Circulatory and Humoral Changes In the Reversal of Renovascular Hypertension in Sheep by Unclipping the Renal Artery

ABSTRACT

The renal arterial clip was removed from 11 sheep with chronic experimental renovascular hypertension (previous unilateral nephrectomy, unilateral renal arterial constriction for 3 to 8 weeks, blood pressure elevated and stable). In five animals cardiac output, blood volume, plasma [Na+] and plasma renin concentration were measured the day before, 1 day after, and 4 days after unclipping. In the other six animals, plasma [Na+], plasma renin concentration, and blood angiotensin concentration were determined before and after unclipping. After unclipping, blood pressure returned to normal levels in 24 to 96 hours; cardiac output and blood volume were essentially unaltered during the period of observation. No natriuresis was seen, nor any change in plasma [Na+], plasma renin concentration, or blood angiotensin concentration, which remained within the appropriate normal ranges throughout. Nephrectomy of five similarly hypertensive animals, and six previously unilaterally nephrectomized normotensive sheep, was performed as a control. Variables similar to those measured before and after unclipping were determined at similar time intervals. The second nephrectomy of hypertensive animals was followed by maintained hypertension; and of normotensive animals, by maintained normotension. The role of the kidney in the maintenance and reversal of chronic experimental renovascular hypertension is evaluated in the light of these results.

ADDITIONAL KEY WORDS unclipping nephrectomy renin blood pressure cardiac output angiotensin blood volume sodium peripheral resistance renal vasodepressor

In uninephrectomized rats with a clip on the remaining renal artery, removal of the clip (hereafter called unclipping) is followed by restoration of the blood pressure to normal levels within 18 hours of operation (1, 2). The acute circulatory changes over the 6-hour period after unclipping were subsequently reported in similarly hypertensive rats maintained under pentobarbital anesthesia (3). Peripheral resistance, already elevated in the chronic hypertensive state, rises sharply upon unclipping, and has returned to its initial, elevated level at the end of 6 hours. Cardiac output falls even more sharply upon unclipping, remaining well below baseline levels throughout the period of study. Blood pressure gradually decreases into the normotensive range over 6 hours.

Previous work from this laboratory (4) on uninephrectomized sheep with a clip on the remaining renal artery showed that chronic renovascular hypertension is not associated with elevated plasma levels of renin and...
altered aldosterone; subsequent studies in adrenalec-
tomized sheep (5) with similar hypertension
demonstrated that the maintenance of chronic
renovascular hypertension is not dependent
upon the presence of adrenal steroids.
Accordingly, the rationale of the series of
unclipping experiments reported in this paper
is twofold. First, a more extended study of the
hemodynamic changes attendant upon unclipp-
ing was made by measuring cardiac output
and blood volume over a 96-hour period after
unclipping in conscious, unanesthetized ani-
mals. Similar observations on uninephrecto-
mized hypertensive and normotensive animals
subjected to a second nephrectomy were made
as a control. Second, to delineate more
precisely the roles of Na⁺, renin, and angio-
tensin in the maintenance of chronic renovas-
cular hypertension, measurements of plasma
renin concentration, blood angiotensin con-
centration, plasma [Na⁺], and urinary Na⁺
output were made over the period of fall in
blood pressure after unclipping.

Materials and Methods

SURGICAL PROCEDURES

Twenty-two mature sheep (20 wethers and 2
ewes) were used in the study. All animals were
given 0.4 kg food but denied water for 24 hours
before operation; such a regime obviates operative
regurgitation. After thiopentone induction and
endotracheal intubation, anesthesia was main-
tained with halothane and oxygen; all operations
were performed with full aseptic technique. All
animals underwent an initial operation of unilat-
eral nephrectomy and the formation of a Van
Loeerm cutaneous carotid artery loop; 16
animals subsequently had a screw-type Goldblatt
clip applied to the remaining renal artery at least
3 weeks after the first operation and after basal
blood pressure recordings. A satisfactory degree
of renal artery constriction was indicated by a
thrust and reduced pulse volume distal to the clip,
and a wrinkling of the renal capsule. Three to ten
weeks after renal artery constriction, the artery
was unclipped in 11 of the hypertensive sheep;
the other 5 hypertensive sheep and the 6
normotensive uninephrectomized sheep were sub-
jected to a second nephrectomy to serve as
controls. The two ewes in the study were in the
group of hypertensive undergoing nephrectomy
and findings in them were undistinguishable from
those in the wethers.

The operation of unclipping is both tedious and
hazardous; the arterial wall, previously supported
by the clip, is friable and occasionally balloons
cauterization after removal of the constriction. In sheep 11,
a longitudinal split was made in the vessel at
operation, and through this 150 ml of blood was
lost before hemostasis was obtained with 5-0
Deknatel atraumatic sutures. In sheep 10, a
degree of retroperitoneal and perirenal fibrosis,
previously uncontreived made visualization of
the kidney impossible and the unclipping proce-
dure doubly difficult.

ROUTINE MAINTENANCE AND OBSERVATIONS

Each animal was housed in a separate
metabolism cage; each day 0.8 kg oat-alfalfa chaff
and tap water ad libitum was offered, and the
amount of food ingested was recorded. Daily
urine output was measured, and a sample taken
for [Na⁺] and [K⁺] determination with a
Technicon Autoanalyzer. Feces were collected
twice weekly and discarded. Systolic and diastolic
blood pressure was measured by carotid loop
sphygmomanometry and auscultation with the
animal standing with head erect. Records were
made at least once, and usually twice, a day; each
record was the mean of several consecutive
readings.

EXPERIMENTAL PROCEDURES

The 11 animals subjected to unclipping were
maintained postoperatively on a regime of intake
and observation identical to that detailed under
routine maintenance. The 11 control animals were
allowed neither food nor water after their second
nephrectomy, to minimize the possibility of
interference by volume changes in the anephric
state.

Blood volume and cardiac output were deter-
mined in these 11 animals and five of those under-
going unclipping the day before surgery, the
day after, and again 4 days after. Cardiac output
was determined by method of Lillienfeld and
Kovach (6). A known dose of 131I-labeled sheep
globulin was given as a single injection into the
jugular vein through a standardized polythene
cannula; serial 2-second samples of blood were
taken through an intracarotid indwelling poly-
ethylene cannula. Blood volume was determined
currently with cardiac output by carotid artery
sampling 5, 10, and 15 minutes after the injection
of 131I-globulin.

Blood angiotensin concentration was deter-
mimed in the remaining six animals subjected to
unclipping the day before unclipping, and 1,
4, 8, and 16 days after, by the method of Catt
et al. (7). In all animals undergoing unclipping,
plasma renin concentration was measured by a
modified Skinner assay (8) the day before, the
day after, and again 4 days after operation; renal
REVERSAL OF RENOVASCULAR HYPERTENSION

TABLE 1

<table>
<thead>
<tr>
<th>Sheep</th>
<th>BP 125</th>
<th>CR 75</th>
<th>PR 34</th>
<th>CO 5</th>
<th>BV 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>2</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>3</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>4</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>

FIGURE 1

Average values for mean blood pressure (BP, mm Hg), cardiac rate (CR, beats/min), peripheral resistance (PR, arbitrary units), cardiac output (CO, liters/min) and blood volume (BV, liters) before and after the operative period in hypertensive sheep undergoing nephrectomy (open triangles), hypertensive sheep undergoing unclipping (solid circles) and normotensive sheep undergoing nephrectomy (open squares). Operation at time zero.

Abbreviations used: BP = systolic blood pressure (mm Hg); DBP = diastolic blood pressure (mm Hg); CR = cardiac rate (beats/min); ur Na+ = urinary Na+ excretion (mEq); BV = blood volume (liters); CO = cardiac output (liters/min); PR = peripheral resistance (arbitrary units); [Na+] = [Na] (mEq/liter); PRC = plasma resin concentration (mg/hour/ml); SL = sample lost. Number in parentheses below number of animal is duration of hypertension in weeks.
Results

The data on unclipping reported in this paper are from two separate, sequential series of experiments. In the first series (study A, sheep 1 to 5), measurements of blood volume and cardiac output were made over the unclipping period; in the second series (study B, sheep 6 to 11), measurements of blood angiotensin concentration were made. Although in both series of experiments, blood pressure, cardiac rate, plasma [Na⁺], plasma renin concentration and urinary Na⁺ excretion were measured, the course of measurement of these variables (with the exception of plasma renin concentration) was extended to cover a period of 16 days after unclipping in the second series. For ease of reference, therefore, the results of the two series of unclipping experiments are reported separately.

Unclipping of Hypertensive Animals—Study A.—The effects of unclipping are shown for sheep 1 to 5 in Table 1; average values over the period of observation are shown in Figure 1 (solid circles).

Unclipping of animals with chronic renovascular hypertension was followed by a rapid fall in blood pressure to normal levels. This reduction in blood pressure was not a result of acute diminution of circulatory volume, as measured blood volume remained unchanged over the course of the unclipping. The fall in blood pressure 24 hours after unclipping appears to be largely due to a diminished cardiac output and, to a lesser extent, a fall in peripheral resistance; by the fourth postoperative day, when blood pressure had returned to normal for 48 to 72 hours, the peripheral resistance had fallen, and the cardiac output returned to normal levels. The difference between peripheral resistance after unclipping and that before single nephrectomy (Fig. 1, open squares) is a function of the fortuitously smaller average size of the animals subjected to unclipping—a difference that is similarly reflected in blood volume values.

Cardiac rate rose sharply upon unclipping, thereafter returning gradually toward preoperative levels over the period of observation. No natriuresis was seen; plasma [Na⁺] and

renin concentration was determined in animals subjected to second nephrectomy. Mean pressure was taken as diastolic plus one-third pulse pressure; peripheral resistance, in arbitrary units, as the quotient of mean pressure (mm Hg) divided by cardiac output (liter/min). Right atrial pressure was not measured.
plasma renin concentration remained within their appropriate normal ranges.

Unclipping of Hypertensive Animals—Study B.—The effects of unclipping are shown for sheep 6 to 11 in Table 2; urinary Na⁺ excretion for the 24 hours before operation and each of the subsequent 16 days is shown for each animal in Table 3. Grouped data (study A and B) are shown in Figure 2.

Unclipping was followed by a fall in blood pressure to normal levels in animals with an uneventful operative course (6 to 9, Table 2); the effect in terms of an acute normotensive response was not as clear-cut as in study A. Sheep 10 had a blood pressure outside the normal range even at 16 days after unclipping; whether this laggardly response to unclipping is an indication of a partly perirenal fibrosis

Table 2

<table>
<thead>
<tr>
<th>Findings before and after Unclipping in Study B</th>
<th>Sheep no.</th>
<th>1</th>
<th>56</th>
<th>58</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SBP (mm Hg)</td>
<td>DBP (mm Hg)</td>
<td>CR (g/dl)</td>
<td>[Na⁺] (mEq/l)</td>
<td>BAC (ng/100 ml)</td>
<td>PRC</td>
<td>8L</td>
<td>1.4</td>
<td>0.8</td>
</tr>
<tr>
<td>6</td>
<td>146</td>
<td>140</td>
<td>160</td>
<td>126</td>
<td>118</td>
<td>110</td>
<td>114</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>116</td>
<td>116</td>
<td>104</td>
<td>98</td>
<td>84</td>
<td>74</td>
<td>70</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>SBP (mm Hg)</td>
<td>DBP (mm Hg)</td>
<td>CR (g/dl)</td>
<td>[Na⁺] (mEq/l)</td>
<td>BAC (ng/100 ml)</td>
<td>PRC</td>
<td>8L</td>
<td>1.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>170</td>
<td>160</td>
<td>168</td>
<td>142</td>
<td>142</td>
<td>134</td>
<td>116</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>128</td>
<td>133</td>
<td>126</td>
<td>120</td>
<td>114</td>
<td>106</td>
<td>90</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>SBP (mm Hg)</td>
<td>DBP (mm Hg)</td>
<td>CR (g/dl)</td>
<td>[Na⁺] (mEq/l)</td>
<td>BAC (ng/100 ml)</td>
<td>PRC</td>
<td>8L</td>
<td>1.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>176</td>
<td>166</td>
<td>166</td>
<td>146</td>
<td>126</td>
<td>126</td>
<td>116</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>140</td>
<td>144</td>
<td>134</td>
<td>124</td>
<td>102</td>
<td>98</td>
<td>76</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>SBP (mm Hg)</td>
<td>DBP (mm Hg)</td>
<td>CR (g/dl)</td>
<td>[Na⁺] (mEq/l)</td>
<td>BAC (ng/100 ml)</td>
<td>PRC</td>
<td>8L</td>
<td>1.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>106</td>
<td>140</td>
<td>152</td>
<td>136</td>
<td>116</td>
<td>106</td>
<td>110</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>130</td>
<td>121</td>
<td>124</td>
<td>100</td>
<td>78</td>
<td>70</td>
<td>78</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>SBP (mm Hg)</td>
<td>DBP (mm Hg)</td>
<td>CR (g/dl)</td>
<td>[Na⁺] (mEq/l)</td>
<td>BAC (ng/100 ml)</td>
<td>PRC</td>
<td>8L</td>
<td>1.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>170</td>
<td>166</td>
<td>166</td>
<td>178</td>
<td>172</td>
<td>166</td>
<td>144</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>138</td>
<td>143</td>
<td>146</td>
<td>142</td>
<td>145</td>
<td>122</td>
<td>112</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>SBP (mm Hg)</td>
<td>DBP (mm Hg)</td>
<td>CR (g/dl)</td>
<td>[Na⁺] (mEq/l)</td>
<td>BAC (ng/100 ml)</td>
<td>PRC</td>
<td>8L</td>
<td>1.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>176</td>
<td>186</td>
<td>206</td>
<td>216</td>
<td>216</td>
<td>206*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>140</td>
<td>160</td>
<td>170</td>
<td>166</td>
<td>159</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Abbreviations same as for Table 1. BAC = blood angiotensin concentration (ng/100 ml). Number in parentheses below number of animal represents duration of hypertension in weeks.

* Died
(kidney wrap) type of hypertension, inadvertently produced at the first operation, is impossible to say. Sheep 11 died 48 hours postoperatively with malignant hypertension.

Cardiac rate followed the same pattern as in Study A, an initial acute increase gradually falling to levels before unclipping. Plasma [Na+] and plasma renin concentration (normal range 0.9 ± 0.4 ng/hour/ml, mean ± 1 se, n = 119) remained unaltered after unclipping, with the exception of the plasma renin estimation immediately before death of sheep 11. Blood angiotensin concentration similarly remained in the normal range for Na+-replete sheep (2.2 ± 1.0 ng/100 ml, mean ± 1 se, n = 9) with the exception of the preoperative sample from sheep 10. The finding of an angiotensin level of 8.0 ng/100 ml, and a plasma renin concentration of 180 ng/hour/ml in the sample immediately before death of sheep 10. The finding of an angiotensin level of 8.0 ng/100 ml, and a plasma renin concentration of 180 ng/hour/ml in the sample immediately before death of sheep 11. Because of the disparity between renin and angiotensin measurements in this instance, an assay of circulating renin substrate was made, and the level was well within the normal range. As in study A, no natriuresis was seen after unclipping; again, as in Study A, interpretation of urinary Na+ excretion in any individual animal is difficult because of wide variation in output over any particular 24-hour period.

Nephrectomy of Hypertensive and Normotensive Controls.—The effects of nephrectomy are shown in Table 4 (hypertensive) and Table 5 (normotensive); average values are shown in Figure 1 (open symbols).

TABLE 4

<table>
<thead>
<tr>
<th>Sheep no.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 SBP</td>
<td>188</td>
<td>189</td>
<td>186</td>
<td>188</td>
</tr>
<tr>
<td>2 DBP</td>
<td>188</td>
<td>190</td>
<td>186</td>
<td>188</td>
</tr>
<tr>
<td>CR</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>BV</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>CO</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>PR</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>13 SBP</td>
<td>206</td>
<td>210</td>
<td>196</td>
<td>194</td>
</tr>
<tr>
<td>3 DBP</td>
<td>170</td>
<td>176</td>
<td>166</td>
<td>166</td>
</tr>
<tr>
<td>CR</td>
<td>60</td>
<td>60</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>BV</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>CO</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>PR</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>14 SBP</td>
<td>150</td>
<td>152</td>
<td>142</td>
<td>146</td>
</tr>
<tr>
<td>4 DBP</td>
<td>120</td>
<td>120</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>CR</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>BV</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>CO</td>
<td>5.5</td>
<td>5.5</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>PR</td>
<td>24</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>15* SBP</td>
<td>152</td>
<td>150</td>
<td>138</td>
<td>162</td>
</tr>
<tr>
<td>4 DBP</td>
<td>106</td>
<td>110</td>
<td>106</td>
<td>126</td>
</tr>
<tr>
<td>BV</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>CO</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>PR</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>16* SBP</td>
<td>206</td>
<td>212</td>
<td>184</td>
<td>194</td>
</tr>
<tr>
<td>4 DBP</td>
<td>170</td>
<td>174</td>
<td>160</td>
<td>180</td>
</tr>
<tr>
<td>BV</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>CO</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>PR</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
</tbody>
</table>

Abbreviations: Same as for Table 1. Number in parentheses below the number of animal is duration of hypertension in weeks.

*Cardiac rate was not recorded for sheep.
TABLE 5

<table>
<thead>
<tr>
<th>Sheep</th>
<th>SBP</th>
<th>DBP</th>
<th>CR</th>
<th>BV</th>
<th>CO</th>
<th>PR</th>
<th>FI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>110</td>
<td>76</td>
<td>50</td>
<td>2.6</td>
<td>5.1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>110</td>
<td>76</td>
<td>50</td>
<td>2.6</td>
<td>5.1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>110</td>
<td>76</td>
<td>50</td>
<td>2.6</td>
<td>5.1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>110</td>
<td>76</td>
<td>50</td>
<td>2.6</td>
<td>5.1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>110</td>
<td>76</td>
<td>50</td>
<td>2.6</td>
<td>5.1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>110</td>
<td>76</td>
<td>50</td>
<td>2.6</td>
<td>5.1</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

The purpose of this series of experiments was twofold: (1) to examine changes in conscious, trained sheep in hemodynamic variables when chronic experimental renovascular hypertension is reversed by unclipping; and (2) to study the Na⁺-renin-angiotensin system over the period of fall in blood pressure.

In the series of experiments reported in this paper, blood pressure fell, although less rapidly than it does in rats (1, 2) with similar hypertension subjected to unclipping. The course of the fall in blood pressure appears to bear no obligatory relationship with the duration or severity of the hypertension; nor, within individual animals, with any of the measured variables. Although blood pressure in the rat may have returned to normotensive levels 6 to 12 hours after unclipping, there is strong evidence that return of other cardiovascular variables to normal follows a time course similar to that seen in the sheep (3, 3). For instance Ledingham and Cohen (3) found that 6 hours after unclipping, with normotensive blood pressure levels, cardiac output is markedly reduced below basal and peripheral resistance is at hypertensive levels before unclipping.

Changes in cardiac output and calculated peripheral resistance over the course of unclipping are difficult to interpret. Marked variation between animals in pattern of response was noticeable. Twenty-four hours after unclipping, cardiac output was substan-
tially reduced in sheep 2 to 4, and their peripheral resistance was at the levels measured before unclipping (cf. ref. 3). In sheep 1, cardiac output remained unaltered over the first 24 hours and fell thereafter, in sheep 5, cardiac output rose progressively over the period of observation. On the average, cardiac output was lowered 24 hours after unclipping, and at this time constituted the major component of the fall in blood pressure; on the average, it had returned to the levels before unclipping after 96 hours; at this stage, the peripheral resistance had fallen in all animals and constituted the major component in the fall of blood pressure to normotensive levels.

Blood volume changes were small and fell into no pattern. In four of the five animals, circulating volume was slightly reduced at the 24-hour point and had returned to close to the preoperative level by the fourth day. Within the group, no relationship appears to have existed between the small changes in blood volume and either the changes in cardiac output or the rapidity of blood pressure fall.

If changes in cardiac rate are an index, even an incomplete one, of sympathetic activity, the identity of the blood pressure and cardiac rate curves after unclipping (Fig. 2) is consistent with a relationship between sympathetic tone and the fall in blood pressure. Evidence for a lowered sympathetic tone in the onset phase of experimental renovascular hypertension is the reduced sensitivity at this stage in the hypertension to ganglion blockade (9). Similarly, in the hypertension of acute glomerulonephritis, bilateral procaine block of the carotid sinus nerves in the acute stage of the hypertension is followed by a much greater rise in cardiac rate than in the chronic phase (10). In both dogs (11) and rats (12), cardiac rate is lowered during the period of ascending blood pressure after clipping. That the baroreceptors adjust and buffer blood pressure about the elevated level in chronic hypertension—clinical and experimental renovascular—has been demonstrated by a variety of techniques (13-15).

The acute tachycardia upon unclipping in our experiments—demonstrably not merely a postoperative phenomenon (see nephrectomy data)—would seem consistent with an acute elevation of sympathetic discharge in an attempt to maintain the blood pressure about the elevated hypertensive level. The gradual decline of the acutely elevated cardiac rate similarly would appear consistent with a second adjustment, this time downward, of the baroreceptors (a "re-set"?) concomitant with the lowering of blood pressure and a consequent decline in the level of sympathetic discharge. Ancillary evidence supporting a gradual readjustment in the extrarenal mechanisms of renovascular hypertension is found in the experiments of Floyer (2) in which a second nephrectomy was performed at various times after unclipping. If 38 days elapsed between unclipping and nephrectomy, the time of onset of "renoprival" hypertension was identical to that in animals with previously unmanipulated kidneys. A slightly more rapid onset was seen in a series nephrectomized 8 to 14 days after unclipping, and an even quicker onset in the series with 3 days between operations. All animals responded to unclipping by a prompt decline in blood pressure to normal levels and were normotensive at nephrectomy (2).

Over the period of unclipping, levels of plasma [Na⁺], urinary Na⁺ output, plasma renin concentration, and blood angiotensin concentration remained unaltered in the appropriate normal ranges. Accordingly, it seems probable that the fall in blood pressure is not a consequence of gross changes in the Na⁺-renin-angiotensin system. That changes in plasma [Na⁺] may not truly mirror changes in effector site [Na⁺] is undeniable; that circulating levels of renin or angiotensin may not have an unvarying relationship to tissue or bound levels is also an open question. Even were effector-site activities of Na⁺-angiotensin in fact unchanged, what this would mean cannot be delineated precisely in the light of their known interactions with vascular wall polyanions (16) and catecholamine metabolism (17).

The maintained elevated blood pressure after nephrectomy of a hypertensive animal—
a hypertension quantitatively and qualitatively different to that which sometimes gradually develops in the anephric animal—is evidence that the renin–angiotensin–Na\(^+\) system is not essential to the maintenance of the elevated blood pressure of chronic renovascular experimental hypertension, and that, in this state, an extrarenal mechanism is capable of maintaining the elevated blood pressure. Demonstration of unchanged levels of these variables after unclipping—with the caveat in terms of tissue binding and interaction outlined above—would seem to deny a primary role for renin–angiotensin–Na\(^+\) in the reversal of experimental renovascular hypertension. This is not to deny a possible primary role for a renin–angiotensin–Na\(^+\) interaction in the onset of experimental renovascular hypertension, although the normal development of hypertension in animals with high circulating levels of antiangiotensin antibodies may be evidence against such a role (18, 19).

If changes in the renin–angiotensin–Na\(^+\) system do not have a primary role in the reversal of the hypertension, and there is evidence for active, though increasingly accommodating, opposition to the fall in blood pressure on the part of the sympathetic nervous system, the question of the prime mover in the observed normotensive response remains unanswered. The isolation of renal vasodepressor material—both acidic prostaglandins and neutral lipids—has been the subject of several studies (20, 21); the antihypertensive activity of the normal kidney grafted into hypertensive animals has been found dependent upon the perfusion pressure (22).

There have been several recent reports of release of prostaglandin-like material into renal venous blood, from the experimental or contralateral kidneys or both, after a variety of manipulations of one kidney (23, 24). Precise definition of the roles of such compounds in the specific situation of unclipping—and perhaps, by extrapolation, in the more general area of cardiovascular homeostasis—must await development of adequate methods of measurement.

Circulation Research, Vol. XXVII, August 1970

References
15. AAS, H.: Aortic baroreceptor activity in normal
16. GARBAHAN, F., VILLAMIL, M. F., AND ZADUNA-
sky, J. A.: Sodium exchange and distribution
in the arterial wall. Amer J Physiol 209: 955,
1965.
17. DE CHAMPLAIN, J., KRAKOFF, L., AND AXELROD,
J.: Interrelationships of sodium intake and
norepinephrine storage in the rat. Circ Res 24
18. Eide, I., AND AAN, H.: Renal hypertension in
rabbits immunized with angiotensin. Nature
19. HUTCHINSON, J. S., AND JOHNSTON, C. I.: Studies
in experimental renal hypertension in animals
immunized to angiotensin II. Proc Aust Soc
20. MUTHRAD, E. E., JONES, F., AND STERMAN, J.
A.: Antihypertensive property in renoprival
hypertension of extract from renal medulla. J.
THORN, G. W.: Sustained depressor effect of
renal medullary extract in the normotensive rat.
22. TORAN, L., SCHROEDER, S., AND SEEFELDT, C:
Influence of arterial pressure upon the antihy-
pertensive action of a normal kidney, a
biological servomechanism. Ann Int Med 60:
23. McCoy, J. C, TERRAGNO, N. A., LONCRO, A. J.,
AND NG, K. K. P.: Patterns of release and
identification of renal antihypertensive sub-
stances produced by renal ischemia. J Clin
24. EDWARDS, W. C., J., STRONG, C. C., AND HUNT,
J. C.: A vasodepressor lipid resembling
prostaglandin E2 (PGES) in the renal venous
blood of hypertensive patients. J Lab Clin Med
Circulatory and Humoral Changes in the Reversal of Renovascular Hypertension in Sheep by Unclipping the Renal Artery

Circ Res. 1970;27:249-258
doi: 10.1161/01.RES.27.2.249

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/27/2/249