat. LV = left ventricle, CAP = mean coronary artery pressure.

Since the increase in CVR that resulted from hypocapnia apparently was dependent on the adequacy of coronary flow, the data were examined further in relation to the control CS Po,. In the first section under Results, only points with a control CS Po, of 20-30 mm Hg were considered. Inclusion of all flows studied in these seven dogs yielded 16 non-ischemic points with control CS Po, varying from 21.0 to 41.5 mm Hg. In Table 2 these are arranged in order of descending CS Po,, and placed in three groups: (1) above 30 mm Hg, (2) 25-30 mm Hg and 29.5 mm Hg, respectively, there is a progressively increasing CVR response to hypocapnia. In panel 4, right, the simultaneously recorded electrocardiogram revealed S-T depression consistent with ischemia and the CVR response is flat. LV = left ventricle, CAP = mean coronary artery pressure.

three groups was almost the same (2.19, 2.25, and 2.40), and these values were not significantly different. These findings suggest that in each instance the response to hypocapnia is a maximal rise in resistance. Viewed from the point of percent rise in resistance, and corrected to a standard change of 25 mm Hg in CS PCO₂, there is a clear relationship between CS Po, and the percent rise in resistance, with little effect occurring above 35 mm Hg (Fig. 6).

EFFECT OF A LOWER ARTERIAL Po, ON THE SENSITIVITY OF THE CVR-PCO₂ RELATIONSHIP

During these experiments arterial Po, always was very high, in the range of 500-600 mm Hg (Table 1), because of the gas mixture supplied to the oxygenator. To ensure that the effects on CVR we noted were not in some way attributable to this high arterial Po,, three experiments were performed on two additional dogs, during which the control arterial Po, was established at 52, 60, and 90 mm Hg (Table 3). With CS Po, set in the region of 20 mm Hg by appropriate adjustment of coronary flow, the induction of hypocapnia resulted in increases in CVR of 74.5, 119.5, and 69.3%. The magnitude of the CVR increase is similar to that observed in the main group (Table 1), which averaged 84.2%, and also is similar to data for groups 2 and 3 of Table 2, in which CS Po, ranged from 20 mm Hg to 30 mm Hg. The time course of one of the three experiments (1A) is shown in Figure 7, and the values from syringe samples at the control and equilibrium points are shown. The results are similar to those in Figure 2. The slower rate of fall in PCO₂ (and slower rate of rise in CVR) is apparently a result of using a disk oxygenator for these experiments, rather than a membrane oxygenator.

Thus it seems evident that the PCO₂-CVR relationship shown in this paper is not an artifact resulting from a very high Po,. Presumably, then, the effect of hypocapnia on CVR is similar over a range of values of arterial Po, from 530 to 52 mm Hg, and possibly lower. This finding gives added emphasis to the concept that vasomotor control of the coronary bed is determined by factors existing at the myocardial level, rather than at the arterial level. In this connection, it may be noted that even at an arterial Po, level of 500 mm Hg, CS Po, was 26 mm Hg (Table 1), and that in the normally functioning coronary circulation an increase of arterial Po, to 435 mm Hg has little effect on CS Po,.

Discussion

At present little importance is attached to any action of arterial or myocardial CO₂ on coronary flow. Nevertheless, it is evident from the results of experiments reported here that CVR is inversely related to the level of arterial PCO₂. Moreover, the relationship is a sensitive one; a reduction in arterial PCO₂ of less than 20 mm Hg will almost double CVR.

Coronary flow was held constant during each variation in PCO₂ to study CVR under controlled conditions; in the intact circulation this CVR response would be translated into an equivalent change in coronary flow. We previously have examined the effect of altering arterial PCO₂ in the intact dog, and obtained indirect evidence that coronary flow is
Table 2 Changes in Coronary Vascular Resistance (CVR) Listed According to Control Coronary Sinus (CS) P_{o_2}

<table>
<thead>
<tr>
<th>Control CS P_{o_2} (mm Hg)</th>
<th>CVR</th>
<th>% change in CVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{o_2} > 30$ mm Hg (n = 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>33.8 ± 1.6</td>
<td>60.8 ± 1.4</td>
</tr>
<tr>
<td>H</td>
<td>31.3 ± 2.1</td>
<td>37.7 ± 0.7</td>
</tr>
<tr>
<td>$25-30$ mm Hg (n = 7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>27.8 ± 0.5</td>
<td>64.5 ± 2.6</td>
</tr>
<tr>
<td>H</td>
<td>21.6 ± 1.1</td>
<td>37.4 ± 0.7</td>
</tr>
<tr>
<td>$20-25$ mm Hg (n = 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>22.1 ± 0.6</td>
<td>66.7 ± 2.6</td>
</tr>
<tr>
<td>H</td>
<td>22.3 ± 0.8</td>
<td>44.2 ± 2.1</td>
</tr>
</tbody>
</table>

C = control, H = hypocapnia; values are mean ± SE.
Significance of changes from control to hypocapnia are indicated by footnote symbols. Where no symbol is present, the change is statistically not significant.

* $P < 0.001$
† $P < 0.01$

Intergroup significance was also evaluated, with the following major findings: (1) control CS P_{o_2} significantly different in all three groups; (2) no significant difference in CVR achieved during hypocapnia in all three groups; (3) control CVR significantly different, except between groups 2 and 3.

The percent change in coronary vascular resistance (CVR) for a change of 25 mm Hg in coronary sinus (CS) P_{o_2} (vertical axis). The CS P_{o_2} is shown on the horizontal axis. A change of 25 mm Hg in CS P_{o_2} was selected because it closely approximates the mean change of 25.8 mm Hg seen at normal flow (Table 1). For a CS P_{o_2} greater than 35 mm Hg there is no CVR response to hypocapnia, and for a CS P_{o_2} in the range of 20-25 mm Hg the CVR response is most vigorous. The ischemic flow data are not included in this figure. Closed circles represent introduction of hypocapnia; open circles represent change during recovery.
coronary artery. Since no measurements of CO₂ were made, they felt that they could not assess the significance of the effect of CO₂ on the coronary vasculature and preferred to relate the dominant control of CVR to O₂.

One might conclude from the present studies that the level of arterial PCO₂ directly affects the coronary arteriole in a manner analogous to the cerebral circulation, since variations in CVR were achieved by altering arterial PCO₂. However, it seems more probable that resistance in the coronary vascular bed is related to the level of myocardial PCO₂ rather than to arterial PCO₂, and that CS PCO₂ reflects myocardial PCO₂. While the issue of arterial PCO₂ vs. myocardial PCO₂ in control of coronary flow cannot be resolved from the data available, we have chosen to relate CVR to myocardial PCO₂, and for this purpose have presented most of the material in this study in relation to CS PCO₂. CO₂ is delivered to the myocardium from two sources: (1) metabolic CO₂ produced as the end product of cellular respiration, produced in molar equivalency (at a respiratory quotent of 1.0) to the rate of myocardial O₂ consumption; (2) CO₂ in arterial blood. The metabolic CO₂ is diluted according to the rate of coronary flow, so that the final myocardial PCO₂ (and CS PCO₂) represents an interrelationship of three factors: arterial CO₂, rate of metabolic CO₂ production, and the rate of coronary flow.

Since the heart is a site of high O₂ consumption, and large quantities of CO₂ are continuously presented to the myocardium, an important question arises as to whether the resultant myocardial PCO₂ has any role in the normal regulation of coronary flow. Normal coronary flow is known to be regulated in accordance with changes in myocardial O₂ consumption with such precision that CS PO₂ or O₂ content remains at a constant value; this suggests that coronary flow is regulated about a constant myocardial PO₂. A variety of factors have been implicated in the control of the coronary circulation, but the exact mechanism is unknown and there is no consensus as to the mediators involved.

The data reported here suggest a mechanism for control of coronary flow, based only on myocardial PCO₂, which would preserve the known close relationship between coronary flow and myocardial O₂ consumption. The necessary assumptions would be that (1) myocardial PCO₂ maintains a continuous control over coronary flow through its effect on coronary arterioles, (2) an altered myocardial PCO₂ occurs promptly as a result of any change in myocardial O₂ consumption, and thus in CO₂ production, and (3) a homeostatic myocardial PCO₂ exists as the set-point for normal coronary flow. For example, a reduction in heart rate would result in a decreased myocardial O₂ consumption and decreased myocardial CO₂ production, a decreased myocardial PCO₂, and subsequently a coronary flow reduction through an increased CVR. Reduction in coronary flow would continue until the homeostatic PCO₂ was restored. An opposite set of reactions culminating in an increased coronary flow would result when O₂ consumption was increased. A variation in arterial PCO₂ would upset this mechanism, resulting in a coronary flow which was inappropriate for the current rate of O₂ consumption.

For this model to function properly a rapid rise in myocardial PCO₂ is necessary, because coronary autoregulation is known to be complete within 15 seconds after a sudden intervention. No data are available on the rate of myocardial PCO₂ change, but in studies on isolated mitochondria an almost immediate release of CO₂ occurs without retention in pools of intermediates. CS PCO₂ has not been measured frequently, but it is essentially unchanged in man as a result of exercise or pacing, however, so is CS PO₂. Further evidence regarding this PCO₂-CVR hypothesis must await experiments evaluating myocardial PCO₂ and PO₂ independently of arterial values.

Although myocardial PCO₂ could function by itself as an autoregulating agent, it is well known that hypoxemia is a strong stimulus to an increased coronary flow. Also, an increase in arterial O₂ content is associated with a decreased coronary flow. Although severe hypoxemia is associated with myocardial ischemia and a release of metabolites, there appears to be no doubt that the arterial O₂ content, and more probably myocardial PO₂, affects CVR in the absence of ischemia. Thus coronary flow regulation may well be controlled by an interplay between myocardial PCO₂ and myocardial PO₂ acting in opposite directions on the resistance vessels.

The effect of coronary flow on the relationship between PCO₂ and CVR was of particular interest, since it defined the range over which this relationship can occur and the zone in which a maximum effect might be expected. Overperfusion of the heart is associated with a high CVR, as noted
The finding that CVR is most responsive to the induction of hypocapnia when CS Po,

is in the range of 20–25 mm Hg may only represent the greater potential increase in CVR available at this lower CS Po,

and low CVR. The complete absence of any effect of hypocapnia to increase CVR in the ischemic situation is undoubtedly a special situation, since at this time the myocardium releases a great variety of metabolic substances such as lactate, potassium, phosphate, and adenosine. Also, myocardial PCO

as directly measured reaches extremely high levels in the ischemic heart.11

By affixing control of coronary flow to myocardial PCO

this model permits respiratory alterations in arterial PCO

to disrupt autoregulation, since there can be changes in the regulator that are unaccompanied by changes in O

consumption (and CO

production). In a compromised coronary circulation, hypocapnia could thus result in myocardial ischemia. Previously1 we have observed that CS Po,

can fall below 9 mm Hg during overventilation, a level that has been associated with myocardial lactate production.12 There are several clinical situations for which this model offers explanations when none currently satisfies. Refractory cardiac arrhythmias may occur in patients on a ventilator in association with severe hypocapnia and alkalosis.13 Recently, there have been several reports14–16 of “false positive” electrocardiographic S-T and T wave changes due to hyperventilation in patients who subsequently were shown to have normal coronary arteriograms.

Since the preparation of this manuscript, an article has appeared showing that hypocapnia in man with coronary disease can result in reduction of coronary flow and evidence of myocardial ischemia (Neill, W. A., and Hattenaur, M.: Impairment of myocardial O

supply due to hyperventilation in patients who subsequently were shown to have normal coronary arteriograms.

Addendum

Since the preparation of this manuscript, an article has appeared showing that hypocapnia in man with coronary disease can result in reduction of coronary flow and evidence of myocardial ischemia (Neill, W. A., and Hattenaur, M.: Impairment of myocardial O

Acknowledgments

We acknowledge the great assistance of Maria Wachter, Vasily Jakimowicz, George Kynakidis, and Alexis Felix in this investigation.

References

1. Case RB, Greenberg H, Moskowitz R: Alterations in coronary sinus Po,

and O

saturation resulting from pCO

Inhibition of Adrenergic Neurotransmission in Canine Vascular Smooth Muscle by Histamine

Mediation by H₂-Receptors

SUMMARY Histamine depressed the contractions of dog saphenous vein strips caused by stimulation of their sympathetic nerves. This was due to a decrease in the release of norepinephrine which appears to be mediated by histamine H₂-receptors. The evidence for this is as follows: (1) Contractions of the strips caused by activating the nerve endings electrically or by depolarization with potassium ions were depressed by histamine, whereas contractions caused by tyramine and norepinephrine were either unchanged or augmented. (2) Strips were incubated with norepinephrine[7-¹H] and mounted for superfusion and isometric tension recording. The perfusate was collected for estimation of total radioactivity and for column chromatographic separation of norepinephrine and its metabolites.

Histamine (0.9 µM) depressed the release of norepinephrine[7-¹H] during contractions caused by electric stimulation, whereas the release of radioactive compounds caused by tyramine was unaffected. (3) The depression by histamine of the contractions and the efflux of radioactive compounds caused by electric stimulation were inhibited by an H₂-receptor antagonist (metiamide), but were unaffected by an H₁-receptor antagonist (pyrilamine). (4) Contractions caused by electric stimulation were depressed by an H₂-receptor agonist (4-methylhistamine) and augmented by an H₁-receptor agonist (2-methylhistamine). These findings suggest the possibility that histamine, which is abundant in sympathetic nerves, might have a regulatory role in the release of the neurotransmitter.

IN CERTAIN species, for example cat, dog, and man, the infusion of histamine causes a dose-dependent relaxation of the resistance blood vessels of the limbs. By contrast the characteristic response of isolated blood vessels to histamine is a contraction. Analysis of the results of recent experiments with specific histamine receptor antagonists suggests that different responses might be a result of the activation of different histamine receptors. For example, histamine H₂-receptors, acting singly or in combination with H₁-receptors, appear to be involved in the vasodepressor response.
The response of canine coronary vascular resistance to local alterations in coronary arterial
P CO2.
R B Case and H Greenberg

doi: 10.1161/01.RES.39.4.558

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1976 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/39/4/558

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/