Pulmonary Vasoconstriction Due to Nonocclusive Distention of Large Pulmonary Arteries in the Dog

By Albert L. Hyman, M.D.

ABSTRACT

The pulmonary vascular changes caused by distention of the pulmonary artery with the lumen fixed were compared to those produced by occlusive arterial distention. In 13 methane-anesthetized dogs, nonocclusive distention was produced by distention of a corrugated rubber cuff around a hollow metal cylinder affixed to the end of a cardiac catheter. In 10 other dogs, occlusive distention was produced by inflation of a standard balloon catheter. Pressures were measured in large and small pulmonary veins and in the left and right atria with transseptal techniques, and in the pulmonary and femoral arteries. Simultaneously, pulmonary blood volume and flow were measured with dye-dilution techniques. Pulmonary arteriovenous shunting was studied with the hydrogen-electrode technique. Nonocclusive distention of a pulmonary artery greatly increased pulmonary arterial and venous pressure and decreased pulmonary blood volume without changing left atrial pressure or cardiac output. Pulmonary vascular resistances increased, and pulmonary arteriovenous shunting was detected. Occlusive distention of one pulmonary artery caused smaller increases in pressure in the pulmonary artery and vein of the unobstructed lung. Vascular resistances in the obstructed lung decreased, while blood volume and flow in that lung doubled. Pulmonary arterial distention leads to active constriction of the pulmonary arteries and veins, but these responses may be obscured by the passive responses to increasing blood flow and volume.

ADDITIONAL KEY WORDS

pulmonary baroreceptors pulmonary veins nonocclusive cuffed catheter arteriovenous shunting pulmonary blood volume pulmonary phlebography

The distribution of stretch receptors in the pulmonary arteries and their afferent nerve fibers have been extensively studied (1-3). Although the systemic vascular response to stimulation of these receptors has been the subject of several reports (4-8), relatively little attention has been devoted to the pulmonary vascular response. Distention of one pulmonary artery by a balloon that also completely occludes its lumen causes a 30 to 33% increase in pulmonary arterial pressure proximal to the site of occlusion in open-chest dogs (9). The cause of this pulmonary hypertension is not well understood (10). A pulmopulmonary reflex has been suggested as a cause, since this pressor response can be blocked by infiltration of the pulmonary arterial wall with Xylocaine but cannot be blocked with ganglionic blocking agents, atropine, reserpine, or bilateral cervical vagotomy (10). Distention of one pulmonary artery by a balloon without occlusion of the arterial lumen has also been shown to cause pulmonary arterial hypertension (7) in open-chest dogs. However, no measurements of other intrathoracic vascular pressures, pulmonary blood flow, or volume were obtained in that study. The pulmonary hemodynamic response to stretching the pulmonary arterial wall while keeping the lumen fixed in the intact dog has not been reported.
With recent improvements in transseptal catheterization, pressures in both atria, the small and large pulmonary veins, and the pulmonary artery can be measured, and the pulmonary blood volume and flow can be estimated simultaneously in the intact dog, thereby avoiding the circulatory and respiratory changes that accompany thoracotomy (11, 12). This report describes the changes in pulmonary hemodynamics, studied by transseptal catheterization, after acute distention of a pulmonary artery with a nonocclusive cuffed cardiac catheter and compares these changes to those produced in a second group of dogs by both distention and occlusion of a pulmonary artery.

Methods

Thirty-five mongrel dogs (17 to 24 kg) were lightly anesthetized with urethane, 1.0 g/kg, and were strapped in the supine position to a fluoroscopic table. They spontaneously breathed either room air, 30% oxygen, or 50% oxygen through an endotracheal tube. A Kifa\(^1\) catheter, 2.85 mm o.d., was passed from a jugular vein, through the atrial septum, and into a large pulmonary vein from the left lower lobe. A semi-rigid polyvinyl catheter\(^2\), 0.9 mm o.d., was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13). A second Kifa catheter, with a rounded distal end and with side openings near the distal end was passed through the Kifa catheter and wedged into a small pulmonary vein in the left lower lobe of the lung. The polyvinyl catheter was then withdrawn 2 to 3 cm from the wedged position until an abrupt fall in pressure was observed, and fixed in position with an occlusive adapter. Special precautions were taken to ensure that measurements with the polyvinyl catheter were made in veins 1.5 to 2.5 mm in diameter without wedging. Descriptions of this technique have been previously reported (11, 13).

Side view of the tip of a catheter (A) with a hollow metal cylinder attached to the side opening. The outer surface of the cylinder is covered by the rubber cuff. B and C show the rubber cuff in the collapsed and distended states, respectively.

\(^1\)Ortner-Ledah, No. 17807. Shick X-Ray, Chicago, III.

ARTERIAL STRETCH RECEPTORS

In 13 dogs, the pulmonary vascular response to distention of the pulmonary arterial wall at a constant lumen was studied, using a nonocclusive double lumen 8.5 F cardiac catheter with a hol-United States Catheter & Instrument Co., Glens Falls, N. Y.

403

FIGURE 2
Distended nonocclusive cuff catheter (A), and distended occlusive balloon catheter (B) in the left pulmonary artery. Left anterior oblique position.

FIGURE 3
Bronchogram of left lung illustrating the absence of airway obstruction during nonocclusive cuff distention of the left pulmonary artery (A) and after collapse of the cuff (B) (left anterior oblique position). Similar bronchographic studies, obtained with main and right pulmonary arterial distention, showed no airway obstruction.
low metal cylinder attached to the side opening (4 mm from the tip) of the balloon (Fig. 1). The inside diameter of the cylinder was 12.0 mm, and its length was 9.0 mm. The outer surface of the metal cylinder was covered by corrugated rubber which, when distended in situ, stretched evenly to an outside diameter of 23 to 24 mm and to a length of 14 to 15 mm. The tip of the balloon was used for measuring pressures. This catheter was introduced into the pulmonary artery through the inferior vena cava, which had been exposed by extraperitoneal dissection. After all bleeding points had been ligated, the dogs were given heparin. In 4 dogs, the catheter could not be passed beyond the main pulmonary artery, and in the other 6, it was passed into the first part of the right pulmonary artery, just beyond the bifurcation of the main pulmonary artery, and in the other 6, into the first part of the left pulmonary artery, just beyond the bifurcation of the left pulmonary artery, and in the other 8, into the first part of the left pulmonary artery, just beyond the bifurcation of the main pulmonary artery, but in 3, it was passed to the pulmonary artery just beyond the bifurcation of the left pulmonary artery, just beyond the bifurcation of the main pulmonary artery, and in the other 6, into the first part of the left pulmonary artery, just beyond the bifurcation of the left pulmonary artery, and in the other 8, into the first part of the left pulmonary artery, just beyond the bifurcation of the main pulmonary artery, and in the other 6, into the first part of the left pulmonary artery, just beyond the bifurcation of the left pulmonary artery, and in the other 8, into the first part of the left pulmonary artery, just beyond the bifurcation of the main pulmonary artery, and in the other 6, into the first part of the left pulmonary artery, just beyond the bifurcation of the main pulmonary artery, and in the other 8, into the first part of the left pulmonary artery, just beyond the bifurcation of the main pulmonary artery.

In both groups, after the control vascular and pleural pressures, pulmonary blood flow and volume were measured, the pulmonary artery was acutely distended during fluoroscopic observation either by distention of the corrugated rubber cuff of the cylinder with 3 ml, or by injecting 5 ml of sodium diatrizoate into the balloon. Care was exercised at fluoroscopy to ensure that the cuff did not distend eccentrically, which could have caused obstruction to flow. Measurements were made at intervals of 1, 5, and 10 minutes after distention. The balloon and rubber cuff were then acutely collapsed, and further observations were made 1 and 10 minutes later. Oxygen saturation, pH, Po2, and Pco2, of blood samples from the left atrium were measured before, during, and after distention of the cuff and the balloon. Since mechanical obstruction of neighboring airways would affect the pressure gradient of the blood in pulmonary veins in that region, blood samples from the left pulmonary vein were similarly examined in nonocclusive distentions of the right and main pulmonary arteries, and in four of the six distentions of the left pulmonary artery.

After completion of each experiment with nonocclusive arterial distention, the dogs were given specific pharmacologic blocking agents, and the distention was repeated. Each dog served as its own control. Two dogs were given methysergide, 50 mg/kg, 1 hour before distention, this dose prevented the systemic arterial pressure response of serotonin, 4.0 μg/kg iv, when tested immediately before distention. Two were given dibenzeline, 2.0 mg/kg, 2 hours before distention, and when tested immediately before distention, norepinephrine, 2 μg/kg iv, caused an increase in systemic arterial pressure of only 3 to 4 mm Hg, i.e. 94% blockade. Two were given reserpine, 0.75 mg/kg ip, and when tested immediately before distention, bilateral occlusion of the carotid arteries failed to produce a systemic hypertensive response. Two, which were given hexamethonium, 250 mg iv, 20 minutes before distention, and when tested immediately before cuff distention, the systemic arterial depressor effect of 1 μg/kg of bradykinin was only 3 mm Hg, i.e. 96% blockade. Two were given diphenhydramine hydrochloride, 5 mg/kg iv, 20 minutes before distention, and when tested immediately before distention, the systemic arterial depressor effect of histamine, 3.5 μg/kg.

4United States Catheter & Instrument Co., Glens Falls, N. Y.
was only 4 mm Hg, i.e. 95% blockade. Two were given atropine, 2.0 mg/kg iv, after bilateral cervical vagotomy, and when tested immediately before cuff distention, no systemic arterial response to 20 μg/kg of acetylcholine was observed.

In three other dogs, pulmonary arteriovenous shunting was investigated by the hydrogen-electrode technique (16, 17) during nonocclusive arterial distention.

In five other dogs, the response of the pulmonary veins to nonocclusive distention of the pulmonary artery was also studied by selective cineangiography using a technique similar to that described by Parker and associates (18). A Kifa catheter without side holes was passed transseptally into the vein from the left lower lobe, 2 to 3 cm dorsal to the left atrial border. Control angiograms (35-mm film at 48 frames/sec) were obtained in the left anterior oblique position by injecting 8.0 ml of 75% sodium diatrizoate at an injector pressure of 30 lb/inch² with an Amplatz injector.7 Injections were always begun at the end of expiration. After satisfactory control angiograms were obtained, the nonocclusive rubber cuff was distended, and venous angiography was repeated using exactly the same technique and without changing the position of the Kifa catheter. In one dog, the main pulmonary artery was distended; in one, the right pulmonary artery just beyond the bifurcation was distended; and in three, the left pulmonary artery just beyond the bifurcation was distended. Additional venous angiograms were obtained 10 minutes after the cuff had been deflated. From each study, the angiograms obtained during the control period, during period of distention, and after collapse of the cuff were studied by projection. Frames which had been taken 0.5, 0.85, and 1.2 seconds after the beginning of the injection in each of the periods were printed and compared.

Additional studies were done in two other dogs to determine the effect on pulmonary arterial pressure of nonocclusive cuff distention of smaller peripheral branches of the pulmonary arteries. Before distention the outside diameter of the cuff was 5.3 mm, and during distention in situ it was 7.4 mm.

Results

Changes in mean pressures produced by acute nonocclusive distention of the main pulmonary artery or the right or left pulmonary artery just beyond the bifurcation in 13 dogs are shown in Figure 4 and Table 1.

Mean pressures in the pulmonary artery and in the small pulmonary vein increased within 2 to 3 seconds of cuff distention and fell within 3 to 4 seconds of collapse of the cuff (Fig. 5). Since there was no difference in the magnitude of rise in these pressures whether the main pulmonary artery or the right or left pulmonary artery just beyond the bifurcation was distended, the data have been pooled. Pressure changes in the left atrium, in the large pulmonary vein adjacent to the left atrium, and in the plural space were small and inconsistent, and the changes in their means were not significant (P > 0.5). Within 1 minute of distention, the Po2 of left atrial blood decreased (Fig. 6) and returned toward control values only after collapse of the cuff. Similar decreases in Po2 of pulmonary venous blood regularly occurred. Respiratory rate, minute respiratory volume, blood pH, and PCO2 did not change significantly (P > 0.5).

![Figure 4](http://circres.ahajournals.org/figure/4.jpg)

Average changes in mean pressures in 13 intact dogs with nonocclusive distention of either the main pulmonary artery, or the right or left branch just beyond the bifurcation.
<table>
<thead>
<tr>
<th></th>
<th>Mean pressure (mm Hg)</th>
<th>Vascular resistance (mm Hg [ml/min/kg])</th>
<th>Average distending pressure (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pulm. artery</td>
<td>Left atrium</td>
<td>Total pulm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small pulm. vein</td>
<td>Venous segment</td>
</tr>
<tr>
<td></td>
<td>Right atrium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fetal artery</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 minute</td>
<td>19.7 ± 1.14</td>
<td>186 ± 5.02</td>
<td>10.8 ± 0.62</td>
</tr>
<tr>
<td></td>
<td>1.14 ± 0.32</td>
<td>5.02 ± 0.62</td>
<td>15.1 ± 0.62</td>
</tr>
<tr>
<td>Distention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32.4* ± 1.7</td>
<td>127 ± 5.31</td>
<td>6.8* ± 0.56</td>
</tr>
<tr>
<td>1 minute</td>
<td>1.69 ± 0.32</td>
<td>5.31 ± 0.56</td>
<td>14.4 ± 0.56</td>
</tr>
<tr>
<td></td>
<td>31.1* ± 2.0</td>
<td>127 ± 5.31</td>
<td>6.4* ± 0.56</td>
</tr>
<tr>
<td>10 minutes</td>
<td>1.73 ± 0.47</td>
<td>5.23 ± 0.41</td>
<td>14.4 ± 0.41</td>
</tr>
<tr>
<td></td>
<td>30.3* ± 2.0</td>
<td>125 ± 6.2</td>
<td>6.2* ± 0.36</td>
</tr>
<tr>
<td></td>
<td>1.9 ± 0.45</td>
<td>4.31 ± 0.47</td>
<td>12.8 ± 0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deflation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19.8 ± 1.7</td>
<td>124 ± 6.16</td>
<td>8.6* ± 0.56</td>
</tr>
<tr>
<td>1 minute</td>
<td>0.07 ± 0.40</td>
<td>4.96 ± 0.05</td>
<td>11.8 ± 0.49</td>
</tr>
<tr>
<td></td>
<td>18.5 ± 1.7</td>
<td>124 ± 6.16</td>
<td>9.5 ± 0.56</td>
</tr>
<tr>
<td>40 minutes</td>
<td>0.79 ± 0.40</td>
<td>5.55 ± 13.3</td>
<td>1.31 ± 21.0</td>
</tr>
</tbody>
</table>

Values given are means ± se. *P < 0.01.
Similar phenomena were observed after non-
occlusive distention of the pulmonary artery in
dogs that had received the blocking agents.

In the two other dogs in which smaller pul-
omary arteries were distended, the pulmo-
nary arterial pressure rose only 1 to 3 mm
Hg. Pulmonary venous pressure and left atrial
blood Po were unchanged. Data obtained in
those two dogs were not included in the
tables and figures.

Changes in mean pressure after distention
of the occlusive balloon are shown in Figure
7 and Table 2. Although the mean pulmonary
arterial pressure increased abruptly with dis-
tention of the balloon and fell abruptly with
its collapse, the increase was significantly less
\(P < 0.01 \) than the increase caused by non-
occlusive distention. The pressure in the
small pulmonary vein increased slightly as
the balloon was distended, but returned to
control values within 5 minutes. Complete,
or almost complete, occlusion of the left pul-
omary artery was suggested by the fall in
arterial pressure beyond the site of distention
to the level of left atrial pressure and by the
34% increase in mean arterial pressure proxim-
al to the obstruction \((9) \). The Po of left
atrial blood was not significantly \(P > 0.5 \)
changed by occlusive distention.

Cardiac output was not significantly \((P >
0.5) \) changed by either type of distention
(Tables 1 and 2). The circulating pulmonary
blood volume significantly \((P < 0.01) \) de-
creased with nonocclusive distention, but was
unchanged with occlusive balloon distention
(Tables 1 and 2).

The total pulmonary vascular resistance and
the resistance to blood flow offered by the
segment of pulmonary vein in which it was
measured rose significantly \((P < 0.01) \)
with nonocclusive distention (Table 1). Cal-
culations of resistances to blood flow in the
right lung in the experiments with occlusive
distention of the left pulmonary artery were
based on the assumption that during the con-
trol period the blood flow and resistances to
blood flow in one lung were about equal to
those of the other lung. Calculations based on
this assumption indicate that the total pul-
omary vascular resistance of the right lung
and the resistance offered by the segment of
pulmonary vein studied in that lung sig-
nificantly \((P < 0.01) \) decreased when the left
pulmonary artery was distended and occlud-
ed (Table 2). The average pulmonary vas-
cular distending pressure significantly \((P <
0.05) \) increased after both nonocclusive and
TABLE 2

Changes in Pulmonary Hemodynamic Data after Occlusive Distention of Left Pulmonary Artery in Ten Dogs

Values given are means ± SE.

- *P < 0.01
- tP < 0.05

<table>
<thead>
<tr>
<th></th>
<th>Mean pressure (mm Hg)</th>
<th>Cardiac output (ml/min/kg)</th>
<th>Pulmonary blood volume (ng/kg)</th>
<th>Total right pulmonary resistance (cm Hg/1/m/kg)</th>
<th>Vascular resistance (cm Hg/1/m/kg)</th>
<th>Average distending pressure (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left artery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>20.9</td>
<td>2.9</td>
<td>9.2</td>
<td>1.5</td>
<td>124</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>1.14</td>
<td>0.60</td>
<td>0.5</td>
<td>0.46</td>
<td>6.10</td>
<td>13.6</td>
</tr>
<tr>
<td>Distention</td>
<td>27.7*</td>
<td>2.7</td>
<td>11.4*</td>
<td>1.6</td>
<td>127</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>1.17</td>
<td>0.50</td>
<td>0.59</td>
<td>0.34</td>
<td>8.20</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td>26.8*</td>
<td>2.7</td>
<td>10.2</td>
<td>1.5</td>
<td>126</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>1.17</td>
<td>0.53</td>
<td>0.52</td>
<td>0.34</td>
<td>7.50</td>
<td>20.8</td>
</tr>
<tr>
<td></td>
<td>25.8*</td>
<td>2.8</td>
<td>10.5</td>
<td>1.6</td>
<td>128</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>0.89</td>
<td>0.50</td>
<td>0.52</td>
<td>0.32</td>
<td>7.91</td>
<td>12.8</td>
</tr>
<tr>
<td>Deflation</td>
<td>21.0</td>
<td>2.9</td>
<td>10.5</td>
<td>1.6</td>
<td>124</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>0.77</td>
<td>0.51</td>
<td>0.61</td>
<td>0.29</td>
<td>5.91</td>
<td>20.3</td>
</tr>
<tr>
<td></td>
<td>20.6</td>
<td>2.4</td>
<td>9.2</td>
<td>1.4</td>
<td>122</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>0.99</td>
<td>0.51</td>
<td>0.71</td>
<td>0.27</td>
<td>9.30</td>
<td>22.5</td>
</tr>
</tbody>
</table>

Values are means ± SE.

*P < 0.01. **P < 0.005.
occlusive distention of the pulmonary arterial wall (Tables 1 and 2).

During the control period, no hydrogen signal was detected in the blood of the left pulmonary vein or the left atrium after injection of hydrogen-saturated saline into the right ventricle. After nonocclusive distention of the pulmonary arterial wall, a small, but definite, signal could repeatedly be detected in the blood at these sites. No hydrogen signal was detected during occlusive distention.

Selective pulmonary venous angiograms obtained during nonocclusive distention of the pulmonary artery revealed abrupt tapering and narrowing of medium-size veins, and a marked decrease in retrograde filling of the peripheral veins and capillaries (Fig. 8). In addition, the large pulmonary veins were moderately reduced in size. Angiograms taken after constriction of the cuff were similar to the control angiograms.

Discussion

In the intact urethane-anesthetized dog, segmental distention of the pulmonary arterial wall while keeping the lumen fixed caused a large increase in pulmonary arterial pressures. These data confirm previous observations in dogs with thoracotomy (7), but also demonstrate a smaller, but highly significant, increase in pressure in the small pulmonary veins. These data additionally indicate that since cardiac output and left atrial pressure were not significantly affected, and since average
pulmonary vascular distending pressure increased while pulmonary blood volume decreased, this pressor response to distention of the arterial wall may be attributed to pulmonary vasoconstriction. The site of this vasoconstriction within the pulmonary vessels is not evident from these data. The increase in pressure difference between the small pulmonary vein and the left atrium, however, suggests constriction of that segment of pulmonary vein. The increase in pressure difference between the pulmonary artery and the small pulmonary vein suggests constriction of vessels upstream to the small pulmonary veins as well, presumably in the small pulmonary arteries. Pulmonary venular constriction is unlikely since these vessels contain no recognizable smooth muscle.

The mechanism producing the pressor response to nonocclusive distention of the pulmonary artery is not evident from these data. Obstruction of pulmonary veins in the vicinity of the distended cuff is not likely to have caused this response since compression of these vessels during distention was not seen at thoracotomy, and since distention of the right pulmonary artery caused the same pressor response in the small pulmonary veins of the left lower lobe as distention of the left pulmonary artery. In addition, pulmonary venous angiograms revealed a decrease in size of these vessels in the left lower lobe during distention of either the right or left pulmonary artery. Mechanical obstruction of these veins by the distended cuff was not seen on these angiograms. The possibility that bronchial obstruction in the vicinity of the distended cuff caused the pressor response is also
unlikely, since no obstruction was found on bronchograms during distention, or after collapse of the cuff, or at inspection of the mediastinum during thoracotomy. Obstructive occlusion of the arterial lumen by eccentric distention of the cuff is improbable since the systolic pressures proximal and distal to the distending site were identical, and angio- graphic studies of the pulmonary arterial vessels revealed no obstruction. In addition, this pressor response in the pulmonary artery distal to the distended cuff and in the small veins of the left lower lobe occurred during distentions of the right and the left pulmonary artery. Furthermore, the pressor response in the vessels of the unobstructed lung to occlusive distention of the left pulmonary artery were unlike those which occurred during non-occlusive distention. During occlusive distention, the pressor response in the small pulmonary vein of the unobstructed lung was small and transient, and the pulmonary arterial pressor response was less than that during nonocclusive distention.

In similar experiments in dogs with thoracotomy, previous investigators have shown that this pressor response is blocked by infiltration of Xylocaine into the wall of the pulmonary artery (10) and by removal of the adventitia of the artery at the site of distention (7). In those experiments (10), the response was not blocked by hexamethonium, reserpine, bilateral cervical vagotomy, or by denudation of the hilum opposite to the site of distention (7). These investigators have suggested that the pressor response is mediated by pulmopulmonary axon reflexes originating in the pulmonary arteries, and that the afferent limb is contained in the adventitia of the artery. The present experiments in intact dogs confirm the previous observation that this pressor response is not blocked by hexamethonium, reserpine, or bilateral cervical vagotomy, and additionally suggest that serotonin, bradykinin, and histamine are not primarily involved. However, further study of the mechanism producing this pressor response is needed, since blocking agents are more effective against chemical agents given intravenously than against those released locally.

Other studies in dogs with thoracotomy have shown systemic pressor or depressor responses to deformation of baroreceptors in the bifurcation of the pulmonary artery and adjacent areas of the right and left pulmonary arteries (1, 4-7). Few baroreceptors have been found in the main pulmonary artery of the dog, and none have been found in peripheral pulmonary arteries (1); a significant number, however, exist in the main pulmonary artery of the cat (19). Those systemic responses were blocked by bilateral cervical vagotomy. In these experiments on intact dogs, no significant changes in systemic arterial pressure was found with nonocclusive distention of either the main pulmonary artery or its major branches. However, nonocclusive distention in these three sites caused the same pulmonary pressor response, and this response was not blocked by bilateral cervical vagotomy. In addition, a smaller but consistent pulmonary pressor response was observed with nonocclusive distention of the left pulmonary artery. Occlusive distention caused the same pulmonary pressor response, and this response was not blocked by bilateral cervical vagotomy. In addition, a smaller but consistent pulmonary pressor response was observed with nonocclusive distention of peripheral pulmonary arteries. The reasons for this difference are not clear. However, these experiments, in addition to previous studies (10), suggest that mediation of the systemic and pulmonary vascular responses is different.

The response of the vessels in the right lung to balloon distention of the left pulmonary artery with occlusion of its lumen was unlike the response to nonocclusive distention of the left pulmonary artery. Occlusive distention caused a smaller increase in both pulmonary arterial and pulmonary venous pressures; also, the increase in pressure in the small pulmonary veins was transient. This arterial pressor response in the dogs with occlusive distention is largely passive, as a result of the great increase in blood flow and blood volume in the right lung (9, 20). The significant decrease in pulmonary vascular resistance and the modest increase in average distending pressure after a doubling of blood volume indicate that these vessels had become dilated. These data suggest that, with
occlusive distention of the left pulmonary arterial wall, the increased blood flow and volume in the vessels of the right lung largely overcame the tendency toward vasoconstriction and the observed response was vasodilation. The response of the pulmonary vessels to occlusive distention resembles that of pulmonary vessels to rapid blood transfusion more than it does the response to nonocclusive arterial distention (14).

Since changes in resistance to flow reflect only the changes in caliber of resistance vessels, and since pressure-volume determinations could not be obtained after blocking thispressor response, these data do not completely exclude some increase in vascular tone in the unobstructed lung during occlusive distention. Additionally, the assessment of pulmonary vascular tone in the intact dog is complicated by the inability of available techniques to furnish data regarding the segmental distribution of this increased volume in intact dogs.

Although the cause of the fall in P02 of left atrial blood within 1 minute of nonocclusive distention of the pulmonary arterial wall is not established, the data suggest that this response is due to abrupt opening of pulmonary arteriovenous communications. The possibility that this response was caused by venous admixture in small atelectatic areas in the vicinity of the distended cuff is less likely. Atelectasis in the vicinity of the distended cuff in the right pulmonary artery could not have caused the abrupt decrease in P02 of blood in the pulmonary vein from the left lower lobe, or the appearance of the hydrogen signal in the blood of that vessel after right ventricular injection of hydrogen-saturated saline. Similarly, airway obstruction in the vicinity of the cuff-distended left pulmonary artery should have consistently caused a greater fall in P02 of blood in the left pulmonary vein than that of blood in the left atrium. In addition, inspection of the mediastinum at thoracotomy in dogs with positive-pressure ventilation indicated that the distended cuff in the left pulmonary artery was not in the vicinity of the left lower lobe. Moreover, similar occlusive distentions of the left pulmonary artery in these experiments, and in previous studies (21), did not cause a fall in P02 of left atrial blood.

Conclusions

In the intact dog, distention of a segment of the pulmonary arterial wall, without changing the diameter of its functioning internal lumen leads to an increase in the pressure in the pulmonary arteries and veins. The data indicate that both arteries and veins constrict. Opening of preterminal arteriovenous communications during distention is suggested by detection of shunted hydrogen and fall in P02 of left atrial blood.

Distention and occlusion of the pulmonary artery to one lung causes a significantly smaller increase in pulmonary arterial pressure, with a small transient rise in pulmonary venous pressure in the other lung. The increase in flow and blood volume and the fall in resistance to flow offered by vessels in the other lung indicate that these vessels have been passively dilated.

References

pulmonary artery to the systemic circulation.

7. Oshiro, J., and Russek, M.: Reflex changes of
the pulmonary and systemic pressures elicited
by stimulation of baroreceptors in the pul-

8. Daly, I. G., Ludaby, C., Todd, A., and
Venney, E. J.: Sensory receptors in the pul-

9. Fishman, A. P.: Dynamics of the pulmonary
circulation. In Handbook of Physiology, sect. 2,
vol. 2. Circulation edited by W. F. Hamilton
and P. Dow. Washington, D. C, American

10. Aramendia, P., Taquini, C. M., Fourcade,
A. C., and Taquini, A. C.: Reflex vasomotor
activity during unilateral occlusion of the pul-

11. Hyman, A. L., Bouché, C. E., DePasquale,
N. P., and Tyler, J. M.: Spontaneous vari-
tions in pulmonary venous pressure in intact
1963.

pulmonary vasomotor function. Am. Heart J.

vascular response to vasoactive drugs. Am. J.

14. DePasquale, N. P., Hyman, A. L., and Bouché,
C. E.: Response of pulmonary vein to rapid
122, 1965.

16. Clark, L. C., Bergeron, L. M., Lyons, C.,
Bradley, M. N., and McIntosh, K. T.: De-
tection of right to left shunts with an arterial
potentiometric electrode. Circulation 22: 949,
1960.

17. Hyman, A. L., Hyman, E. S., Quirao, A. C,
and Ganty, J. R.: Hydrogen-platinum elec-
trode system in detection of intravascular

18. Parker, B. M., Steiger, B. W., and Frieden-
berg, M. J.: Serotonin-induced pulmonary
venous spasm demonstrated by selective pul-
monary phlebography. Am. Heart J. 69: 521,
1965.

19. Verity, M. A., and Bevan, J. A.: Distribution of nerve endings in the pulmonary artery of the

20. Fowler, N. O., and Holmberg, J. C.: Pulmonary
arterial pressure at high pulmonary flow. J.

21. Swenson, E. W., and Christensen, J. D.: Cardio-
respiratory effects of unilateral pulmonary ar-
tery occlusion as contrasted with pulmonary
Pulmonary Vasoconstriction Due to Nonocclusive Distention of Large Pulmonary Arteries in the Dog
ALBERT L. HYMAN

Circ Res. 1968;23:401-413
doi: 10.1161/01.RES.23.3.401
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1968 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/