Reversibility of Atherosclerosis in Cholesterol-Fed Rabbits

By Walter M. Bortz, M.D.

ABSTRACT

Previous studies have attempted to demonstrate the reversibility of rabbit atherosclerosis after discontinuance of cholesterol feeding or by other measures. These attempts have been largely unsuccessful. In all the studies, atherosclerosis was induced by cholesterol feeding for several months. At the end of these prolonged periods, the animals had advanced aortic lesions. The present study sought to determine whether a shorter exposure to an elevated blood cholesterol might produce lesions that were reversible.

Rabbits were fed cholesterol until their serum levels reached at least 1000 mg/100 ml; cholesterol feeding was then discontinued. Serum cholesterol values rapidly returned to normal levels. Some were killed at the time of discontinuance of the cholesterol diet and the others at periods up to 300 days thereafter. The aortas were removed and analyzed chemically for cholesterol content. The results demonstrate that cholesterol feeding of short duration produces a significant lesion whose cholesterol content may decrease markedly some weeks after the serum cholesterol has returned to normal levels.

ADDITIONAL KEY WORDS cholesterol feeding aortic cholesterol
Figure 1

Cholesterol content of aorta of rabbits that were fed cholesterol. The mean value of aortas of three rabbits fed a control diet was 0.006 mg cholesterol/mg protein.

From the experiences of these two studies, therefore, a third study was designed to produce early but definite aortic lesions that might be reversible.

In the third study, each of 21 rabbits was fed the cholesterol diet until its serum cholesterol (measured weekly) reached 1000 mg/100 ml or higher; this required from 2 to 3 weeks. The added cholesterol was then withdrawn from the diet, and the animals were killed serially during the next 300 days (Fig. 1). Nine other rabbits were fed a normal diet; one additional rabbit was fed a 1% cholesterol diet continuously. The cholesterol content of the aorta was measured and related to the nitrogen content of the aorta. In two experimental rabbits and the one on continuous cholesterol diet, the aortas were divided longitudinally; one half was examined for cholesterol content and the other half examined histologically with a number of different stains.

Results and Discussion

Table 1 represents a composite response of the serum cholesterol to the different dietary changes. The 12 control rabbits (three in study 1 and nine in study 3) never developed any evidence of hypercholesteremia. The eight rabbits with continued cholesterol feeding (seven in study 1 and one in study 3) had sustained hypercholesteremia. The two animals were followed for longer than 300 days, and their serum cholesterol was consistently over 1500 mg/100 ml. In contrast, in the 54 other animals (19 in study 1, 14 in study 2, and 21 in study 3), upon discontinuance of the cholesterol diet, the plasma cholesterol fell quickly and by 6 weeks had reached the original control values. This observation is dissimilar to that of Friedman and Byers who found that serum cholesterol did not fall to basal levels until 5 months after stopping the cholesterol diet (7). They attributed the persistent elevation to mobilization of excess cholesterol from the tissues into the blood (8). However, they were fed a diet containing 2% cholesterol for 3 months.

In our first two studies, the cholesterol diet was fed for arbitrarily chosen periods before discontinuance. As a result, the blood cholesterol values in some animals did not reach 1000 mg/100 ml before the diet was discontinued; atherosclerotic lesions were not present in cell aortas, possibly a result of these various cholesterol values. But in the third study in which the cholesterol diet was continued until the blood cholesterol reached a level in excess of 1000 mg/100 ml, atherosclerosis occurred in all animals.

Earlier experience indicated that there is close agreement between the degree of atherosclerosis as judged by gross visual grading and by quantitative chemical analysis (9). However, for our third study we measured the cholesterol content of the aorta and related it to nitrogen content.

The cholesterol content of the aorta at the end of the cholesterol dietary period averaged 0.058 ± .008 (se) mg cholesterol per mg protein (Fig. 1); in aortas of seven animals on a control diet it was 0.006 ± .0015 mg cholesterol per mg protein.

Table 1

<table>
<thead>
<tr>
<th>Number of weeks</th>
<th>Serum cholesterol (mg/100 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>54 rabbits whose diet was discontinued</td>
</tr>
<tr>
<td>0</td>
<td>1757 ± 108.6 (36)</td>
</tr>
<tr>
<td>1</td>
<td>721 ± 75.7 (11)</td>
</tr>
<tr>
<td>2</td>
<td>373.8 ± 63.4 (11)</td>
</tr>
<tr>
<td>3</td>
<td>172 ± 30.8 (6)</td>
</tr>
<tr>
<td>4</td>
<td>108 ± 17.5 (9)</td>
</tr>
<tr>
<td>5</td>
<td>98.5 ± 12.6 (10)</td>
</tr>
<tr>
<td>6</td>
<td>87.6 ± 33.5 (9)</td>
</tr>
<tr>
<td>9</td>
<td>2190 (1)</td>
</tr>
</tbody>
</table>

Values are the means and their standard errors. Numbers in parentheses are the number of samples represented by each value.
terol per mg protein. The aortas of rabbits killed 14 to 42 days after discontinuance of the diet had a higher cholesterol concentration than those killed immediately after the diet was stopped, despite the rather prompt decline of the serum cholesterol toward normal values (Table 1). At later time intervals, however, the aortic cholesterol content fell until at the longest time interval studied, 300 days, the aortic cholesterol content was 0.020 ± 0.003 (SE) mg cholesterol per mg protein (approximately one-fifth the maximal observed values). This contrasted with aortic cholesterol content of 0.091 mg/mg of protein at 300 days in the animal in which cholesterol feeding was continued.

Histologic examination of the aortas of two experimental rabbits (killed 200 to 300 days after return to normal diet) showed sudanophilic material still widely scattered throughout the intimal, subintimal, and medial layers of the artery in both particulate and conglomerate patterns (Fig. 2). There were some areas of destruction of normal architecture with fibrous tissue proliferation without sudanophilic material. These presumably represented areas of previous cholesterol deposition. Small foci of calcification were rarely seen.

Several decades ago, Anitschkow claimed that arterial lesions of rabbits showed regression when the serum cholesterol returned to normal, but that this process took an extremely long time (10). More recently, Rodbard, Pick, and Katz showed that thyroid treatment, but not starvation or estrogen administration, induced regression of aortic lesions in the chick (11). Buchwald found that

![FIGURE 2](left: Photomicrograph of aorta of rabbit killed 200 days after discontinuance of cholesterol diet (stain: oil red O and hematoxylin). Above: Photomicrograph of aorta of rabbit maintained on cholesterol diet for 300 days.)
creation of an ileal bypass shunt resulted in a 30% regression of lipid deposit in rabbits still maintained on a high cholesterol feeding program (12). Friedman and Byers recently reported the lowering of cholesterol content of the thrombo-atherosclerotic plaque in rabbits with an implanted aortic coil by discontinuance of cholesterol feeding (13). However, other investigators were unable to confirm regression of aortic atherosclerosis in the rabbit. In fact, lesions seemed generally to be worse at the time of final observation than at the time of discontinuance of cholesterol feeding (7, 14). Kritchevsky tried, without success, to add various fats and thyroid compounds in an attempt to demonstrate that vascular lesions regress (3, 15).

Wilens reported the reversibility of traumatically induced cutaneous xanthomata in the rabbit upon discontinuance of cholesterol feeding (16). Friedman and Byers demonstrated in the rabbit the reversibility of atherosclerosis of an aortic segment surgically transplanted into the anterior chamber of the eye when cholesterol diet was withdrawn (17). Both of these reports indicated, however, that in situ aortic atherosclerosis was unaffected by such treatment.

In the foregoing experiments cholesterol was fed over periods of several months. The present experiment utilized a much shorter feeding period, but moderate to advanced atherosclerosis did result, consisting of more than foam cell or fatty streak lesions. These positive results, when contrasted with the previous negative ones, lead to the conclusion that there is an early reversible phase before fibrous tissue reaction is so severe as to prevent resolution of the fatty deposit.

Reversibility of human atherosclerosis has not been proved. Isotope experiments have demonstrated that there is an exchange of arterial and blood cholesterol, indicating potentiality of regression of the lesions, but evidence on this point has been either anecdotal or indirect.

Summary

This study demonstrates the reversibility of aortic atherosclerosis in the cholesterol-fed rabbit. The experimental design was such that the exposure of the vessel wall to extreme hypercholesteremia was short. Reversibility under these conditions suggests that the early lesion, even of rather marked degree, is still susceptible to reversal. Failure of others to demonstrate this was probably due to the extended period of cholesterol diet used.

Acknowledgments

The author acknowledges the technical assistance of Miss Barbara Payton. He thanks Dr. Clark Brown for the preparation and interpretation of the histologic sections.

References

Reversibility of Atherosclerosis in Cholesterol-Fed Rabbits
WALTER M. BORTZ

Circ Res. 1968;22:135-139
doi: 10.1161/01.RES.22.2.135

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1968 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/22/2/135

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/