Central and Peripheral Adrenergic Mechanisms in the
Development of Deoxycorticosterone-Saline
Hypertension in Rats

By John L. Reid, Justin A. Zivin, and Irwin J. Kopin

ABSTRACT
The role of the sympathetic nervous system in the development of deoxycorticosterone-sodium chloride (DOCA-saline) hypertension was investigated by measuring plasma levels of norepinephrine, total catecholamines, and dopamine-β-hydroxylase activity at intervals after the initiation of the DOCA-saline regimen. Plasma norepinephrine was significantly higher in DOCA-saline-treated rats at 4 and 7 weeks and in rats treated with saline alone at 4 weeks compared with that in untreated controls. Total plasma catecholamine levels (epinephrine and norepinephrine) and dopamine-β-hydroxylase activity were similar in hypertensive rats, untreated controls, and rats that received either DOCA or saline alone. The increases in plasma norepinephrine levels may have resulted from centrally mediated increases in peripheral sympathetic neuronal activity, since the destruction of central catecholaminergic neurons with intracerebroventricularly administered 6-hydroxydopamine (6-OHDA) prevented both the DOCA-saline-induced rise in blood pressure and the increases in plasma norepinephrine. Rats treated with 6-OHDA consistently drank less water or saline than did vehicle-treated controls. The actions of centrally administered 6-OHDA on blood pressure and plasma norepinephrine levels were not secondary to a reduction in salt intake, however, since intact rats given a similar reduced saline intake became hypertensive and demonstrated elevated plasma norepinephrine concentrations. Chronic salt loading may cause a centrally mediated increase in peripheral sympathetic neuronal activity with raised plasma concentrations of norepinephrine. The increased adrenergic activity in the presence of mineralocorticoid-induced sodium retention leads to the development of hypertension.

Increasing evidence suggests that enhanced activity of the peripheral sympathetic nervous system contributes to the development and maintenance of raised arterial blood pressure in several models of hypertension. Turnover of norepinephrine in the heart is increased in renal hypertension (1, 2) or after treatment with the mineralocorticoid deoxycorticosterone and 1% saline for drinking water (DOCA-saline hypertension) in the rat (3, 4) as well as in the neurogenically mediated hypertension following aortic and carotid sinus denervation in the rabbit (5). Urinary excretion of norepinephrine and its metabolites is increased in DOCA-saline hypertension (6), and serum from these hypertensive animals contains a humoral agent that elevates blood pressure (7). Until recently, the absence of sufficiently sensitive, specific assay procedures precluded the direct measurement of norepinephrine and epinephrine in plasma from hypertensive animals.

The central nervous system mechanisms underlying the increases in peripheral adrenergic activity in experimental hypertension have not been clearly defined and may include the modification of sympathetic outflow and changes in the release of hypothalamic trophic hormones. Catecholaminergic neurons in the brain, which utilize norepinephrine as a neurotransmitter, appear to play an important role in the development of hypertension. 6-Hydroxydopamine (6-OHDA), an analogue of dopamine, injected directly into the cerebrospinal fluid of the ventricular system or the cisterna magna causes a long-lasting depletion of brain catecholamines and the degeneration of nerve terminals, particularly those containing norepinephrine (8, 9). Pretreatment with intraventricularly or intracisternally administered 6-OHDA prevents the rise in arterial blood pressure that usually follows renal artery clipping in rats (10) and cellophane perinephritis in rabbits (11). Hypertension following buffer nerve section in rabbits (12) or electrolytic lesions of the nucleus of the solitary tract in rats (13) is similarly abolished. Several groups have reported attenuation of DOCA-saline hypertension in rats pretreated with intracister-
nally (14) or intraventricularly (10, 15) ad-
imistered 6-OHDA. Administration of 6-OHDA to the
brain also causes a behavioral change resulting in a
reduction in water or saline intake (16). It has been
suggested that failure to develop hypertension after
treatment with DOCA and saline in 6-OHDA-
treated rats results from an impairment of saline
intake, possibly secondary to diminished fluid
excretion, rather than from interference with cen-
tral pathways regulating peripheral sympathetic
activity (16).

In the present study, we used recently developed
sensitive radiomicroassays and norepi-
 nephrine during the development of DOCA-saline
hypertension in rats, and we investigated the ef-
fects of centrally administered 6-OHDA on saline
consumption, plasma catecholamine levels, and
arterial blood pressure.

Methods

ANIMALS AND BLOOD PRESSURE RECORDING

Uninephrectomized or sham-operated male Sprague-
Dawley rats (100–120 g) were obtained from Zivic Miller
Labs, Allison Park, Pennsylvania, and kept under diurnal
lighting conditions. The rats were fed a rat pellet diet ad
libitum (Wayne Lab Blox Allied Mills, Inc., Chicago,
Illinois) and either tap water or 1% (w/v) sodium chloride
in water (1% saline to drink).

Systolic blood pressure was measured by a tail cuff
plethysmographic method using a pneumatic pulse
transducer and a programed electrosphygmomanometer
(Narco Biosystems, Houston, Texas, model PE500). Cuff
pressure and pulsatile volume changes were recorded
simultaneously on a Grass model 5 Polygraph.

Rats were prewarmed in a Perspex cage at 36°C for 10
minutes and habituated to the pressure measurement
procedure before the start of the experiment. The tail
cuff was inflated at least three times for each rat at each
time interval, and the mean systolic blood pressure
derived from six measurements (pressures at which
pulsations appeared or disappeared) was calculated.

DEOXYCORTICOSTERONE AND SALINE TREATMENT REGIMENS

Hypertension was induced in groups of 8–10 unine-
ephrectomized rats by administering a weekly subcutane-
ous injection of 25 mg/kg of deoxycorticosterone pivalate
(DOCA) (Percorten, Ciba Geigy Corp. Summit, New
Jersey) and substituting 1% saline for drinking water
(DOCA-saline-treated rats). In studies of the role of
circulating catecholamines, three control uninephrec-
tomized groups were examined in parallel. One group
received DOCA (25 mg/kg, sc) each week and tap water
ad libitum (DOCA group), another was given no DOCA
but 1% saline ad libitum for drinking water (saline
group), and the final group (controls) drank tap water
and received no DOCA. In preliminary experiments,
a sham-operated control group that was not given steroid
pretreatment and drank tap water ad libitum was kept
under identical conditions and compared with the other
groups.

CENTRALLY ADMINISTERED 6-HYDROXYDOPAMINE

Fourteen days before the initiation of the DOCA-saline
regimen, groups of 7–8 rats were pretreated on two
occasions, 24 hours apart, with 200-μg doses (expressed
as base) of 6-hydroxydopamine hydrobromide (6-OHDA)
(Regis Chemical Co., Chicago, Illinois) by intracere-
broventricular injection. These injections were adminis-
tered using stereotactic coordinates with a small-animal
head holder and stereotactic apparatus (D. Kopf Instru-
ments, Tujunga, California) under 1% halothane anes-
thesia. Control rats received the same volume (20 μlitters)
of the vehicle (1 mg/ml of ascorbic acid in 0.9% saline).

Two groups of rats given 6-OHDA intracerebroven-
tricularly were examined. One group was treated with
DOCA (25 mg/kg, sc) each week and given 1% saline ad
libitum to drink (6-OHDA + DOCA-saline group), but
the other group did not receive DOCA or saline (6-OHDA
group). Three groups treated with intracerebroventricu-
larly administered vehicle were compared. These rats
received either DOCA and 1% saline ad libitum (DOCA-
saline group). DOCA and a volume of 1% saline equal to
the averaged intake of the 6-OHDA + DOCA-saline
group in ml/100 g body weight 24 hours⁻¹ for the previous
day (DOCA-restricted saline group), or tap water ad
libitum and no DOCA treatment.

MEASUREMENT OF FLUID CONSUMPTION

Daily fluid intake (water or 1% saline) was measured
in all rats in the study in which 6-OHDA was adminis-
tered intracerebroventricularly and in separate groups of
rats receiving DOCA alone or saline alone. These rats
were housed in individual cages (15 × 15 × 30 cm) with
individual graduated water bottles. Rats were allowed to
habituate to the cages for 7–10 days before the experi-
ments were started. Fluid intake was measured daily,
and body weight was recorded twice a week. Fluid
intake/100 g body weight was calculated using the last
recorded weight and the mean daily intake for each
group was derived. As described earlier the mean daily
1% saline intake of the 6-OHDA + DOCA-saline group
for the previous day was given to the vehicle + DOCA-
restricted saline group so that the saline intake of the two
groups was the same. This latter group thus started the
DOCA-saline regimen 24 hours later and was maintained
1 day behind the other groups throughout the 5-week
study.

TISSUE PREPARATION

In preliminary studies, the levels of total catechola-
mines and norepinephrine in plasma collected from the
lateral tail vein of unanesthetized rats were much lower
than those obtained by cardiac puncture or decapitation.
This difference was related to the mode of collecting tail
vein blood, which involves warming the rats to produce
vasodilation (19, 20). Plasma levels of catecholamines
are similar in blood obtained from awake rats with an
indwelling arterial catheter and blood obtained after
decapitation (20). Therefore, experiments were per-
formed using blood obtained after decapitation. The use
of anesthetic agents was avoided because of the pro-
found lowering of plasma catecholamine levels in rats
following the administration of these agents (20).

At 2, 4, and 7 weeks after the initiation of DOCA-
saline regimens, 7-8 rats from treated and control groups
were killed by decapitation, and the first 1 ml of blood

Circulation Research, Vol. 37, November 197...
from the trunk was collected in an iced heparinized tube through a small glass funnel. The whole blood was centrifuged at 4°C for 5 minutes at 10,000 g, and the plasma was harvested. An aliquot of plasma was stored at −20°C for assay of dopamine-β-hydroxylase activity.

For catecholamine assay, protein was precipitated from another aliquot of plasma by adding concentrated perchloric acid to a final concentration of 0.1N, and the mixture was stored at −20°C until assay.

DOPAMINE-β-HYDROXYLASE

Plasma dopamine-β-hydroxylase was measured in duplicate 50-μl aliquots of plasma by the method of Weinshilboum and Axelrod (21) using 0.03M tyramine as the substrate and optimal copper concentrations (15.2 μM) to overcome endogenous inhibitors. Octopamine internal standards and boiled plasma blanks were run in each assay, and dopamine-β-hydroxylase activity was expressed as nmoles octopamine formed/ml plasma hour −1 incubation. Pooled rat plasma samples were also assayed to eliminate variations in the assay due to differences in the activity of the enzyme, phenylethanolamine-N-methyl transferase (PNMT), used in the second stage of the procedure. To exclude changes in endogenous inhibitors in the different treated groups, partially purified bovine adrenal dopamine-β-hydroxylase was added to samples from each assay. No significant change was observed in these dopamine-β-hydroxylase internal standards in plasma from DOCA-saline-treated rats or rats from any of the control groups.

PLASMA CATECHOLAMINES

Plasma total catecholamine levels were measured in 25-μl aliquots of supernatant fluid from 0.1N perchloric acid-treated plasma by a modification of the method of Coyle and Henry (17) using duplicate samples, 0.1N perchloric acid blanks, and norepinephrine (0.5–1 ng) internal standards. This sensitive radiometric method utilizes a partially purified preparation of catechol-O-methyl transferase (COMT) and 3H-S-adenosyl methionine (‘H-S-AME) (specific activity 8.5 mc/μmole) (New England Nuclear Corp., Boston, Massachusetts) in plasma. The tritiated product (3H-epinephrine) was absorbed on alumina (Woelm Neutral activity grade A) to separate it from residual ‘H-S-AME, and the tritium was assayed by liquid scintillation spectrometry. The assay is linear up to 2 ng of norepinephrine, specific, and sensitive (0.003 pg of norepinephrine gives counts twice those for the perchlorate blanks).

PLASMA NOREPINEPHRINE

Plasma norepinephrine was measured by a specific sensitive radiometric enzymatic method utilizing a partially purified preparation of PNMT (21) and ‘H-S-AME (18). The assay, which was a modification of earlier procedures (22, 23), has been described fully elsewhere (18, 19, 24). Aliquots (100 μlitters) of the supernatant fluid from 0.1N perchloric acid-treated plasma were incubated in duplicate together with perchloric acid blanks and norepinephrine internal standards (0.5–1 ng). The tritiated product ‘H-epinephrine was absorbed on alumina (Woelm Neutral activity grade A) to separate it from residual ‘H-S-AME, and the tritium was assayed by liquid scintillation spectrometry. The assay is linear up to 2 ng of norepinephrine, specific, and sensitive (0.003 pg of norepinephrine gives counts twice those for the perchlorate blanks).

BRAIN NOREPINEPHRINE

To confirm the efficacy of the central pretreatment, the norepinephrine concentration was measured in the whole brain of 6-OHDA- and vehicle-treated rats. Brains were homogenized in 0.1 N perchloric acid (1/20, w/v) and centrifuged at 4°C for 10 minutes at 14,000 g. Norepinephrine was assayed in 25-μl aliquots of the supernatant fluid by formation of ‘H-methyl-epinephrine using PNMT as described earlier.

STATISTICAL METHODS

Results are presented as the mean ± se for groups of rats. Differences among groups were tested using one-way or two-way analysis of variance and Newman-Keuls procedures for comparisons of individual means (25) or Student’s t-test (26).

Results

EFFECT OF UNILATERAL NEPHRECTOMY AND ADRENALECTOMY ON PLASMA CATECHOLAMINE LEVELS

The rats prepared for the DOCA-saline studies were subjected to unilateral nephrectomy 1 week before the DOCA-saline regimen was begun. Since the nephrectomy was accompanied by an ipsilateral adrenalectomy, the norepinephrine and total catecholamine levels in the blood after decapitation were compared with those in uninephrectomized rats and sham-operated controls. Sixteen days after surgery, there was no significant difference in plasma total catecholamine or norepinephrine levels in the two groups of rats (Table 1).

PLASMA NOREPINEPHRINE AND TOTAL CATECHOLAMINE LEVELS IN DOCA SALINE HYPERTENSION

The blood pressures of the groups of rats examined in the plasma amine study are shown in Figure 1. After only 2 weeks of treatment with DOCA (25 mg/kg) and 1% saline, blood pressure was significantly higher (137.0 ± 2.3 mm Hg) than it was in untreated controls (117.0 ± 4.4 mm Hg) and in both other groups. The rise in blood pressure continued over 7 weeks, but it was most marked between 2 weeks and 4 weeks. The levels of blood

TABLE 1

<table>
<thead>
<tr>
<th>Effect of Unilateral Nephrectomy and Adrenalectomy on Plasma Norepinephrine and Total Catecholamine Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norepinephrine (ng/ml)</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Unilateral nephrectomy</td>
</tr>
<tr>
<td>and adrenalectomy</td>
</tr>
<tr>
<td>Sham-operated controls</td>
</tr>
</tbody>
</table>

All values are means ± se for groups of eight rats 16 days after either the unilateral nephrectomy and adrenalectomy or the sham-operation. Blood was obtained immediately after decapitation as described in Methods.
Systolic blood pressure (B.P.) (means ± SE) for groups of eight uninephrectomized rats after 2, 4, and 7 weeks of treatment with DOCA (25 mg/kg, sc, weekly) and 1% saline in place of tap water (open squares), DOCA (25 mg/kg) and tap water (open triangles), and 1% saline as drinking water with no DOCA (solid triangles). Control rats (open circles) received tap water for drinking.

Systolic blood pressure in the groups treated with saline alone or with DOCA alone were not significantly greater than those in the untreated control groups.

After 2, 4, and 7 weeks of treatment with DOCA and 1% saline or with control regimens, plasma norepinephrine was measured by the method using PNMT. Table 2 shows the levels of circulating norepinephrine in these groups of rats. Plasma levels of norepinephrine in the DOCA-saline group were higher than those in the tap water-fed controls at 2 weeks, but at this time the increase did not achieve significance. However, circulating norepinephrine was significantly elevated in the hypertensive rats at both 4 weeks and 7 weeks compared with that in uninephrectomized controls drinking tap water (Table 2).

Plasma norepinephrine was increased 4 weeks after substitution of 1% saline for drinking water in the absence of mineralocorticoid (saline alone) (Table 2), although at this time the blood pressure of the saline-fed group was actually lower than that of controls (Fig. 1) and the norepinephrine level was not significantly greater than it was in the group given DOCA alone. In rats receiving only saline, plasma norepinephrine returned to control levels at 7 weeks (Table 2). In rats given DOCA and water, plasma levels of norepinephrine were not significantly altered at any time.

Plasma total catecholamines in the various experimental groups did not differ significantly from those in sham-operated controls at any time interval (Table 2). In the DOCA-saline groups at 4 and 7 weeks, in which plasma norepinephrine was significantly elevated, plasma total catecholamine levels were slightly lower than or not different from those in uninephrectomized controls, suggesting that circulating levels of epinephrine were unchanged or slightly reduced in DOCA-saline hypertension. Total catecholamines in plasma were higher at 2 weeks in rats fed saline alone than they were in the other three groups, although the difference did not achieve significance.

The ratio of norepinephrine to total catecholamines is also shown in Table 2. In uninephrectomized controls norepinephrine ranged from 21.5 to 15.7% of total catecholamines, but in the DOCA-saline group norepinephrine represented 32.2, 34.8, and 23.9% of total catecholamines at 2, 4, and 7 weeks, respectively. At 4 weeks, norepinephrine represented a significantly higher percent of total catecholamines than it did in any of the other groups. In the group given only saline, plasma norepinephrine was a similar percent (22.8, 23.5, 14.8%) of total catecholamines as it was in controls.

Although total catecholamine concentrations in plasma did not differ from controls at any time interval, there were indications that the relationship between norepinephrine and epinephrine was altered in DOCA-saline hypertension. The proportion of norepinephrine in plasma was increased in the hypertensive (DOCA-saline) group and unchanged in the normotensive (saline alone) rats.

There were no consistent changes in dopamine-β-hydroxylase activity in plasma in the four groups tested at 2, 4, and 7 weeks. When rats receiving active treatments were compared with sham-operated water-fed controls (Table 3), minor differences occurred between the control groups at different times which could be attributed to variations within individual assay days; these differences were eliminated when allowance was made for similar differences in activity in the pool of rat plasma used throughout the study. There was no correlation between plasma, dopamine-β-hydroxylase activity and plasma norepinephrine levels. Changes in circulating norepinephrine were not
Plasma norepinephrine (NE) and total catecholamine (CA) levels were measured in DOCA-saline hypertensive rats and three control groups after 2, 4, and 7 weeks of treatment. All values are means ± SE; there were eight rats in each treatment group at each time interval.

* $P < 0.05$ when the data were analyzed by two-way analysis of variance and the means of the treated groups were compared with the respective control water group.

Associated with parallel rises in dopamine-β-hydroxylase, nor could the enzyme activity be related to the level of blood pressure.

Body Weight Changes After DOCA-Saline Hypertension

At the start of the studies body weight ranged from 100 to 120 g. There was no difference between the mean weights of the different groups. Throughout the 7-week treatment period there was no significant difference between control groups and rats treated with DOCA and tap water. However, after 4 weeks and 7 weeks, DOCA-saline groups had a significantly smaller weight gain than did control rats ($P < 0.01$). Rats treated with saline alone had a lower body weight than did control groups, but this difference was not significant. Mean body weights ± se for the four groups at 7 weeks are shown in Table 4.

Table 3

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Saline</th>
<th>DOCA and water</th>
<th>DOCA and saline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE (ng/ml)</td>
<td>1.14 ± 0.16</td>
<td>1.92 ± 0.28</td>
<td>1.31 ± 0.37</td>
<td>1.95 ± 0.39</td>
</tr>
<tr>
<td>CA (ng/ml)</td>
<td>5.86 ± 0.89</td>
<td>9.64 ± 1.58</td>
<td>5.41 ± 0.68</td>
<td>6.57 ± 1.04</td>
</tr>
<tr>
<td>NE/CA</td>
<td>0.22 ± 0.04</td>
<td>0.23 ± 0.04</td>
<td>0.22 ± 0.04</td>
<td>0.32 ± 0.05</td>
</tr>
<tr>
<td>4 Weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE (ng/ml)</td>
<td>0.79 ± 0.13</td>
<td>1.40 ± 0.24*</td>
<td>1.29 ± 0.31</td>
<td>1.61 ± 0.20*</td>
</tr>
<tr>
<td>CA (ng/ml)</td>
<td>5.75 ± 1.27</td>
<td>5.96 ± 0.81</td>
<td>4.76 ± 1.23</td>
<td>5.61 ± 0.79</td>
</tr>
<tr>
<td>NE/CA</td>
<td>0.21 ± 0.04</td>
<td>0.24 ± 0.12</td>
<td>0.29 ± 0.06</td>
<td>0.35 ± 0.08*</td>
</tr>
<tr>
<td>7 Weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE (ng/ml)</td>
<td>0.76 ± 0.04</td>
<td>0.94 ± 0.13</td>
<td>0.95 ± 0.12</td>
<td>1.11 ± 0.13*</td>
</tr>
<tr>
<td>CA (ng/ml)</td>
<td>5.67 ± 0.74</td>
<td>8.15 ± 1.53</td>
<td>7.87 ± 1.23</td>
<td>5.08 ± 0.97</td>
</tr>
<tr>
<td>NE/CA</td>
<td>0.16 ± 0.02</td>
<td>0.15 ± 0.04</td>
<td>0.17 ± 0.05</td>
<td>0.24 ± 0.05</td>
</tr>
</tbody>
</table>

Plasma dopamine-β-hydroxylase activity is expressed as the mean (± SE) percent of the activity in uninephrectomized controls at each time interval. The mean dopamine-β-hydroxylase activity in control groups was 11.81 ± 0.66 nmoles octopamine formed/ml plasma hour$^{-1}$ incubation for groups of eight rats on each treatment regimen at each time interval. There were no significant differences between treated and control groups when the data were analyzed by two-way analysis of variance.

Intracerebroventricularly Administered 6-Hydroxydopamine and DOCA-Saline Hypertension

Effect on Fluid Consumption.—The substitution of 1% saline for drinking water led to a considerable increase in daily fluid consumption. The increased fluid consumption occurred in rats given 1% saline alone as well as in those given saline together with DOCA (25 mg/kg, weekly) (Table 5), although intake expressed as ml/100 g body weight day$^{-1}$ was greater in the latter group. DOCA alone did not significantly alter the daily intake of water.

Rats pretreated with intracerebroventricularly administered 6-OHDA 2 weeks before, drank less water than did vehicle-treated controls and this lower daily intake persisted throughout the 5-week study (Fig. 2). However, when 1% saline was substituted for tap water and weekly DOCA injections were begun, 6-OHDA-pretreated rats increased...
TABLE 4

Body Weights of Rats after 7 Weeks

<table>
<thead>
<tr>
<th>Group</th>
<th>Body weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninephrectomy + water</td>
<td>406 ± 11</td>
</tr>
<tr>
<td>Uninephrectomy + water with DOCA</td>
<td>430 ± 12</td>
</tr>
<tr>
<td>Uninephrectomy + saline</td>
<td>394 ± 12</td>
</tr>
<tr>
<td>Uninephrectomy + saline with DOCA</td>
<td>296 ± 15*</td>
</tr>
</tbody>
</table>

All values are means ± se determined after 7 weeks of treatment.

*P < 0.01 compared with the value for uninephrectomy + water by Student’s t-test.

Effect on Blood Pressure.—Blood pressure was measured at weekly intervals in five groups of rats. Two groups (those receiving only 6-OHDA or vehicle intracerebroventricularly) served as controls. Two other groups treated with 6-OHDA or vehicle received DOCA weekly and unrestricted 1% saline; another vehicle-treated group received DOCA weekly, but its saline intake was limited to the volume consumed by the 6-OHDA + DOCA-saline-treated rats 24 hours earlier.

Blood pressure increased in the DOCA-saline-treated intact rats, but there was little change in the control groups (Fig. 2). Rats pretreated with centrally administered 6-OHDA and given DOCA and saline did not show the same pattern of increase in blood pressure as did the intact controls. Only at 5 weeks was the blood pressure in this group significantly higher than that in controls, and at this time it was 50 mm Hg lower than that in vehicle-treated DOCA-saline groups. Although the response of the 6-OHDA–treated rats to the DOCA-saline regimen was profoundly modified, this change was not due to lower saline consumption. When the DOCA-treated intact rats were restricted to the same saline intake as the 6-OHDA-treated rats, they showed a rise in arterial blood pressure almost indistinguishable from that in the unrestricted group (Fig. 2).

Although centrally administered 6-OHDA clearly influences fluid consumption and an adequate saline intake is essential for the development of DOCA-saline hypertension, the interference with the development of DOCA-saline hypertension resulting from central catecholaminergic neuron destruction cannot be accounted for solely by a diminished fluid intake.

Effect of Centrally Administered 6-OHDA on Whole Brain Norepinephrine Levels.—After 5 weeks of DOCA-saline treatment, the norepinephrine concentration in the brains of intact hypertensive rats was 395.2 ± 41.5 ng/g wet weight; in 6-OHDA–pretreated rats, the brain norepinephrine concentration was 145.7 ± 17.6 ng/g, which represents a significant (P < 0.01) fall to 36.9 ± 4.4% of the level in vehicle-treated controls.

Effect on Plasma Total Catecholamine and Norepinephrine Levels.—Plasma norepinephrine measured after 5 weeks of DOCA and saline was significantly higher in both unrestricted and restricted saline intake groups compared with that in

TABLE 5

Effect of Deoxycorticosterone (DOCA) and 1% Saline on Daily Fluid Consumption in Uninephrectomized Rats

<table>
<thead>
<tr>
<th>Mean daily fluid intake (ml/100 g body wt day−1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 weeks</td>
</tr>
<tr>
<td>Uninephrectomy + water</td>
</tr>
<tr>
<td>Uninephrectomy + water with DOCA</td>
</tr>
<tr>
<td>Uninephrectomy + saline</td>
</tr>
<tr>
<td>Uninephrectomy + saline with DOCA</td>
</tr>
</tbody>
</table>

Results are expressed as ml of water or 1% saline/100 g body weight day−1 at 1-2, 3-4, and 4-5 weeks after initiation of the DOCA-saline regimen and are means ± se for groups of eight rats. DOCA (25 mg/kg, sc) was administered each week.

*P < 0.01 compared with the value for uninephrectomy + water by Student’s t-test.
We have previously observed no significant effect of centrally administered 6-OHDA on plasma norepinephrine levels in water-fed rats (unpublished observations).

Plasma total catecholamine levels did not differ significantly in any treated groups from those in the control group. Thus, the ratio of norepinephrine to total catecholamines was increased in both the DOCA-saline-vehicle-treated groups and similar to that in controls in the 6-OHDA-DOCA-saline-treated rats.

Discussion

Increased ingestion of salt over prolonged periods leads to hypertension in certain strains of rats (27-29). The administration of a mineralocorticoid together with a high salt intake facilitates the development of hypertension (30, 31).

Structural changes in peripheral arterioles appear to participate in the maintenance of hypertension (32, 33); however, they appear to be a later, secondary manifestation. It is unlikely that this factor plays a significant part in the initiation and early development of the raised arterial blood pressure. Neurogenic mechanisms appear to play a role in the development of several experimental hypertensive models including DOCA-saline hypertension. Immunological and chemical sympathectomies have been used to further define the role of postganglionic sympathetic neurons in this model of hypertension, but the results have been conflicting. Immunosympathectomy with antibody to nerve growth factor prevents both DOCA-saline and renal clip hypertension (34). Chemical sympathectomy using intravenously administered 6-OHDA in large doses attenuated the response to

Table 6

<table>
<thead>
<tr>
<th>Intracerebroventricular pretreatment</th>
<th>N</th>
<th>Regimen</th>
<th>Norepinephrine (ng/ml)</th>
<th>Total catecholamines (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>6</td>
<td>Control (water)</td>
<td>0.85 ± 0.15</td>
<td>9.86 ± 0.98</td>
</tr>
<tr>
<td>6-OHDA</td>
<td>6</td>
<td>DOCA + unrestricted saline</td>
<td>0.92 ± 0.22</td>
<td>8.58 ± 2.01</td>
</tr>
<tr>
<td>Vehicle</td>
<td>6</td>
<td>DOCA + restricted saline</td>
<td>1.60 ± 0.12*</td>
<td>9.23 ± 0.74</td>
</tr>
<tr>
<td>Vehicle</td>
<td>4</td>
<td>DOCA + unrestricted saline</td>
<td>1.30 ± 0.15*</td>
<td>6.83 ± 0.68</td>
</tr>
</tbody>
</table>

All values are means ± se. Plasma norepinephrine and total catecholamine levels were determined in blood collected following decapitation after 5 weeks of DOCA-saline or control regimens. Intracerebroventricular injections of 6-OHDA (200 μg) or ascorbate-saline vehicle were given twice, 24 hours apart, 7 weeks before death.

* P < 0.05 when analyzed by one-way analysis of variance.
DOCA and saline (35) in one study but did not influence the blood pressure in others (36, 37). Neither 6-OHDA treatment nor immunosympathectomy produce a complete and lasting destruction of the sympathetic neurons, particularly not of those in small arterioles of peripheral vascular beds. The adrenal medulla, which is unaffected by intravenously administered 6-OHDA, may compensate for the loss of sympathetic nerve endings by increasing the synthesis of catecholamines (38). de Champlain and van Ameringen (39) have shown that although intravenously administered 6-OHDA or adrenalectomy separately reduces the blood pressure of DOCA-saline hypertensive rats by only a small amount the combination of the two procedures leads to a profound fall in blood pressure.

Extensive studies on peripheral catecholamine metabolism in the DOCA-saline model have revealed increased turnover of norepinephrine in the heart and other peripheral tissues (3, 4) together with reduced tissue levels of the neurotransmitter (3) and an apparent storage defect (40, 41). The urinary excretion of norepinephrine and its metabolites is increased in these hypertensive rats (6).

We observed increases in plasma norepinephrine levels in rats developing DOCA-saline hypertension. The magnitude of the increase was modest compared with the magnitude of that following pharmacological maneuvers such as phenoxybenzamine pretreatment, which causes 4-5-fold increases in plasma levels of norepinephrine (25). However, in DOCA-saline hypertension there is no evidence that the mechanisms of inactivation of norepinephrine are impaired. Neuronal reuptake is unchanged in DOCA-saline hypertension (42) as is the activity of the degradative enzyme, catechol-O-methyl transferase (42). Cardiac activity of monoamine oxidase is increased, but this change probably is a consequence of cardiac hypertrophy (42). Steroids may impair extraneuronal uptake (43) but this change probably does not contribute to the elevated plasma levels of norepinephrine, since total catecholamine levels are not changed and amine levels are not altered in groups treated with DOCA alone. It is most likely that the raised plasma levels of norepinephrine result from an increased neurotransmitter release as a result of increased sympathetic neuronal activity. The enhanced neurotransmitter release leads to increases in norepinephrine turnover in nerve endings as previously reported (3, 4) and increases in urinary excretion of the amine and its metabolites (6).

This increased release may reflect increasing maturity of the rats, or it could be related to minor changes in ambient temperature at the time of death. Relatively small changes in environmental temperature can affect plasma norepinephrine levels (19).

Studies on plasma norepinephrine and total catecholamines in intact and bilaterally adrenalectomized rats (20) indicate that circulating norepinephrine is principally derived from transmitter released from adrenergic nerve endings. Epinephrine, which constitutes the remainder of the circulating total catecholamines, derives from adrenal medullary secretion.

The present data suggest that the sympathetic nervous component of the sympathoadrenal system is responsible for the increase in plasma norepinephrine levels observed in DOCA-saline hypertension.

The central adrenergic contribution to the development of DOCA-saline hypertension has been assessed by destruction of these neurons with 6-OHDA administered by intracisternal or lateral cerebroventricular injection. When given by these routes, the catecholamine-depleting and neuronal-destroying actions of 6-OHDA are limited to central noradrenergic and dopaminergic neurons within the brain and the spinal cord (8, 9). There appears to be little effect of 6-OHDA on adrenergic neurons in the central nervous system, since intracisternally administered 6-OHDA does not decrease levels of epinephrine or phenylethanolamine-N-methyl transferase in the central nervous system (unpublished observations). The destructive effects are most marked in the spinal cord where endogenous norepinephrine is reduced to less than 10% of the level in vehicle-treated controls (12, 44). Central 6-OHDA pretreatment prevents the rise in blood pressure when animals are subsequently treated with DOCA and 1% saline (10, 14–16). When 6-OHDA is given up to 3 weeks after the DOCA-saline regimen has been started, hypertension is prevented or reversed (14). The decreased turnover of norepinephrine in the brainstem of DOCA-saline-treated rats (45) may be a reflection of an attempt to decrease noradrenergic activity and compensate for the increased blood pressure, which is more effectively done by destruction of these neurons by 6-OHDA. After 4 weeks of treatment with DOCA and saline, centrally administered 6-OHDA does not influence the level of blood pressure (14). The central neurogenic contribution is thus most prominent during the early stages of the development of the hypertension but not essential once the hypertensive state has been achieved. In the present study, plasma norepineph-

Circulation Research, Vol. 37, November 1975
Catecholamines and DOCA-Saline Hypertension

Rats receiving 1% saline without DOCA also had modest increases in plasma levels of norepinephrine at 2 and 4 weeks, although their blood pressures were not elevated. Thus, increased plasma catecholamines alone are not sufficient to produce hypertension. This observation has been previously noted in a study of hypertensive subjects and depressed, normotensive patients (52). The substitution of 1% saline for drinking water, with the greatly increased fluid intake which follows, could be a stressful stimulus which leads to increased sympathetic activity. In this light, mineralocorticoid-induced sodium retention with increased total body sodium (53) may result in the expression of the hypertension.

Other factors may participate in the development of raised blood pressure. Vascular smooth muscle from animals with DOCA-saline hypertension has been reported to show increased reactivity to vasoconstrictor stimuli (7, 33, 34, 54). This enhanced reactivity could result from morphological changes in the vessel wall (33) or from alterations in the density or affinity of specific receptors for vasoconstrictor agents. The presence of such changes in the peripheral resistance vessels could potentiate the effects of the increased levels of circulating norepinephrine.

The development and maintenance of hypertension following mineralocorticoid administration and chronic salt loading appear to be related to the interaction of several factors. Early increases in peripheral sympathetic neuronal activity and circulating levels of catecholamines in the presence of sodium retention and increased vascular reactivity lead to an elevation of blood pressure which may later be maintained in the absence of the initial neurogenic trigger.

Acknowledgment

We would like to thank Ms. T. Cridlin and Mr. L. Carmon for their excellent technical assistance and Ms. D. Haller for typing the manuscript.

References

Plasma dopamine-β-hydroxylase has been proposed as an index of peripheral sympathetic activity (21). Geffen et al. (49) and Schanberg et al. (50) have described correlations between plasma dopamine-β-hydroxylase activity and arterial blood pressure in man. Other reports do not support these observations (51). In the present study, there was no discernible relationship between either plasma norepinephrine or blood pressure and plasma dopamine-β-hydroxylase activity. The data support previous observations (25) that in the rat plasma dopamine-β-hydroxylase activity does not necessarily change with alterations in plasma norepinephrine levels.

An alternative mechanism by which the central nervous system could participate in DOCA-saline hypertension is through increases in sympathetic outflow. Plasma norepinephrine but not epinephrine is increased in hypertensive rats given DOCA and saline whether saline intake is unrestricted or restricted. However, in rats pretreated with 6-OHDA and given DOCA and saline, plasma norepinephrine is not different from that in untreated controls and blood pressure is not elevated. These data support the hypothesis that the development of DOCA-saline hypertension is dependent on centrally mediated increases in peripheral adrenergic activity.

Plasma dopamine-β-hydroxylase has been proposed as an index of peripheral sympathetic activity (21). Geffen et al. (49) and Schanberg et al. (50) have described correlations between plasma dopamine-β-hydroxylase activity and arterial blood pressure in man. Other reports do not support these observations (51). In the present study, there was no discernible relationship between either plasma norepinephrine or blood pressure and plasma dopamine-β-hydroxylase activity. The data support previous observations (25) that in the rat plasma dopamine-β-hydroxylase activity does not necessarily change with alterations in plasma norepinephrine levels.

Rats receiving 1% saline without DOCA also had modest increases in plasma levels of norepinephrine at 2 and 4 weeks, although their blood pressures were not elevated. Thus, increased plasma catecholamines alone are not sufficient to produce hypertension. This observation has been previously noted in a study of hypertensive subjects and depressed, normotensive patients (52). The substitution of 1% saline for drinking water, with the greatly increased fluid intake which follows, could be a stressful stimulus which leads to increased sympathetic activity. In this light, mineralocorticoid-induced sodium retention with increased total body sodium (53) may result in the expression of the hypertension.

Other factors may participate in the development of raised blood pressure. Vascular smooth muscle from animals with DOCA-saline hypertension has been reported to show increased reactivity to vasoconstrictor stimuli (7, 33, 34, 54). This enhanced reactivity could result from morphological changes in the vessel wall (33) or from alterations in the density or affinity of specific receptors for vasoconstrictor agents. The presence of such changes in the peripheral resistance vessels could potentiate the effects of the increased levels of circulating norepinephrine.

The development and maintenance of hypertension following mineralocorticoid administration and chronic salt loading appear to be related to the interaction of several factors. Early increases in peripheral sympathetic neuronal activity and circulating levels of catecholamines in the presence of sodium retention and increased vascular reactivity lead to an elevation of blood pressure which may later be maintained in the absence of the initial neurogenic trigger.

Acknowledgment

We would like to thank Ms. T. Cridlin and Mr. L. Carmon for their excellent technical assistance and Ms. D. Haller for typing the manuscript.

References

11. CHALMERS JP, DOLLERY CT, LEWIS PJ, REID JL: Importance
10. HAEUSLER G, FINCH L, THOENEN H: Central adrenergic
13. DOBA N, REIS DJ: Acute fulminating neurogenic hyperten-
12. CHALMERS JP, REID JL: Participation of central noradrener-
24. IVERSEN LL, JARROT B: Modification of an enzyme radio-
23. SAELENS JK, SCHOEN MS, KOVACSICS GB: An enzyme assay
20. ROIZEN MD, Moss JL, HENRY D, KOPIN IJ: Effect of
18. HENRY DP, STARMAN BJ, JOHNSON DG, WILLIAMS RH: A
17. COYLE JT, HENRY D: Catecholamines in fetal and newborn
16. BREESE GR, COOPER BR, SMITH RD: Biochemical and
15. LAMPRECHT F, HENRY DP, RICHARDSON JS, THOMAS JA,
578 REID, ZIVIN, KOPIN
hydroxylase as an index of sympathetic neuron function.
Proc Natl Acad Sci 71:4392-4394, 1974
27. COCHRAN EG, COX GM: Experimental Designs. New York,
John Wiley & Sons., Inc., 1953
28. GROLLMAN A, HARRISON TR, WILLIAMS JR: Effects of various
sterol derivatives and blood pressure in the rat. J Pharmacol Exp Ther 69:149-155, 1940
29. SAPFIREINSTEIN LA, BRANDY WL, DRURY DR: Production of
30. DAHL LK: Effects of chronic excess salt feeding: Induction of
31. SELYE H, HALL CE, ROWLEY EM: Malignant hypertension
produced by treatment with deoxycorticosterone acetate and
32. HALL CE, HALL O: Comparative hypertensive acouities of
the acetates of aldosterone and deoxycorticosterone. Acta
Endocrinol 54:399-410, 1967
33. FOLKOW B, GRIMBY G, THULEUS O: Adaptive structural
changes of the vascular walls in hypertension and their
34. BEILIN LT, WADE DN, HONOUR AJ, COLE TJ: Vascular
hyperreactivity with sodium loading and with deoxycor-
35. ANTEY-SMITH E, VARMA DR: Assessment of the role of the
sympathetic nervous system in experimental hypertension
36. MUELLER RA, THOENEN H: Effect of 6-hydroxydopamine
hydroiodotrode and adrenaleucotomy on the development of
37. FINCH L, LEACH GDH: Contribution of the sympathetic
tensive system to the development and maintenance of
38. MUELLER RA, THOENEN H, AXELROD J: Adrenal tyrosine
hydroxylase Compensatory increase in activity after chemical sympathectomy. Science 163:468-469, 1967
39. DE CHAMPLAIN J, VAN AMERSKILN MR: Regulation of blood
pressure by sympathetic nerve fibers and adrenal medulla in
40. DE CHAMPLAIN J, KRAKOFF LR, AXELROD J: Catecholamine
41. KAZDA S, POHLIOVA I, BIR, KOCIOKA J: Norepinephrine
content of tissues in DOCA hypertensive rats. Am J
Physiol 216:1472-1476, 1969
42. DE CHAMPLAIN J, KRAKOFF LR, AXELROD J: Increased mono-
amine oxidase during the development of cardiac hyper-
43. IVERSEN LL, SALT P: Inhibition of catecholamine uptake,
by steroids in the isolated rat heart. Br J Pharmacol 40:528-530, 1970
44. REID JL, ZIVIN JA, FOPPEN FH, KOPIN LJ: Catecholamine
neurotransmitters and synthetic enzymes in spinal cord of
the rat. Life Sci 16:975-984, 1975
45. NAKAMURA J, GEBOLO M, THOENEN H: Experimental hyper-
tension of rat-reciprocal changes of norepinephrine turn-

Circulation Research, Vol. 37, November 1975

Circulation Research, Vol. 37, November 1975
CATECHOLAMINES AND DOCA-SALINE HYPERTENSION

over in heart and brainstem. Naunyn Schmiedebers Arch Pharmacol 269:440–441, 1971

Central and peripheral adrenergic mechanisms in the development of deoxycorticosterone-saline hypertension in rats.

J L Reid, J A Zivin and I J Kopin

Circ Res. 1975;37:569-579
doi: 10.1161/01.RES.37.5.569

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1975 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/37/5/569

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/