Serum Dopamine-Beta-Hydroxylase Activity

By Richard Weinshilboum and Julius Axelrod

ABSTRACT

Dopamine-beta-hydroxylase, the enzyme which converts dopamine to norepinephrine, is released into the perfusate upon stimulation of the isolated perfused adrenal gland and after stimulation of the nerves to the isolated perfused spleen. This study was undertaken to determine whether dopamine-beta-hydroxylase activity could be detected circulating in blood. By using a sensitive new enzymatic assay, a dopamine-beta-hydroxylase activity was found in the blood of both man and the rat. It is located in the serum and is not associated with the formed elements of blood. The serum activity is similar to that of purified bovine adrenal dopamine-beta-hydroxylase in that it requires the presence of ascorbic acid, catalase, fumarate, and oxygen for full activity. Furthermore, as is also the case with the adrenal enzyme, serum activity is increased in the presence of cupric ions. The Km values for substrate in human and rat sera are similar, and both are close to values determined in rat adrenal glands and stellate ganglia. The mean activity ± SE in the serum of six rats was $2.27 ± 0.04$ nmoles/ml serum/20 min, and that of four normal humans ranged from 96.2 to 284 nmoles/ml/20 min.

KEY WORDS

adrenal medulla catecholamine release norepinephrine perfused spleen rat man sympathetic nervous system perfused adrenal gland

The neurotransmitter norepinephrine is formed by the beta-hydroxylation of 3,4-dihydroxyphenylethylamine (dopamine) (1). This reaction is catalyzed by dopamine-beta-hydroxylase (DBH), an enzyme which is also capable of converting other phenylethylamines to their beta-hydroxylated derivatives (2). DBH activity is localized to the chromaffin granules in the adrenal medulla (3) and to the catecholamine-containing storage vesicles in sympathetic nerve terminals (4). About half of the enzyme activity can be released from rabbit chromaffin granules by lysis of the particles with distilled water (5). One explanation which has been offered for this finding is that a portion of the DBH activity is present in soluble form within the vesicle, and a portion is bound to the vesicular membrane (5). It has also been demonstrated that in the isolated perfused bovine adrenal gland, both DBH activity and catecholamines are released into the perfusate after stimulation with acetylcholine (6). Furthermore, several investigators have shown that stimulation of the nerves to the isolated perfused spleen releases DBH into the perfusate (7-9). These data raise the possibility that DBH is discharged into the circulation in vivo during periods of catecholamine release by either sympathetic nerves or the adrenal medulla. We have used a sensitive new enzymatic assay for DBH activity (10) and have been able to identify dopamine-beta-hydroxylase activity in the serum of both man and the rat.

Methods

Animals and Subjects.—All rats used in this study were 180- to 200-g male Sprague-Dawley rats obtained from Hormone Assay Laboratories, Chicago, Illinois. Human subjects were normal adult male and female volunteers.

Protein Assay.—Proteins were measured by the method of Lowry et al. (11).

Phenylethanolamine-N-Methyltransferase Assay.—Phenylethanolamine-N-methyltransferase activity was determined by the method of Axelrod (12) modified to use phenylethanolamine as a methyl acceptor rather than normetanephrine. All incubations were carried out for 5 minutes.

DBH Assay.—Dopamine-beta-hydroxylase activ-
ity was assayed by a method which depends upon the β-hydroxylation of tyramine to form octopamine. The octopamine formed by the DBH is enzymatically N-methylated by phenylethanolamine-N-methyltransferase (PNMT), an enzyme specific for β-hydroxylated amines (12), with a 14C-labeled methyl group donated by S-adenosyl-L-methionine-14C (Fig. 1).

Blood samples were obtained from experimental animals by decapitating and exsanguinating them into a test tube kept on ice. Human blood samples were obtained by venopuncture and were immediately placed on ice. Blood was centrifuged at 10,000 X g for 10 minutes at 4°C, and the serum was removed. The serum was then diluted appropriately with ice-cold distilled water, and 200-μl aliquots of the diluted sample were incubated at 37°C for 20 minutes in a reaction mixture containing 1.2 μmole sodium fumarate, 1.2 μmole ascorbic acid, 0.3 μmole tyramine, 10 μg of pargyline, and 200 μg of catalase. Between 10^-2 to 10^-1 M CuSO4 were also added to obtain maximal activation. The final reaction volume was 310 μl. Both the tyramine and ascorbic acid solutions were adjusted to pH 6 with NaOH. All Tris buffers were produced by titrating Tris (hydroxymethyl)aminomethane with HCl. Duplicate samples of heated serum, each containing 200 μl of heated serum, and this sample was carried through the procedure. Results were expressed either as nanograms or nanomoles of octopamine formed per milliliter of serum per 20 minutes.

Standard methods of statistical analysis were used in these studies (14). Km values were determined by the method of Wilkinson (15) using an IBM 1620 digital computer and a FORTRAN program written by Cleland (16).

Thin Layer Chromatography.—Thin layer chromatography was carried out to identify the radioactive products of the enzyme assay. Eastman Chromagram sheets of silica gel, 100 μ thick, were used. n-Butanol saturated with 0.1M HCl and...
a mixture of toluene, acetic acid, ethylacetate and water (80:40:20:5) were the two solvent systems used. Sheets were prerun overnight in the system containing n-butanol saturated with 1N HCl. All sheets were activated by drying for 15 minutes at 95°C prior to application of the sample.

To prepare a sample for chromatography, it was dissolved in 1 ml of ethanol after being dried. It was then dried again under a stream of nitrogen, and the residue was dissolved in 30 µl of ethanol for application to the chromatogram. When the toluene, acetic acid, ethylacetate and water system was used, the plate was developed, dried and then developed again a total of four times to obtain the desired separation. After development, the sheets were sprayed with diazotized p-nitroaniline (17) followed by ninhydrin. They were then marked and cut into strips 1 cm wide, which were placed in counting vials containing 0.5 ml NCS (Amersham-Searle), a surface-active organic base. After 1 hour, 1 ml of ethanol and 10 ml of phosphor were added to each vial and the radioactivity was determined.

Chemicals.—Epinephrine, metanephrine, tyramine, methoxytyramine and octopamine (β-hydroxytyramine) were obtained from Calbiochem, Los Angeles, California. Synephrine (N-methyloctopamine) was supplied by Sterling-Winthrop Research Institute, Rensselaer, New York. Catalase was purchased from Boehringer Chemical Company, Mannheim, West Germany. S-adenosyl-L-methionine-methyl-14C (42 to 46 me/HIM) was obtained from New England Nuclear, Boston, Massachusetts. N-methyl tyramine was kindly donated by Dr. Richard Blatzly, Burroughs Wellcome Co., Tuckahoe, New York. The monoamine oxidase inhibitor pargyline was obtained from Abbott Laboratories, Chicago, Illinois, and Tris (hydroxy methyl) aminomethane (Trizma Base) was purchased from Sigma Chemical Co., St. Louis, Missouri.

Results

Localization of DBH Activity in Blood.—The enzymatic assay for DBH demonstrated activity in the blood of both man and the rat. In both the activity was present in the plasma but not in the cellular elements of blood (Table 1). There was no difference between serum and plasma when heparin was used as the anticoagulant. The activity in the rat blood was between 1/50 and 1/100 that of human blood.

Identity of Product of DBH Assay.—Extracts of the reaction of both human and rat serum were subjected to thin layer chromatography to determine whether synephrine, the expected product, was formed. When n-butanol saturated with 1N HCl was used as a solvent, the radioactivity present in the experimental sample had the same Rf as synephrine. Radioactivity was not associated with metanephrine, epinephrine or N,N-dimethyloctopamine (Fig. 2). However, a small peak of radioactivity was present in the blank which also had an Rf value similar to that of synephrine. N-methyl tyramine was found to migrate with synephrine in this solvent system, and it was suspected that the activity in the blank might be due to the formation of a small amount of N-methyl tyramine by PNMT in spite of the relative specificity of this enzyme for β-hydroxylated amines (18).

When the solvent system was toluene, acetic acid, ethylacetate and water (80:40:20:5), N-methyl tyramine was separated from synephrine. With this system the radioactivity in the blank was found to have the Rf of N-methyl tyramine, and most of the activity in the experimental sample was associated with the expected reaction product, synephrine (Fig. 3). The results of chromatography were the same for samples obtained from man and from rat.

Effect of Time and Increasing Amounts of Serum on Activity.—The activity present after assay of both rat and human blood proved to be directly proportional to the amount of

TABLE 1

<table>
<thead>
<tr>
<th></th>
<th>Plasma (nmoles/ml/20 min)</th>
<th>Cellular elements (nmoles/ml/20 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>1.9 ± 0.4</td>
<td><0.5*</td>
</tr>
<tr>
<td>Man</td>
<td>1.1 ± 0.5</td>
<td><0.5*</td>
</tr>
</tbody>
</table>

*Below sensitivity of assay.
Chromatography of human serum extract. An extract of human serum after assay was applied to a silica gel, thin layer chromatogram and was developed in n-butanol saturated with 1N HCl. The abscissa represents distance from the origin in centimeters. The solid line represents radioactivity incorporated into the sample, and the broken line that incorporated into a "blank" specimen. The dark bars represent the Rf values of standards: synephrine (SYN), metanephrine (META), N,N-dimethyloctopamine (Di-M-OCT), and epinephrine (EPINEPH).

Chromatography of human serum. A duplicate sample to that shown in Figure 2 was developed on a silica gel, thin layer plate using toluene, acetic acid, ethylacetate and water (80:40:30:5) as a solvent. Additional standards were applied to this chromatogram: N-methyltyramine (N-METH-TYR) and methoxytyramine (METHOXY TYP).

Circulation Research, Vol. XXVIII, March 1971
serum added to the reaction mixture when human samples were diluted 1 to 64 (Fig. 4, left), and samples from the rat were diluted 1 to 4. When the time course of the DBH portion of the assay was examined, activity was found to increase in a linear fashion for 50 minutes with rat as well as with human serum (Fig. 4, right).

Effect of Substrate Concentration on DBH Activity.—Increasing concentrations of substrate had different effects on the two steps of this enzyme assay. As would be expected,
increasing amounts of tyramine in the reaction mixture resulted in increased formation of octopamine until a maximum was reached at approximately 8×10^{-3}M (Fig. 5). However, before maximal concentrations of substrate for the DBH portion of the assay had been attained, increasing substrate concentrations had begun to inhibit the PNMT portion of the reaction, resulting in a decrease in the formation of radioactive N-methyl-octopamine (synephrine) (Fig. 5). Inhibition of PNMT by various amines, among them tyramine, has been reported previously (18). Because of the rapid decline in the formation of the radioactive product at high substrate concentrations, all reactions were carried out in the presence of tyramine at a concentration of 10^{-3}M. Values for reaction rates reported here (nmoles/ml serum/20 min) are not maximal velocities and can only be compared with values obtained using identical substrate concentrations.

Requirement for Cofactors, Oxygen and Copper.—Several cofactors such as ascorbic acid, catalase, and fumarate are needed for maximal adrenal DBH activity (1). To examine the requirements of the serum enzyme, DBH activity was assayed omitting the various components of the reaction mixture to determine whether they were necessary to attain maximal activity (Table 2). There was no activity in the absence of ascorbic acid, and the removal of catalase and fumarate reduced activity to 9.3% and 24% of control levels, respectively.

Bovine adrenal DBH, a mixed function oxidase, requires the presence of oxygen (19). To determine whether the DBH activity in the serum also had this requirement, a sample of human serum was assayed both in the presence of room air, and under a nitrogen atmosphere (Table 3). For the first minute of
TABLE 2
Effect of DBH Cofactors on Human Serum Activity

<table>
<thead>
<tr>
<th>Cofactor</th>
<th>Activity (nmoles/ml serum/20 min)</th>
<th>% Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (control)</td>
<td>96.3 ± 2.0</td>
<td>100</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>8.9 ± 2.2</td>
<td>9.3</td>
</tr>
<tr>
<td>Catalase</td>
<td>0.0 ± 0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Fumaric acid</td>
<td>22.7 ± 2.5</td>
<td>24%</td>
</tr>
</tbody>
</table>

A sample of normal human serum was assayed for DBH activity in the usual way and also without several of the ingredients of the reaction mixture. Results are expressed as the mean of four determinations ± se.

TABLE 3
Effect of Oxygen on Human Serum DBH Activity

<table>
<thead>
<tr>
<th>Atmosphere</th>
<th>Activity (nmoles/ml/20 min)</th>
<th>% Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room air</td>
<td>107 ± 5.6</td>
<td>100</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>18.9 ± 0.7</td>
<td>17.7</td>
</tr>
</tbody>
</table>

A sample of normal human serum was assayed for DBH activity in the presence of room air and in a nitrogen atmosphere. Results are expressed as the mean of four determinations ± se.

The reaction, both sets of tubes were exposed to air as the serum was added, but, even so, the activity was reduced 82% in the absence of room air.

The activity of tissue DBH is increased by the addition of cupric ions to the reaction mixture (20). It is thought that the copper inhibits the effect of tissue inhibitor(s) of the enzyme (20). The activity of both rat and human serum DBH activity increased with the addition of CuSO₄. Maximal activity for human serum diluted 1 to 64 was attained with a final copper concentration of 3 µM. Rat serum diluted 1 to 4 required a copper concentration of 32 µM for maximal activity (Fig. 7).

Kinetics.—Homogenates of rat adrenal gland and stellate ganglia were assayed for DBH activity in the presence of eight different concentrations of substrate from 3 × 10⁻⁵ to 10⁻⁴ M under conditions which give maximal activity in this assay. DBH activity in rat serum was also assayed, and values for the Km of DBH activity using tyramine as a substrate at pH 6 in the presence of room air were determined. The Km values for adrenal gland, stellate ganglia and serum in the rat were 7.8 ± 0.7 × 10⁻⁴ M, 6.8 ± 1.1 × 10⁻⁴ M, and 7.0 ± 0.7 × 10⁻⁴ M, respectively. The Km for human serum determined in a similar manner was 8.4 ± 0.7 × 10⁻⁴ M.

Representative values.—Serum DBH activity was determined on blood samples from six normal male Sprague-Dawley rats. Values ranged only from 2.16 to 2.38 nmoles/ml serum/20 min with a mean value ± se of 2.27 ± 0.04. Values for fasting morning blood samples obtained from four normal human volunteers ranged from 98.2 to 284 nmoles/ml/20 min with a mean of 164.3. The serum activity of one normal subject was determined four times over a 6-week period. Values were consistent, with a range of 89.9 to 116 nmoles/ml/20 min and a mean of 99.2 ± 5.8. To determine the reproducibility of a given assay, one human serum sample was assayed six times. The value obtained was 88.4 ± 1.6 nmoles/ml serum/20 min. Thus, the standard error after six determinations on a single sample was 1.8% of the mean.
A dopamine-β-hydroxylase activity is present in the blood of both man and the rat. It is associated with serum and not with the formed elements of the blood. Serum DBH activity is similar to that which has been studied in purified form from the bovine adrenal gland in that it requires ascorbic acid, fumarate, and catalase and is inhibited in the absence of oxygen (1, 19). The Km for tyramine of serum DBH in the rat is similar to that of tissue DBH activity. Further studies will, of course, be necessary to establish the source and possible significance of the serum dopamine-β-hydroxylase. Preliminary experiments in our laboratory have demonstrated a decrease of this activity in rats treated with 6-hydroxydopamine, a drug which destroys sympathetic nerve terminals (21), and a rapid increase of the levels in rats subjected to immobilization stress. If the serum activity proves to be released from sympathetic nerves, the adrenal medulla, or both, it might prove to be a valuable tool with which to study the role of catecholamines and their release in both normal and pathologic physiology. Presently such studies, particularly in human subjects, are hampered by the fact that even the best fluorometric assays for serum catecholamines have been extended to the limits of their sensitivity (22), and the more sensitive enzymatic assays are complex and laborious (23). There are many disease states, among others idiopathic orthostatic hypotension (24), familial dysautonomia (25), hypertension (26), and infantile hypoglycemia (27), in which catecholamines or their release may play important roles. In these situations it would be important to have available a convenient measure of sympathetic nervous system and adrenal medullary activity, and we hope to investigate serum DBH activity in these and other disease states.

Acknowledgment

The authors wish to thank Dr. John Daly for his careful review of this manuscript. We also wish to acknowledge the excellent technical assistance of Mrs. Helen Hunt and Dorothy Rutherford.

References

Serum Dopamine-Beta-Hydroxylase Activity
RICHARD WEINSHILBOUM and JULIUS AXELROD

Circ Res. 1971;28:307-315
doi: 10.1161/01.RES.28.3.307

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1971 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/28/3/307

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/