Currently, nonischemic dilated cardiomyopathy (NICM) represents the leading cause of advanced heart failure, accounting for >50% of all heart transplantation procedures. We propose that when compared with patients with ischemic heart failure (IHF), patients with NICM demonstrate a more favorable clinical response to cell therapy, which offers a potential novel promising treatment approach for this patient population.

Chronic heart failure represents one of the most important healthcare problems worldwide. Although survival after diagnosis of heart failure has improved, overall mortality remains high.1 In the recent years, several novel approaches for heart failure management have been tested in clinical trials, with cell therapy representing one of potentially more promising treatment modalities.

The majority of clinical trials of cell therapy in chronic heart failure have been focusing on patients with IHF. In this cohort, early trials demonstrated clinical benefits and an improvement in left ventricular function after cell therapy; however, subsequent larger trials failed to confirm these findings. Furthermore, a recent meta-analysis of 38 randomized controlled trials in IHF found only low-quality evidence that treatment with bone marrow-derived cells reduces mortality and improves left ventricular ejection fraction (LVEF).2 Although the reasons for the inconsistent results remain poorly defined, they could be partially explained by the fact that despite the potential beneficial effects on the myocardium, cell therapy does not affect the progression of atherosclerosis, which may limit the clinical efficacy of this approach in patients with IHF.

In the last decade, NICM has become the leading cause of advanced heart failure, accounting for >50% of all heart transplantations.1 These trends indicate that patients with NICM may represent the largest subpopulation of heart failure patients with a particular need for alternative treatment modalities, including cell therapy. The disease progression in NICM is thought to result from the interactions among specific sarcomeric and cytoskeletal proteins. In addition to alterations in myocytes, patients with NICM also demonstrate defective vascularization and impaired vasculogenesis and angiogenesis.3 However, when compared with patients with IHF, patients with NICM display significantly lesser amount of myocardial scarring with less transmural involvement.4 Recent evidence suggests that the underlying disease process in patients with NICM may be reversible, with >25% of patients with NICM with recent onset of heart failure having a relatively benign course with spontaneous recovery of left ventricular function.5 Furthermore, in NICM, the epicardial coronary vessels are normal, and the only target for cell therapy is myocardial dysfunction, which could represent an important underlying mechanism for the differences in clinical response to cell therapy in patients with IHF and NICM.

To date, clinical trials investigating the effects of cell therapy in NICM have been relatively scarce. However, in contrast to the studies in patients with IHF, the results of these trials have been consistently positive, regardless of the choice of study end points, cell types, and modes of cell delivery (Table).

One of the first trials was the TOPCARE-DCM trial (Transplantation of Progenitor Cells and Functional Regeneration Enhancement Pilot Trial in Patients with Nonischemic Dilated Cardiomyopathy),6 where intracoronary infusion of bone marrow-derived cells was performed in 33 patients with NICM. At 3 months, there was an improvement of regional wall motion of the target area, accompanied by an increase in LVEF. In accordance with these findings, NT-proBNP (N-terminal pro-B-type natriuretic peptide) serum levels decreased significantly within the first year after therapy. The ABCD trial (Autologous Bone Marrow Cells in Dilated Cardiomyopathy)7 included 85 patients with NICM randomized to either treatment arm, receiving unsel ected bone marrow-derived cells via coronary sinus, or control arm, treated with medical therapy. During the mean follow-up time of 28 months, there was a significant improvement in LVEF in the treatment arm, with a concomitant reduction in end-systolic volumes. Similar results were found in a study in end-stage NICM8 where 22 patients randomly underwent either G-CSF (granulocyte-colony stimulating factor) administration or G-CSF stimulation followed by intracoronary infusion of bone marrow-derived cells via coronary sinus, or control arm, treated with medical therapy. During the mean follow-up time of 28 months, there was a significant improvement in LVEF in the treatment arm, with a concomitant reduction in end-systolic volumes. Similar results were found in a study in end-stage NICM8 where 22 patients randomly underwent either G-CSF (granulocyte-colony stimulating factor) administration or G-CSF stimulation followed by intracoronary infusion of bone marrow-derived cells via coronary sinus, or control arm, treated with medical therapy. During the mean follow-up time of 28 months, there was a significant improvement in LVEF in the treatment arm, with a concomitant reduction in end-systolic volumes. Similar results were found in a study in end-stage NICM8 where 22 patients randomly underwent either G-CSF (granulocyte-colony stimulating factor) administration or G-CSF stimulation followed by intracoronary infusion of bone marrow-derived cells via coronary sinus, or control arm, treated with medical therapy. During the mean follow-up time of 28 months, there was a significant improvement in LVEF in the treatment arm, with a concomitant reduction in end-systolic volumes. Similar results were found in a study in end-stage NICM8 where 22 patients randomly underwent either G-CSF (granulocyte-colony stimulating factor) administration or G-CSF stimulation followed by intracoronary infusion of bone marrow-derived cells via coronary sinus, or control arm, treated with medical therapy. During the mean follow-up time of 28 months, there was a significant improvement in LVEF in the treatment arm, with a concomitant reduction in end-systolic volumes. Similar results were found in a study in end-stage NICM8 where 22 patients randomly underwent either G-CSF (granulocyte-colony stimulating factor) administration or G-CSF stimulation followed by intracoronary infusion of bone marrow-derived cells via coronary sinus, or control arm, treated with medical therapy. During the mean follow-up time of 28 months, there was a significant improvement in LVEF in the treatment arm, with a concomitant reduction in end-systolic volumes. Similar results were found in a study in end-stage NICM8 where 22 patients randomly underwent either G-CSF (granulocyte-colony stimulating factor) administration or G-CSF stimulation followed by intracoronary infusion of bone marrow-derived cells via coronary sinus, or control arm, treated with medical therapy. During the mean follow-up time of 28 months, there was a significant improvement in LVEF in the treatment arm, with a concomitant reduction in end-systolic volumes. Similar results were found in a study in end-stage NICM8 where 22 patients randomly underwent either G-CSF (granulocyte-colony stimulating factor) administration or G-CSF stimulation followed by intracoronary infusion of bone marrow-derived cells via coronary sinus, or control arm, treated with medical therapy.
The authors conducted a randomized, placebo-controlled trial with a combination of G-CSF and intracoronary cell therapy enrolling 60 patients with NICM (REGENERATE-DCM [Randomized Trial of Combination Cytokine and Adult Autologous Bone Marrow Progenitor Cell Administration in Patients with Non-ischaemic Dilated Cardiomyopathy]),\(^5\) they found a significant improvement in cardiac function, symptoms, and biochemical parameters at 3 months after cell therapy, which was comparable with the changes in patients with IHF. This led the authors to conclude that the potential to assess the benefits of ixmyelocel-T in the NICM group may have been limited because of the significant improvements in the control group.

Although less bulky than the data in IHF, these findings suggest that cell therapy may represent a potentially beneficial treatment modality in NICM and that future, larger studies in the field should focus more on this subpopulation of patients with chronic heart failure. Interestingly, recent studies in NICM have also demonstrated that cell therapy may affect diastolic properties\(^6\) and lead to improved right ventricular function.\(^7\) Taken together, these data suggest that a treatment effect of cell therapy in NICM may reach beyond the sole change in LVEF, which has been repeatedly questioned as a valid end point in stem cell studies. Thus, to better understand the impact of cell therapy in NICM, several combined end points should be analyzed in the future.

Despite the challenges, it seems that cell therapy offers a promising treatment strategy for a growing population of patients with NICM who are currently facing relatively limited therapeutic options. The results of ongoing and future clinical trials will provide more insights into the mechanisms of disease progression and better define whether or not the effects of cell therapy in NICM may be further enhanced by the use of more potent stem cell types or repetitive dosing strategies.

Sources of Funding

This work was supported by Slovenian Research Agency grant No. J3-7312-0381.

Disclosures

None.

References

Table. Clinical Trials of Cell Therapy in Nonischemic Dilated Cardiomyopathy

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Patients</th>
<th>Cell Type</th>
<th>Delivery Route</th>
<th>Follow-Up, mo</th>
<th>Primary End Point Reached</th>
<th>LVEF Change, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPCARE-DCM(^6)</td>
<td>33</td>
<td>BMC</td>
<td>IC</td>
<td>3</td>
<td>Yes</td>
<td>+3.2</td>
</tr>
<tr>
<td>ABCD(^7)</td>
<td>85</td>
<td>BMC</td>
<td>IC</td>
<td>28</td>
<td>Yes</td>
<td>+5.9</td>
</tr>
<tr>
<td>Bocchi et al(^8)</td>
<td>22</td>
<td>BMC</td>
<td>IC</td>
<td>15</td>
<td>Yes</td>
<td>+8.8</td>
</tr>
<tr>
<td>Vrtovec et al(^9)</td>
<td>110</td>
<td>CD34(^+)</td>
<td>IC</td>
<td>60</td>
<td>Yes</td>
<td>+5.7</td>
</tr>
<tr>
<td>Vrtovec et al(^10)</td>
<td>40</td>
<td>CD34(^+)</td>
<td>TE, IC</td>
<td>6</td>
<td>Yes</td>
<td>+8.1</td>
</tr>
<tr>
<td>REGENERATE-DCM(^11)</td>
<td>60</td>
<td>BMC</td>
<td>IC</td>
<td>3</td>
<td>Yes</td>
<td>+5.4</td>
</tr>
<tr>
<td>POSEIDON-DCM(^12)</td>
<td>37</td>
<td>MSC</td>
<td>TE</td>
<td>12</td>
<td>Yes</td>
<td>+8.0</td>
</tr>
</tbody>
</table>

ABCD indicates autologous bone marrow cells in dilated cardiomyopathy; BMC, bone marrow-derived cells; IC, intracoronary; LVEF, left ventricular ejection fraction; MSC, mesenchymal cells; POSEIDON-DCM, Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy; REGENERATE-DCM, Randomized Trial of Combination Cytokine and Adult Autologous Bone Marrow Progenitor Cell Administration in Patients with Non-ischaemic Dilated Cardiomyopathy; TE, transendocardial; and TOPCARE-DCM, Transplantation of Progenitor Cells and Functional Regeneration Enhancement Pilot Trial in Patients with Nonischemic Dilated Cardiomyopathy.

Key Words: bone marrow ■ cardiomyopathy, dilated ■ cell- and tissue-based therapy ■ heart failure ■ humans
Cell Therapy for Nonischemic Cardiomyopathy: Current Status and Future Perspectives
Bojan Vrtovec

Circ Res. 2018;122:28-30
doi: 10.1161/CIRCRESAHA.117.312385

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2018 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/122/1/28

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the _Permissions and Rights Question and Answer_ document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/