In This Issue

Meet the First Authors

Editorials

Gene Editing for the Heart: Correcting Dystrophin Mutations
Elizabeth M. McNally

Mast Cell: An Unexpected Villain in Venous Thromboembolism?
Alex L. Huang, Julian J. Bosco, Karlheinz Peter

Stopping LVAD Bleeding: A Piece of the Puzzle
Emma J. Birks

A Biomarker Ocular: Circulating MicroRNAs Toward Diagnostics for Acute Ischemic Stroke
Mahir Karakas, Tanja Zeller

Trainee and Young Investigator Corner

It Takes a Village to Train a Scientist
David Y. Barefield

Leaders in Cardiovascular Science

Evangelia Kranias: The Mother of Phospholamban
Susan Ince

News & Views

India’s March to Halt the Emerging Cardiovascular Epidemic
Meenakshi Sharma, Chandrasekharan C. Kartha, Bratati Mukhopadhyay, Ramesh K. Goyal, Suresh K. Gupta, Nirmal K. Ganguly, Naranjan S. Dhalla

Heart Center of SAHZU Transforming Into an Innovative Institute
Jun Jiang, Xinyang Hu, Meixiang Xiang, Jian’an Wang

Viewpoints

What Are We Looking At? Extracellular Vesicles, Lipoproteins, or Both?
Jens B. Simonsen
Molecular Medicine

★ In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice
Mona El Refaey, Li Xu, Yandi Gao, Benjamin D. Canan, T.M. Ayodele Adesanya, Sarah C. Warner, Keiko Akagi, David E. Syner, Peter J. Mohler, Jianjie Ma, Paul M.L. Janssen, Renzhi Han ... 923

Cellular Biology

MerTK Cleavage on Resident Cardiac Macrophages Compromises Repair After Myocardial Ischemia Reperfusion Injury

Integrative Physiology

★ Mast Cells Granular Contents Are Crucial for Deep Vein Thrombosis in Mice
Tatyana Ponomaryov, Holly Payne, Larissa Fabritz, Denisa D. Wagner, Alexander Brill OPEN ... 941

Translational Research

TLR2 Plays a Key Role in Platelet Hyperreactivity and Accelerated Thrombosis Associated With Hyperlipidemia
Sudipta Biswas, Alejandro Zimman, Detao Gao, Tatiana V. Byzova, Eugene A. Podrez ... 951

Clinical Track

★ Continuous-Flow LVAD Support Causes a Distinct Form of Intestinal Angiodysplasia
Jooeun Kang, Samson Hennessy-Strahs, Pawel Kwiatkowski, Christian A. Bermudez, Michael A. Acker, Pavan Atluri, Patrick I. McConnell, Carlo R. Bartoli ... 963

★ RNA-Seq Identifies Circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as Potential Biomarkers for Acute Ischemic Stroke
Steffen Tiedt, Matthias Prestel, Rainer Malik, Nicola Schieferdecker, Marco Duering, Veronika Kautzky, Ivelina Stoycheva, Julia Böck, Bernd H. Northoff, Matthias Klein, Franziska Dorn, Knut Krohn, Daniel Teupser, Arthur Liesz, Nikolaus Plesnita, Lesca Miriam Holdt, Martin Dichgans ... 970

Reviews

Deregulated TGF-β/BMP Signaling in Vascular Malformations
Sara I. Cunha, Peetra U. Magnusson, Elisabetta Dejana, Maria Grazia Lampugnani ... 981

Calcium Signaling and Transcriptional Regulation in Cardiomyocytes
Matthias Dewenter, Albert von der Lieth, Hugo A. Katus, Johannes Backs 1000
Letters to the Editor

Letter by Calderón-Gerstein Regarding Article, “Environmental Determinants of Cardiovascular Disease”
Walter Calderón-Gerstein [Online Only] ... e80

Response by Bhatnagar to Letter Regarding Article, “Environmental Determinants of Cardiovascular Disease”
Aruni Bhatnagar [Online Only] ... e81

Maria Ines Azambuja [Online Only] ... e83

In July 2017, the average time from submission to first decision for all original research papers submitted to Circulation Research was 12.8 days.

On the Cover: Widespread dystrophin restoration in dystrophic mouse heart following in vivo CRISPR/Cas9 gene editing. Immunofluorescence staining showed dystrophin-positive cardiomyocytes across the entire heart section of dystrophic mice after intravenous injection of recombinant adeno-associated virus expressing CRISPR/Cas9 and gRNA. The gRNA-armed molecular scissors Cas9 are intended to cut the intron 20 and 23 of mouse dystrophin gene and remove a genomic DNA piece that carries a mutant codon in exon 23, thereby restoring dystrophin reading frame and expression. See related article, page 923.