MOVING?

OR WRITING ABOUT SUBSCRIPTION?
BE SURE TO FILL OUT FORM BELOW.

WE NEED YOUR LABEL

For Fastest Service on Address Change, Missing Copies, etc., Attach Old Mailing Label in First Space Below. Otherwise Please Print Clearly Your Address as We Now Have It.

FOR CHANGE OF ADDRESS, ALLOW SIX WEEKS, FURNISHING BOTH THE OLD AND NEW ADDRESSES. AND, IF POSSIBLE ENCLOSING A LABEL FROM A RECENT ISSUE.

<table>
<thead>
<tr>
<th>OLD ADDRESS (ATTACH OLD LABEL IF AVAILABLE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME ..</td>
</tr>
<tr>
<td>ADDRESS</td>
</tr>
<tr>
<td>CITY STATE</td>
</tr>
<tr>
<td>ZIP CODE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEW ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
</tr>
<tr>
<td>ADDRESS</td>
</tr>
<tr>
<td>CITY STATE</td>
</tr>
<tr>
<td>ZIP CODE</td>
</tr>
</tbody>
</table>

A single switch on the Gilford Model 300-N Spectrophotometer gives you a choice of directly reading absorbance or concentration. In either mode the readout is in large neon digits. You read numbers—not needle position. The Model 300-N eliminates time consuming calculations—and external computers. A unique sample handling system makes it possible to process 100 or more samples per hour, and requires a sample volume of only 0.5 ml. To complement this high productivity the Gilford Model 4006 Data Lister is available to provide a permanent record of absorbance or concentration in up to four digits—and of patient, date or other identifying code in up to eight digits.

A linear absorbance range of 0 to 2 A and a wavelength range of 340 to 700 nm make the Model 300-N adaptable to a variety of uses. Write for your copy of Booklet CR98.

GILFORD INSTRUMENT LABORATORIES, INC.
Oberlin, Ohio 44074 • Phone: Area 216/774-1041
Cardiovascular Research

CONTENTS

Early Changes in Collateral Flow Following Coronary Artery Ligation: The Role of the Sympathetic Nervous System. V. J. Redding and J. Russell Rees

Myocardial Contractility in Areas with Chronic Ischaemia: Studies on Isometric Tension. Farih K. Nakhijavan, Rodolfo Son, and Harry Goldberg

The Relationship of Renal Blood Flow to Cardiac Output in Normal Individuals As Determined By Concomitant Radioisotopic Measurements. Robert E. Botti, Muhammad A. Razzak, William J. MacIntyre, and Walter E. Pitcrand

The Relationship Between Cardiac Massage and Pupil Size in Cardiac Arrest in Dogs. Peter F. Biondino and R. J. McFarland

Electrophysiologic Correlates and Contractile Change in Mammalian and Amphibian Myocardium. Robert E. Edmands, Kalman Greenspan, and Charles Fish

Effects of Cardiac Denervation on Blood Pressure and Heart Rate During Natural Sleep in the Cat. Maurizio Guazzi, Giuseppe Manca, Takao Kumazawa, Giorgio Baccelli, and Alberto Zanchetti

Presystolic Atriogenic Mitral Reflux Developed at Abnormally Long PR Intervals. John C. P. Williams, Russell A. Vandenberg, Ralph E. Sturmer, and Earl H. Wood

The Effect of Hypoxia on the Heart and Pulmonary Arterioles of Mice. W. R. L. James and A. J. Thomas

Effect of the Pericardium on Left Ventricular Volume and Function in Acute Hypervolemia. Stuart H. Bittle, Hector J. Herrmann, John W. Cave, Rick A. Moore, and J. Markes. Cohnshenbad

The Vascularization of the Heart Valves: A Comparative Study. C. M. G. Duran and A. J. Gunning

Defective Oxidative Phosphorylation in Hereditary Myocardiopathy in the Syrian Hamster. Amanda Lognher, Lionel H. Orie, Anders J. Brink, and A. R. Bosman

Cardiac Alkaline and Acid Phosphatase Activity and Potassium Concentration in Dogs with Acute Myocardial Infarction. John F. Manning, Robert R. Feininger, and Paul A. Fein

Intramycocardial Oxygen Tension. Arthur J. Moss

Six issues a year. Annual Subscription $14.00

The Subscription Manager, BRITISH HEART JOURNAL
BIRTCHER ANNOUNCES THE SIMPLEST-TO-USE
BLOOD-PRESSURE MONITORING SYSTEM

It's the new Birtcher 402/4/2 blood-pressure transducer with companion solid state excitation and bridge amplifier electronics. It simplifies blood pressure monitoring many different ways: No adapters or interface devices are needed; you can plug it in to your present recording and/or display equipment just as it comes. You can monitor and record simultaneously, too. Manometer calibration is eliminated; you calibrate just like standardizing an electrocardiograph. You read air-zero by simply turning a stopcock handle. You Heparinize the fluid column directly by injection, through a diaphragm in the transducer housing. The fluid column is minimized, because the transducer is in operation a few centimeters from the insertion site. A light-weight mounting plate that affixes to the patient makes this possible at any anatomical location. The signal cable disconnects quickly at the transducer; the patient can be moved with the catheter and transducer left in place, undisturbed. Catheter-transducer connection is Luer-Lok. A transparent transducer chamber allows immediate visual check for air bubbles. The stopcock and all fittings are standard, off-the-shelf parts; they disassemble completely and quickly for sterilization, and are easily replaced when necessary. Write for the BIRTCHER detailed data sheets and descriptives.

BIRTCHER CORPORATION
MEDICAL DIVISION
Dept. CR-968 • 4371 Valley Blvd., Los Angeles, Calif. 90032 • (213) 222-9101

SPECIFICATIONS

Transducer
Volume: 0.2 cc
Diaphragm diameter: 6.5 mm
Undamped natural resonant frequency: > 5 KHz
Excitation: 11.4 ma (constant current)
Output: 15 mv dc ± 5% @ 300 mm/Hg at operating temp
Pressure range: —100 to +300 mm/Hg
Overpressure: 10x full range
Linearity & hysteresis:
± 1⁄2% full range output
Thermal stability:
± 2 mm/Hg/°C maximum
@ 15 mv output
Price: $375.00

Bridge Amplifier
Price: $200.00
CONTENTS

Incidence of Arrhythmias in the Dog Following Transthoracic Ventricular Defibrillation with Unidirectional Rectangular Stimuli. Harry Stoeckle, Stephen H. Nellis, and John C. Schuder 343

Increased Monoamine Oxidase Activity during the Development of Cardiac Hypertrophy in the Rat. Jacques de Champlain, Lawrence R. Krakoff, and Julius Axelrod 361

Relationship between Intrarenal Hydrostatic Pressure and Hemodynamically Induced Changes in Sodium Excretion. Joseph A. Martino and Laurence E. Earley 371

Evidence for Specialized Fibers in the Canine Right Atrium. Perry M. Hogan and Larry D. Davis 387

A Pressor Agent in Human Stable Plasma Protein Solutions. Robert Van Dongen and Richard D. Gordon 397

Pulmonary Vasoconstriction Due to Nonocclusive Distention of Large Pulmonary Arteries in the Dog. Albert L. Hyman 401

Observations on the Regulation of Arterial Blood Pressure in Unanesthetized Dogs. John J. Lamberti, Jr., John Urquhart, and Ralph D. Siewers 415

Early Changes in Energy Metabolism in the Myocardium Following Acute Coronary Artery Occlusion in Anesthetized Dogs. Wolfgang Braasch, Sigmundur Gudbjarnason, Pritpal S. Puri, Kurt G. Ravens, and Richard J. Bing 429

Reevaluation of Oxidative Phosphorylation in Cardiac Mitochondria from Normal Animals and Animals in Heart Failure. George E. Lindenmayer, Louis A. Sordahl, and Arnold Schwartz 439

Biochemical Correlates of Cardiac Hypertrophy: I. Experimental Model; Changes in Heart Weight, RNA Content, and Nuclear RNA Polymerase Activity. K. G. Nair, A. F. Cutilletta, Radovan Zak, Tadashi Koide, and Murray Rabinowitz 451

Relationship between Sodium Intake and Norepinephrine Storage during the Development of Experimental Hypertension. Jacques de Champlain, Lawrence R. Krakoff, and Julius Axelrod 479

Books Received 492

Classic Pages 360, 370, 414, 478

News from the American Heart Association 493

Author Index 499