Role of the Frank-Starling Mechanism
In Exercise

By Lawrence D. Horwitz, James M. Atkins, and Stephen J. Leshin

ABSTRACT
The mechanisms which determine the response of stroke volume to mild, moderate, and severe exercise were compared in nine dogs running on a level treadmill. The dogs ran for 3-minute periods at 3–4 mph (mild exercise), 6–8 mph (moderate exercise), and 10–14 mph (severe exercise). Heart rate increased from a standing control value of 107 ± 6 beats/min to 191 ± 10 beats/min in mild, 221 ± 8 beats/min in moderate, and 263 ± 9 beats/min in severe exercise. Stroke volume increased 14%, 19%, and 15% for mild, moderate, and severe exercise, respectively. During mild exercise, left ventricular internal diameter decreased at end-systole but was unchanged at end-diastole. During moderate and severe exercise, end-diastolic diameter increased consistently as did left ventricular end-diastolic pressure. It was concluded that, despite extremely high heart rates, stroke volume increased during exercise. The augmentation in stroke volume was due to the combined effects of an increase in contractility, caused by increased sympathetic nervous system activity, and the operation of the Frank-Starling mechanism.

KEY WORDS sympathetic nervous system preload dog left ventricular diameter left ventricular dynamics stroke volume

In 1956, Rushmer et al. (1) reported that, in dogs performing light exercise on a treadmill, left ventricular external diameter was either unchanged or smaller at end-diastole. In a later communication, Rushmer (2) reaffirmed these diameter measurements and concluded that stroke volume did not change consistently in running dogs. On the basis of these findings it was assumed that the Frank-Starling mechanism was not evoked during exercise.

However, in 1971, Erickson et al. (3) reported that dogs performing very strenuous exercise by swimming exhibited increases in stroke volume despite extremely high heart rates. The increase in stroke volume was accompanied by an increase in end-diastolic diameter, suggesting that the Frank-Starling mechanism was a factor.

A possible explanation for the discrepancy in the conclusions of these studies is that the hemodynamic alterations during physical activity may vary according to the severity of the exercise stress. Therefore, the purpose of this investigation was to compare the mechanisms which determine the response of stroke volume to mild and strenuous running exercise. To accomplish this aim, left ventricular pressure, internal diameter, and outflow were measured in dogs undergoing graded exercise on a treadmill.

Methods
Nine mongrel dogs, weighing 17–27 kg, were trained to run on a level treadmill. Subsequently, each dog underwent a sterile thoracotomy under sodium pentobarbital anesthesia. As described previously (4), during a brief inflow occlusion of the superior and inferior vena cava, two discoid sonocardiometer transducers were implanted within the left ventricle through a stab incision in the anterior wall. The transducers were positioned across the greatest internal transverse diameter of the left ventricle, one on the anterior and the other on the posterior endocardial wall. Through
a second incision in the anterior wall, a solid-state
pressure transducer (Konigsberg P18) was also
implanted within the left ventricle. An electro-
magnetic flow probe was placed around the
ascending aorta just above the aortic valve, and
an 18-gauge polyvinyl catheter was inserted into
the left atrium through the left atrial appendage.
In three dogs, a second 18-gauge catheter was
inserted into the main pulmonary artery through a
stab incision approximately 5 mm distal to the
pulmonic valve. All catheters and wires were
brought outside the skin at the back of the neck.
The dogs were allowed 3 weeks for recovery;
one had arrhythmias or infections, and all could
exercise at their preoperative maximum level
when studies were performed. A few days before
experiments began, an additional catheter was
inserted into the aorta through the left carotid
descending artery and left in place.

Left ventricular internal transverse diameter
was obtained with a sonocardiometer which
measured the transit time of 5-mHz ultrasound
between piezoelectric crystals in the two trans-
ducers at a sampling rate of 5,000 times/sec (5).
To ensure proper tracking, the raw signal and the
unfiltered bistable output were continuously
monitored with an oscilloscope. As described
previously, the sonocardiometer cannot adequate-
ly track signals unless the two piezoelectric
crystals are directly facing each other (4). Prior
to the initiation of experiments it was apparent
that tracking was inadequate in four dogs;
therefore, no sonocardiometer recordings were
attempted during studies of these dogs. Postmor-
tem examinations showed that improper surgical
placement (three cases) and transducer failure
(one case) were responsible for the inadequate
tracking. Diameter recordings were obtained in
the other five dogs. All had satisfactory signals on
oscillographic monitoring, and proper placement
of the transducers was confirmed at autopsy.

Flow was measured with a Zepeda EDP2
square-wave electromagnetic flowmeter. Flow
probes were calibrated in vitro prior to implanta-
tion, and the calibration was confirmed in vivo
using a simultaneous dye-dilution determination
of cardiac output obtained by injecting indocya-
nine green dye into the left atrium and sampling
in the aorta while the dog was at rest. It was
assumed that flow was zero at end-diastole.

Left atrial and aortic pressures were measured
through the implanted catheters with Statham
P23Db manometers. Measurements with the
solid-state left ventricular pressure transducers
were obtained by assuming that left ventricular
end-diastolic pressure was equal to the mean left
atrial pressure and that left ventricular peak
systolic pressure was equal to the peak aortic
pressure at rest (6). This in vivo calibration
correlated closely with in vitro calibrations prior
to or after implantation. All signals were inscribed
on a Beckman RM or a Hewlett-Packard 7700
oscillograph and an Ampex PR 500 tape
recorder.

Control measurements were obtained while the
dogs stood quietly on the treadmill prior to the
initial exercise period. Each dog ran in sequence,
3-minute periods at preselected levels of mild,
moderate, and severe exercise on a level treadmill
(0° grade). Mild exercise ranged from 3 to 4
mph, moderate exercise from 6 to 8 mph, and
severe exercise, the maximum load at which the
dog could be induced to run, from 10 to 14 mph.
After the mild exercise and again after the
moderate exercise, 5-minute rest periods were
allowed.

To reduce the effects of respiratory variation or
atypical beats, data were analyzed by averaging
the results of six consecutive beats. Care was
taken to avoid ectopic beats or beats with poor
signal quality. The exercise data were obtained
during the third minute of each exercise period,
at which time a reasonably steady state had been
obtained. Random sampling of other groups of
beats within 15 seconds of the sampling point
gave identical or nearly identical results, confirm-
ing that an adequate steady state was present.
Statistical analyses were performed by paired
comparisons of each exercise value with the
Correlation of Methods
A major reason for the rarity of studies of left
ventricular dynamics during exercise has been the
imposing difficulties involved in applying standard
techniques to measurement of hemodynamics
during the exercise state. In this investigation an
attempt was made to overcome the limitations in
resolution and frequency response of older
techniques, while measuring parameters which
permit meaningful physiological interpretation.

The solid-state pressure gauges have a natural
frequency exceeding 3,000 Hz and do not alter in
sensitivity during implantation (6). Small
amounts of drift from day to day were corrected

Downloaded from http://circ.ahajournals.org/ by guest on June 7, 2017
physiological stenosis occurred at the site of flow probe implantation.

The oxygen consumption calculation is subject to slight error due to inaccuracy in extrapolation from blood gas tension and pH to oxygen content. However, direct estimation of oxygen content by the Van Slyke technique was impractical due to the time and the amount of blood which would have been required.

Results

Oxygen consumptions, measured in three dogs, are shown in Table 1. Mean oxygen consumption increased approximately fourfold with mild exercise (3-4 mph), fivefold with moderate exercise (6-8 mph), and sevenfold with severe exercise (10-14 mph).

Figures 1 and 2 are individual high-speed recordings of left ventricular pressure and diameter and of aortic pressure and flow, respectively, during the control and the exercise periods. The hemodynamic measurements in all nine dogs are summarized in Table 2. Exercise values were obtained during the third minute of each exercise period.

The mean heart rate rose from 107 beats/min when the dogs were standing quietly on the treadmill to 263 beats/min with severe exercise. Heart rate increased from the control value by approximately 77% with mild exercise, 107% with moderate exercise, and 146% with severe exercise.

The mean stroke volume increased from 34.5 ml during the control period to 39.2 ml with mild exercise ($P < 0.01$), 41.2 ml with moderate exercise ($P < 0.01$), and 39.8 ml with severe exercise ($P < 0.01$). These values represent increases of 14%, 19%, and 15% for mild, moderate, and severe exercise, respectively. Four dogs attained their highest stroke volumes with moderate exercise, followed by a
An individual recording of left ventricular (L.V.) diameter and left ventricular pressure (L.V.P.) during the control period and running at 4 and 12 mph. Heart rate was 81 beats/min during the control period and increased to 151 beats/min at 4 mph and 309 beats/min at 12 mph. Left ventricular peak systolic pressures were measured from this record, but end-diastolic pressures were obtained from magnified, high-speed tracings.

A slight decline during severe exercise. The remaining five dogs showed a progressive increase in stroke volume as the work load increased and attained their highest stroke volume at the highest speed. Cardiac output increased 102% with mild exercise, 147% with moderate exercise, and 183% with severe exercise.

Left ventricular internal transverse diameter was measured in five dogs. The end-diastolic left ventricular diameter did not change consistently during mild exercise. However, end-diastolic diameter did increase during moderate and severe exercise; the mean increases were 0.6 mm with moderate exercise ($P < 0.01$) and 1.3 mm with severe exercise ($P < 0.001$). At end-systole, there were decreases in left ventricular diameter in all five dogs.
Left Ventricular Dynamics during Graded Treadmill Exercise

<table>
<thead>
<tr>
<th>Dog</th>
<th>HR (beats/min)</th>
<th>SV (ml)</th>
<th>EDD (mm)</th>
<th>ESV (mm)</th>
<th>LVEDP (mm Hg)</th>
<th>LVSP (mm Hg)</th>
<th>HR (beats/min)</th>
<th>SV (ml)</th>
<th>EDD (mm)</th>
<th>ESV (mm)</th>
<th>LVEDP (mm Hg)</th>
<th>LVSP (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>110</td>
<td>27.1</td>
<td>1.8</td>
<td>175</td>
<td>164</td>
<td>28.0</td>
<td>5.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>88</td>
<td>28.0</td>
<td>2.0</td>
<td>156</td>
<td>146</td>
<td>27.2</td>
<td>5.7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>81</td>
<td>46.6</td>
<td>35.6</td>
<td>28.7</td>
<td>131</td>
<td>151</td>
<td>49.3</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>97</td>
<td>27.6</td>
<td>33.5</td>
<td>25.4</td>
<td>3.2</td>
<td>151</td>
<td>206</td>
<td>29.3</td>
<td>34.3</td>
<td>25.2</td>
<td>15.8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>147</td>
<td>25.1</td>
<td>22.5</td>
<td>13.7</td>
<td>0</td>
<td>173</td>
<td>240</td>
<td>29.3</td>
<td>22.8</td>
<td>15.7</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>22.9</td>
<td>16.6</td>
<td>0</td>
<td>230</td>
<td></td>
<td></td>
<td>23.2</td>
<td>16.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>144</td>
<td>22.1</td>
<td>16.1</td>
<td>0</td>
<td>234</td>
<td></td>
<td></td>
<td>21.8</td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>96</td>
<td>41.2</td>
<td>2.5</td>
<td>134</td>
<td>208</td>
<td>45.5</td>
<td>-1.2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>125</td>
<td>21.4</td>
<td>21.4</td>
<td>16.6</td>
<td>3.7</td>
<td>142</td>
<td>195</td>
<td>25.2</td>
<td>21.3</td>
<td>16.3</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>102</td>
<td>45.9</td>
<td></td>
<td></td>
<td>1.7</td>
<td>126</td>
<td>175</td>
<td>56.6</td>
<td></td>
<td></td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>114</td>
<td>36.1</td>
<td></td>
<td></td>
<td>7.5</td>
<td>93</td>
<td>179</td>
<td>42.3</td>
<td></td>
<td></td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>115</td>
<td>39.0</td>
<td>38.0</td>
<td>31.9</td>
<td>1.2</td>
<td>102</td>
<td>218</td>
<td>49.0</td>
<td>37.8</td>
<td>31.0</td>
<td>-1.3</td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>107</td>
<td>34.5</td>
<td>30.2</td>
<td>23.7</td>
<td>2.4</td>
<td>135</td>
<td>191</td>
<td>30.2</td>
<td>30.3</td>
<td>23.2</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>*SE</td>
<td>6</td>
<td>3.1</td>
<td>3.4</td>
<td>3.2</td>
<td>0.8</td>
<td>9</td>
<td>10</td>
<td>3.9</td>
<td>3.5</td>
<td>3.1</td>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>

HR = heart rate, SV = stroke volume, EDD = left ventricular end-diastolic diameter, ESV = left ventricular systolic diameter, LVEDP = left ventricular end-diastolic pressure, and LVSP = left ventricular end-systolic pressure. P values are for paired comparisons between the control and exercise values in the same dog. NS = P > 0.05. No data were obtained in four dogs (nos. 1, 5, 7, and 8). No stroke volume or left ventricular pressure measurements were obtained because of technical problems in two of the runs in dog 4.

Discussion

Although Rushmer and co-workers (1, 2) reported that end-diastolic external left ventricular diameter did not increase consistently during exercise, increases in end-diastolic left ventricular dimensions have been described by others (3, 14). The results of our study indicated that the work load was an important factor determining the nature of the changes in left ventricular dimensions. Probably much of the confusion in the scientific literature regarding the size of the left ventricle during exercise is due to failure to recognize that increased left ventricular end-diastolic dimensions occur only with very strenuous effort and not with mild stress.

Most of the increment in cardiac output during exercise was due to substantial increases in heart rate. These increases exceeded...
levels attributable to vagal withdrawal alone or to distention of the sinoatrial node by the volume load (15). It is likely, therefore, that the tachycardia resulted, at least partially, from sympathetic stimulation, as has been concluded by others (16). Despite the tachycardia, stroke volume was significantly increased at all levels of exercise stress.

During mild exercise the increase in stroke volume was due to greater cardiac muscle fiber shortening to a smaller end-systolic diameter without alteration in end-diastolic diameter. Such an improvement in cardiac performance, without a decrease in afterload, is characteristic of increased contractility. In view of the likelihood that the high heart rates reflected increased sympathoadrenal activity, it is probable that much, if not all, of this increase in contractility was caused by sympathetic nervous system stimulation.

During severe exercise, the high heart rates and the high oxygen consumption estimates confirmed the strenuous nature of the exercise (17-19). During both moderate and severe exercise, increases in stroke volume were accompanied by significant increases in left ventricular end-diastolic diameter. The substantial elevation in afterload with severe exercise may have attenuated the response of stroke volume in some dogs.

Since end-diastolic diameter increased during moderate and severe exercise despite extreme tachycardia, it appears that the old concept of a limitation in ventricular filling at high heart rates (20) does not apply to the exercise state. Presumably, the muscle pumping mechanism by which skeletal muscle contraction forces large quantities of blood through the systemic veins is a major factor which enhances ventricular filling (21). In addition, sympathetic nervous system stimulation reduces ventricular pressure in early diastole (6) and, thereby, may increase inflow immediately after the atrioventricular valves open.

When the heart rate of a conscious, resting or an anesthetized dog is increased by electrical pacing or vagal block, stroke volume decreases linearly and left ventricular end-diastolic dimensions are reduced (22, 23). However, the effect of the enhanced venous return is analogous to that of a rapid intravenous infusion in a resting animal: cardioacceleration is accompanied by an increase in left ventricular end-diastolic dimensions, and stroke volume is increased via the Frank-Starling mechanism (22). If the alterations in left ventricular dynamics during exercise were due exclusively to sympathetic stimulation, then end-diastolic diameter would...
fall and stroke volume would remain constant as postulated by Rushmer (2, 6). Inasmuch as the left ventricular end-diastolic diameter exceeded the levels to be expected with sympathetic stimulation alone at all levels of exercise, it is probable that this increment in preload was partially responsible for the increases in stroke volume.

During mild exercise, the augmented sympathetic tone is manifested by the decrease in end-systolic diameter. A contribution of the Frank-Starling mechanism can also be postulated, since end-diastolic diameter is unchanged from the preexercise level when it would otherwise be slightly decreased at this heart rate in the absence of an increased venous return. With moderate and severe effort, however, left ventricular diameter actually increases above its preexercise size. At these levels the contribution of the Frank-Starling mechanism appears to be substantial and results in further increases in stroke volume, despite higher heart rate and afterload, both of which oppose such a change. Therefore, the Frank-Starling mechanism plays a role in the stroke volume response to all levels of exercise effort, although its influence is most obvious with very strenuous activity. Thus, the combined effects of an increase in contractility, due to sympathetic stimulation, and the operation of the Frank-Starling mechanism determine the response of stroke volume to exercise.

Acknowledgment
The authors wish to express their appreciation to H. L. Wyatt, James O. Wright, and Stanley A. Dunbar for their assistance with various technical aspects of this study.

References
19. Maxfield, M.E., and Brouha, L.: Validity of
Role of the Frank-Starling Mechanism In Exercise
LAWRENCE D. HORWITZ, JAMES M. ATKINS and STEPHEN J. LESHIN

Circ Res. 1972;31:868-875
doi: 10.1161/01.RES.31.6.868

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1972 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circres.ahajournals.org/content/31/6/868

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in
Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the
Editorial Office. Once the online version of the published article for which permission is being requested is
located, click Request Permissions in the middle column of the Web page under Services. Further information
about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/