






e66    Circulation Research    September 1, 2017

microscope during the analysis of images to ensure that only 
lesions are being outlined.

Lesion size is routinely represented as absolute or percent 
lesion area of the entire intimal surface area. The meaning-
ful interpretation of this requires that a standardized area 
of intima is quantified. Therefore, care should be taken to 
ensure consistency in dissecting, opening, and pinning aor-
tas. There also should be consistency in defining the intimal 
region. Generally, lesions initially develop in the ascending 
and arch regions and are only present in measurable amounts 
in other aortic regions in animals with more advanced disease. 
Therefore, sparse lesion presence in the thoracic and abdomi-
nal aorta might preclude the acquisition of any meaningful 
lesion measurement in these regions.

Measurement of lesions by this approach provides a 
2-dimensional surface area without taking into account the 
thickness of lesions. We have noted previously that lesion area 
was not a good indicator of lesion burden, in which thickness 
and volume should be considered.201 Lesion thickness can be 
evaluated by histological sectioning, although this would be 
time consuming.

Noninvasive Imaging
Multiple imaging systems have been used to quantify experi-
mental atherosclerosis size or to characterize components 
of lesions. Experimental atherosclerosis has been quantified 
and characterized by several modalities, including ultra-
sound,202 magnetic resonance imaging,203,204 and positron 
emission tomography, sometimes in combination with com-
puted tomography.205,206 There have also been applications to 
experimental atherosclerosis using multimodality imaging 
such as positron emission tomography/magnetic resonance 
imaging.207 Although noninvasive imaging holds promise, the 
resolution of these modalities provides a barrier to accurately 
determining lesion size in experimental atherosclerosis, par-
ticularly in mice. Therefore, although development of nonin-
vasive measurement should be encouraged,208 current imaging 
systems do not provide reliable acquisition of lesion size and 
characteristics for mouse atherosclerotic lesions in vivo.

Cellular and Biochemical Constituents
Clinical evaluation of human atherosclerosis has provided 
evidence that the size of an atherosclerotic lesion is not the 

primary factor defining the overt clinical consequence of the 
disease.7,209 Instead, there is a consensus that the majority of 
cases of acute clinical manifestation of atherosclerosis are 
attributed to thrombosis induced by rupture. The propensity 
to rupture is based on structural and chemical characteristics 
of lesions that are independent of size. Hence, there is now a 
greater emphasis on providing composition analysis of experi-
mental atherosclerotic lesions.

Tissue Sterol Content
The sterol content of atherosclerosis can provide mechanis-
tic insight into the response to therapeutic approaches. For 
example, intra-arterial deposition of sterols can form com-
plex structures both extracellularly and intracellularly.210,211 In 
addition to providing an alternative index of atherosclerosis 
severity, the ratio of unesterified to esterified cholesterol can 
provide insight into the mode of lipoprotein delivery and pro-
cessing within the arterial wall.212–215

The sterol content of atherosclerotic lesions can provide 
insight that complements pathological analysis. For analysis 
of tissue sections, 3-dimensional reconstructions have been 
reported but are not commonly used because this technique is 
labor intensive. For atherosclerotic lesions that are predomi-
nantly lipid laden, measurement of sterols can be more infor-
mative under conditions in which area measurements are not 
changed but lesions are markedly thicker.201

One issue in the consideration of tissue sterol measure-
ment is the mode of normalization. In larger animals, it has 
been common to normalize to wet weight of tissue.201 In 
small-animal models, such as mouse, the very small size of 
tissue can render difficulties in accuracy of determining a wet 
weight of aortic tissue (the most common area used). It is rec-
ommended that sterol measurements be normalized to either 
intimal area or total protein concentrations.

Composition of Atherosclerotic Lesions
Atherosclerotic lesions are complex and heterogeneous. 
Although whole tissue analyses can provide information on 
the presence of specific biochemical entities, in the absence of 
information on spatial distribution, this measurement provides 
limited insight into the disease process. Therefore, composi-
tional analysis of tissue sections is a common and desirable 
feature of experimental atherosclerosis studies. Historically, 

Figure 3. Representation of a mouse 
aorta arranged for optimal measurement 
of lesion area by en face analysis. 
Examples are shown of aortic arches 
from (A) a normolipidemic mouse in 
which no atherosclerosis is present and 
(B) a hypercholesterolemic mouse with 
extensive atherosclerotic lesions that 
are readily discernable without staining. 
Atherosclerotic lesions are usually 
largest on the inner curvature and at 
the branches of the innominate and left 
carotid arteries.
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these pathological techniques have been reported primarily 
with images of representative examples of staining. More 
recently, techniques based on image analysis software have 
been applied to provide quantitative information from tissue 
staining techniques. In this section, recommendations will be 
provided on the rigor that should be applied to the staining of 
tissues and reporting of this form of analysis to enable repro-
ducibility and interpretation (Table 3).

Histological Staining
The composition of atherosclerotic lesions can be evaluated 
in a variety of ways and is fundamental in defining the stages 
and properties of the disease process. One common example 
is defining lesion composition relative to the potential for rup-
ture. Although this is not appropriate with mouse lesions that 
do not rupture to the extent that they induce occlusive throm-
bosis, this has become a widespread practice and is based on 
the presence or absence of macrophages, large necrotic areas, 
encapsulation of necrotic areas, and connective tissue as a 
measure of fibrosis. The presence of connective tissues such 
as collagen, elastin, and proteoglycans can be evaluated with 
histological stains such as Verhoeff–Van Gieson, Masson tri-
chrome, or modified Movat’s, which provide color contrasts 
between different connective tissue components. However, 
quantifying the amount of a particular connective tissue pro-
tein on the basis of histological staining is difficult and often 
subjective. This is also the case when measuring the thickness 
of fibrous caps and the size of necrotic zones. Therefore, a 
simple quantitative approach is to set a series of parameters 
for defining the lesion simply on the basis of the presence or 
absence of different components. Examples of these param-
eters include the following:

1.	Presence of a large necrotic core, defined as being >50% 
of the volume of the lesion. A necrotic core is often visu-
alized as an empty area where lipid has been extracted or 
an area devoid of intact cells with cellular debris, cho-
lesterol crystals, and calcification (may require calcium- 
or phosphate-specific stains, such as Von Kossa stain or 
Alizarin red).

2.	Presence of a thick or thin fibrous cap. A fibrous cap in 
mouse lesions is often difficult to define and may simply 
be a thin layer of connective tissue overlaying a necrotic 
zone rather than concentric layers of cells within a con-
nective tissue matrix.

3.	Presence of intraplaque thrombus or hemorrhage. 
Hemorrhage is easy to recognize on the basis of the 

presence of intact red blood cells. However, red blood 
cells often are not intact, thus requiring additional staining 
for hemoglobin (Dunn Thompson) or iron (Perls’ Prussian 
Blue iron). The presence of an intraplaque thrombus is 
based on demonstration of the presence of fibrin/fibrino-
gen, which stains pink with hematoxylin and eosin or blue 
with Weigert Gram stain. However, there is no definitive 
way to demonstrate presence of thrombus except at the 
ultrastructural level, where platelets and fibrin strands 
can be resolved. Even immunostaining with antibodies 
cannot distinguish between fibrin and fibrinogen.

4.	Predominance of aggregates of intact foam cells.
5.	Highly fibrotic lesion (absence of cells and necrotic 

zones).
6.	Highly calcified lesion (containing multiple or contigu-

ous areas of calcification). With this approach, serial 
sections can be evaluated for the frequency with which 
each of these parameters occurs, and mean values for the 
entire lesion can be calculated and used as the basis of 
comparison among groups.

Immunostaining

Controls for Immunostaining. Immunostaining is a common 
technique to define presence and spatial distribution of anti-
gens within atherosclerotic lesions. This technique assumes 
that under controlled conditions, any positive color develop-
ment after immunostaining represents identification of the 
antigen to which the antibody was developed. Although this 
technique can be highly informative, it might also provide 
confounding data because of nonspecific staining (Figure 4). 
A commonly used tissue immunostaining format is to iden-
tify the area of positive staining after incubation with a bio-
tinylated secondary antibody, an avidin-biotin amplification 
complex, and chromogen. All these steps have the potential 
for nonspecific binding.216 Fortunately, the extent of nonspe-
cific binding of these components is easy to define by removal 
of the primary antibody or both the primary and secondary 
antibodies in the incubation scheme. For tissue immunostain-
ing using fluorescent-labeled antibodies, a required control is 
a tissue section not exposed to antibody and acquired under 
identical conditions as a staining tissue. This step determines 
the contribution of autofluorescence.

The basis for the nonspecificity of antibodies used to 
stain tissues has not been defined, but it does not appear to 
be related to Fc interactions with receptors.217 The potential 
for nonspecific interactions of primary antibodies is a rec-
ognized concern in immunostaining tissue. Unfortunately, 
there are no standard protocols in this technique to determine 
whether a primary antibody is reacting exclusively with the 
antigen.216 However, there is increasing awareness that appar-
ent immunostaining does not necessarily represent authentic 
reactivity of many antibodies, even those that have been used 
in many publications.218,219 To comply with National Institutes 
of Health guidelines, there should be some validation of the 
specificity of antibody reactivity.

There are several controls for determining the specificity 
of a primary antibody.216 These include controls using tissue 
sections from antigen of interest-deficient mice, preabsorp-
tion with the immunogen, and colocalization of 2 different 
antibodies to the same antigen (preferable for 2 epitopes 

Table 3.  Recommendations for Compositional Analysis of 
Atherosclerotic Lesions

1. Validation of authenticity of antibody reactivity needs to be provided.

2. �Because atherosclerotic lesions are heterogeneous, selection criteria 
for tissue section analysis need to be stated. Recommendations are to 
determine multiple sections per lesion.

3. �Quantitation of immunostaining must include complete details on the 
mode of data capture.

4. �Compositional data should be referred to by objective descriptors and not 
by inferential descriptors (eg, vulnerable or unstable).

5. �Considering phenotypic plasticity, simultaneous use of multiple cell 
type–specific markers enhances the accuracy of data acquisition.
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within the antigen). For monoclonal antibodies, an isotype 
control (usually IgG1, IgG2A, or IgG2B) can be substituted 
for the antigen-targeted antibody to determine nonspecificity. 
For antibodies harvested from animals, nonimmune serum or 
IgG is often used. In the development of an affinity-purified 
antibody, the flow through the purification column can also 
serve as a negative control antibody. This permits compari-
son of immunostaining with 2 antibodies (specific versus 
nonspecific) from the same source. Another ideal control is 
to use tissue sections from a mouse with genetic deletion of 
the protein of interest. However, some genetic manipulations 
result in truncated proteins; therefore, meaningful interpreta-
tion requires knowledge of the antigen location within the 
protein, with a determination of whether this epitope exists in 
the truncated protein.

Data reports should include the source of the antibody and 
include catalogue number, because some suppliers provide 
multiple antibodies to a single antigen. Also, there should be 
inclusion of the dilutions used for antisera, as well as concen-
trations for purified IgG fractions.

Analysis of Cellular Composition Based on Staining. Immunos
taining for cell-specific antigens is the primary method to 
determine cellular compositions in atherosclerotic lesions. 
However, there is increasing ambiguity about assigning an 
immunostain to a specific cell type, given the growing aware-
ness that there is a high degree of plasticity for different cel-
lular phenotypes.220 Traditionally, cellular composition has 
been based only on immunostaining for predominant cell 
types such as smooth muscle, macrophages, endothelial cells, 
and lymphocytes. In most cases, α-actin has been used as 

Figure 4. Appropriate controls for determining specificity of immunostaining of atherosclerotic tissue. Given the increased awareness 
of the potential for immunohistochemical techniques to produce nonspecific staining, there is a need for increased rigor to demonstrate 
authentic reaction of the antibody with the antigen. This image represents minimal controls for immunostaining of CD68 in mouse 
atherosclerotic tissue (A), with controls of no primary antibody (B), with no primary and secondary antibodies (C), and incubated with 
an isotype match nonimmune antibody (D) at the same concentrations as used for the CD68 antibody. All controls were performed 
concurrently on adjacent tissue sections from the same mouse.
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the marker for smooth muscle cells; Mac-2 (galectin-3) or 
F4/80 as markers for macrophages; von Willebrand factor, 
PECAM-1 (platelet/endothelial cell adhesion molecule 1), or 
VE (vascular endothelial)-cadherin for endothelial cells; and 
CD3 as a pan lymphocyte marker. The number of cells stained 
positive for each marker can be counted and normalized to the 
total number of cells (Nuclei Staining). Frequently, the area 
of the amplified immunostaining for each antigen is measured 
(Image Analysis of Tissue Sections). Although this approach 
enables comparisons among groups, it is not an accurate mea-
surement of the cellular composition in lesions. It is further 
complicated by frequent smearing of reaction products, which 
leads to a diffuse pattern of staining. Thus, for accuracy and 
reproducibility, it is essential that counterstaining for nuclei 
be performed and that the number of immune-positive cells 
be counted and normalized to the total number of cells. As 
noted, in recent years the complexity of evaluating the cel-
lular composition of lesions has increased with the recogni-
tion of multiple and interchangeable phenotypes for the major 
cell types. Smooth muscle cells could undergo a process 
of “modulation” whereby a “contractile” phenotype could 
become a “synthetic” phenotype.221 However, this has become 
exceedingly more complex, because mesenchyme-derived 
cell types can interconvert from smooth muscle cells to adipo-
cytes, chondrocytes, and osteoblasts, as well as fibroblasts.222 
In both mouse and human lesions, the presence of cell types 
involved in active ectopic calcification, such as osteoblast-
like and chondrocyte-like cells that express markers such as 
alkaline phosphatase, collagen 4, and RUNX2, has been docu-
mented.223 There is evidence that smooth muscle cells within 
lesions can express the markers and functionality of macro-
phages.220,224 Lineage tracing methods have been established 
such that cells expressing specific markers at one point in time 
can be traced as they gain or lose markers of the same or other 
cell types.220 Thus, a more complete evaluation of cellular 
composition in lesions requires simultaneous immunostaining 
of the same or serial sections with multiple cell type–specific 
antibodies and careful mapping of the spatial distribution by 
superimposing images.

Nuclei Staining
Counterstaining of nuclei in sections of atherosclerotic lesions 
is essential for normalizing data in studies of cellular prolifera-
tion (bromodeoxyuridine or labeled thymidine incorporation), 
apoptosis (TUNEL [terminal deoxynucleotidyl transferase 
dUTP nick-end labeling] or activated caspase), cellular pro-
tein by immunostaining, or mRNA expression by in situ 
hybridization. There are a variety of dyes for staining of nuclei 
on paraffin-embedded and frozen sections of lesions. These 
methods include commonly used stains such as hematoxylin, 
toluidine blue, methyl green, and Hoechst. Staining of nuclei 
enables counting of the total number of cells within the lesions 
and normalization of data for cells positive for proliferation, 
apoptosis, or protein and mRNA expression as a percentage of 
the total cell number. Normalization in this way facilitates the 
comparison of data on lesions from humans or animal models. 
The counting of nuclei also provides a measure of the cellular-
ity of the lesion and can be normalized to the volume of the 
entire lesion or area of interest.

Image Analysis of Tissue Sections
The sections above describe issues related to visual detec-
tion of pathological analysis of atherosclerotic lesions that 
have been reported commonly in atherosclerosis studies. 
Unfortunately, the Methods sections of manuscripts generally 
provide scant details of how these analyses were performed to 
permit replication and interpretation. It is recommended that 
the following details be provided in each manuscript.

Sample Numbers
Because size and components of atherosclerotic lesions are 
heterogeneous, sample selection influences data acquisition. 
Although no definitive guidelines can be provided, minimal 
requirements in reporting should include the number of sec-
tions analyzed per animal, the basis for selection of analyzed 
section(s), and the location (which is identified by the same 
landmark of tissue sections) of sections within lesions.

Mode of Selecting Region of Interest
Definition of the region of interest (ROI) within a tissue sec-
tion can greatly influence data acquisition. For example, many 
images are acquired at a high magnification that only per-
mits a selected small area of a tissue section to be quantified. 
Therefore, when immunostaining is heterogeneous across tis-
sue sections, the mode of defining the ROI needs to be clearly 
stated, preferably with some explanation to avoid selection 
bias. To enable interpretation, it is recommended that the min-
imum reporting requirements are a clear definition of the ROI 
and an explanation for the basis of selecting it. In concert with 
reporting of the number of sections used to derive data, there 
should also be clear numerical data provided on the number of 
ROIs measured per section.

Definition of Area for Inclusion in Image Analyses
Data on constituents of atherosclerotic lesions are most com-
monly expressed as a percent of the staining (immunostaining 
or histological staining) in an ROI. Parameters used to define 
the area for measurement are not commonly stated. Most stud-
ies have set a threshold based on an RGB color mode to define 
areas of positive staining; however, for many stainings, there 
is not a precipitous change in areas that can be deemed to be 
positive versus negative. Rather, there is frequently a spectrum 
of color intensity. Therefore, the definition of the threshold 
has a major influence on deriving the measurement of positive 
areas. To provide insight into how data were derived, reports 
should clearly describe how the area of positivity was defined 
and what approaches were taken to overcome the inherent 
subjectivity of this assessment.225

Spatial Data
The acute clinical manifestations of atherosclerosis are attrib-
utable to interactions of a lesion with blood to precipitate an 
obstructive thrombus. The 2 principal modes of precipitating 
thrombus formation are rupture and erosion.226 Thrombus for-
mation is a consequence of both the composition of the lesion 
and the spatial distribution of its constituents. For example, 
rupture-prone plaques have been described as containing vari-
ably sized lipid-rich necrotic cores encased by a thin fibrous 
cap. The fibrous cap contains a high density of leukocytes, 
in contrast to the very low density that is commonly present 
in the other lesional regions. Rupture-prone lesions are also 

 by guest on Septem
ber 25, 2017

http://circres.ahajournals.org/
D

ow
nloaded from

 

http://circres.ahajournals.org/


e70    Circulation Research    September 1, 2017

characterized by neovascularization, hemorrhage, adventitial 
leukocyte accumulation, and patches of calcification.227–230

Given the importance of the spatial distribution of lesional 
elements to acute thrombus formation, meaningful composi-
tional analysis of lesions (chemical, biochemical, cellular, etc) 
is needed to enhance the relevance of experimental models to 
the human disease. In experimental atherosclerosis, the occur-
rence of atherosclerotic lesion-associated thrombus is con-
troversial,231–233 but it is clearly not a common event reported 
in the literature. In addition, the preponderance of published 
images of experimental atherosclerotic lesions do not mimic 
the composition of the rupture-prone lesions described herein. 
Therefore, unlike human data, in which thrombus-associated 
lesions are used to determine lesions that are defined as vul-
nerable, the paucity of this information in mouse atheroscle-
rosis studies discourages the use of inferential terms such as 
vulnerable and stability.

Section Thickness
Most compositional analysis is a 2-dimensional measure-
ment of a 3-dimensional object. Therefore, data derived can 
be influenced by the third dimension, the thickness of the 
tissue section, with greater thicknesses increasing the appar-
ent area of a staining. For example, analysis of a different 
cell type in a thin section can provide spatial discrimination; 
however, sections of greater thickness have an increased pro-
pensity for cell types to apparently occupy the same space, 
because the 2-dimensional image cannot discriminate the 
variable locations in the third dimension. Although the accu-
racy of the so-called positive area would be enhanced by the 
use of thin sections, there are practical issues to consider. For 
instance, immunostaining frequently has to be performed on 
unfixed non–paraffin-embedded tissues, and cryostat sec-
tioning of fibrous tissue such as arteries commonly requires 
~10 μm of thickness per section. However, interpretation of 
the data should take into account that the deduced area of 
staining can be variable based on tissue section thickness, 
and reports should take into account the precision of this 
technique.

Cell Isolation and FACS Analyses
Quantification of cell population numbers by immunostain-
ing of tissue sections has constraints, as described previously. 
To overcome these issues, several publications have isolated 
cells from atherosclerotic mouse aortas and performed flow 
cytometry.234 Flow cytometry–based approaches have the 
benefit of providing relatively accurate counting of specifi-
cally labeled cells isolated from atherosclerotic lesions.234 
This technique digests extracellular matrix of mouse aortas, 
and released cells are labeled with fluorescent antibodies. 
One potential caveat with this approach is the potential for 
contamination of cells derived from the adventitial aspect of 
the aorta. There also needs to be a validation for quantitative 
recovery of all cells from the atherosclerotic lesion, because 
cell counting by flow cytometry has the potential to select 
subpopulations. An example would be foam cells, which may 
be too fragile to survive the isolation process.235 If adventitial 
cell contamination is minimal and cell recovery is high, this 
approach provides meaningful insight into cell population 
numbers present in lesions.

Laser Capture Microdissection
Atherosclerotic plaques are composed of multiple cell types. 
The use of laser capture microdissection to analyze specific 
cell types from particular locations in atherosclerotic plaques 
was introduced in 2002.236 A number of method articles have 
been published that provide extensive technical details.237–239 
Although there are a number of technical variations to laser 
capture microdissection based on the particular instrument, 
the common approach is to use light microscopy to initially 
identify cells of interest, then a laser beam of sufficient energy 
to remove cells without damaging their macromolecular con-
tents. The selected cells are then lysed, and the material of 
interest is purified. In plaques, macrophages, the easiest cells 
to select, are also recognized as key players in the atheroscle-
rotic process. The same approach for selecting macrophages 
can be applied to other cell types, such as vascular smooth 
muscle cells.236 Endothelial cells present some logistical chal-
lenges given the thinness of this cell type in tissue sections, 
although endothelial cells have been analyzed by this tech-
nique.240 Analysis of endothelial cells can be accomplished by 
other methods that remove this cell type, such as removal of 
an en face preparation or by aortic digestion.241

Typically in atherosclerosis experiments, gene expression 
analysis is the goal, and it is possible to obtain sufficient high-
quality RNA from laser capture microdissection–selected 
cells for direct quantification by reverse-transcription poly-
merase chain reaction236 or amplification for transcriptome 
analysis by microarray.242 The likelihood of achieving a good 
yield of high-quality RNA is highest when the original aortic 
tissue is not perfused or fixed in formalin but is placed after 
phosphate-buffered saline perfusion into OCT compound 
and processed as frozen sections. Using a number of propri-
etary kits, however, some RNA can be obtained from fixed 
tissues, and this would be particularly helpful to interrogate 
archived tissues (eg, human lesions from a tissue bank) at a 
molecular level.

mRNA Profiling
Transcript levels can be quantified with quantitative poly-
merase chain reaction, expression arrays, or RNA sequenc-
ing. The most commonly used expression arrays are from 
Affymetrix, Agilent, and Illumina, and results are roughly 
comparable.243–245 RNA sequencing is replacing expression 
arrays for many applications because it provides additional 
information about long noncoding RNAs, RNA splicing, and 
allele-specific expression.246 RNA sequencing is consider-
ably more expensive, usually costing at least several hundred 
dollars per sample, depending on the depth of sequencing 
required. Statistical analysis is another issue critical in expres-
sion profiling. Normalization is generally used to remove sys-
tematic biases.247 Profiling has been conducted in conjunction 
with laser capture microdissection to study defined popula-
tions of plaque cells.242

Interpretation and Presentation of Data
The basis of statistics is to provide an objective assessment of 
data to assess whether defined measurements are the same or 
different among groups.248 In the biological world, there has 
been broad agreement that a probability value of <0.05 (5%) 
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is ascribed as being statistically significant. There are numer-
ous statistical tests to determine whether the null hypothesis 
is true or false for specific data sets; however, many of these 
tests have constraints that limit their applicability, and their 
inappropriate use can provide the wrong conclusions. In fact, 
a previous analysis of cardiovascular publications has stated 
that half of the literature has applied statistical tests incor-
rectly.249 One of the most common mistakes is the use of the 
incorrect test for multiple groups, such as the Student t test, 
when other tests, such as ANOVA, are more appropriate. 
Another common mistake is the use of parametric tests while 
failing to determine whether the data set is appropriate for the 
analyses required for their application, such as by virtue of 
having normal distribution and equivalence of variance.

To overcome these concerns, it is recommended that the 
test for statistical analysis used on each data set be clearly 
defined in the manuscript. A recent report from the National 
Institutes of Health on principles and guidelines for report-
ing preclinical research has been endorsed by the AHA 

journals.118 The primary emphasis of these guidelines is to 
provide sufficient detail for other investigators to be able to 
replicate the studies.

Concluding Statements
Atherosclerosis is the most prevalent cause of morbidity and 
mortality in developed nations. It is imperative that substantial 
research efforts be undertaken to determine novel approaches 
for attenuating the development and progression of this dis-
ease. Given the inherent difficulties and expense of perform-
ing studies in humans, animal models are a major tool to 
understand the complexity and mechanisms of this disease. To 
provide insight into the human disease, animal studies must 
be rigorously designed and executed, with data being inter-
preted within a realistic framework of extrapolation from the 
species to humans. We hope that the recommendations within 
this document will provide a framework for continuous ani-
mal research that assists in the development of new and effec-
tive therapies.
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