Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption

Anne Katrine Johansen, Bas Molenaar, Danielle Versteeg, Ana Rita Leitoginhu, Charlotte Demkes, Bastiaan Spanjaard, Hester de Ruiter, Farhad Akbari Moqadam, Lieneke Kooijman, Lorena Zentilin, Mauro Giacca, Eva van Rooij

Rationale: CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9)–based DNA editing has rapidly evolved as an attractive tool to modify the genome. Although CRISPR/Cas9 has been extensively used to manipulate the germline in zygotes, its application in postnatal gene editing remains incompletely characterized.

Objective: To evaluate the feasibility of CRISPR/Cas9-based cardiac genome editing in vivo in postnatal mice.

Methods and Results: We generated cardiomyocyte-specific Cas9 mice and demonstrated that Cas9 expression does not affect cardiac function or gene expression. As a proof-of-concept, we delivered short guide RNAs targeting 3 genes critical for cardiac physiology, Myh6, Sav1, and Tbx20, using a cardiotropic adeno-associated viral vector 9. Despite a similar degree of DNA disruption and subsequent mRNA downregulation, only disruption of Myh6 was sufficient to induce a cardiac phenotype, irrespective of short guide RNA exposure or the level of Cas9 expression. DNA sequencing analysis revealed target-dependent mutations that were highly reproducible across mice resulting in differential rates of in- and out-of-frame mutations. Finally, we applied a dual short guide RNA approach to effectively delete an important coding region of Sav1, which increased the editing efficiency.

Conclusions: Our results indicate that the effect of postnatal CRISPR/Cas9-based cardiac gene editing using adeno-associated virus serotype 9 to deliver a single short guide RNA is target dependent. We demonstrate a mosaic pattern of gene disruption, which hinders the application of the technology to study gene function. Further studies are required to expand the versatility of CRISPR/Cas9 as a robust tool to study novel cardiac gene functions in vivo. (Circ Res. 2017;121:1168-1181. DOI: 10.1161/CIRCRESAHA.116.310370.)

Key Words: clustered regularly interspaced short palindromic repeats • gene editing • molecular biology • myocytes, cardiac • sequence analysis, DNA

Genetic engineering of mammalian species, in particular Mus musculus, has answered fundamental questions related to basic biology and disease. Traditionally, this has heavily relied on the generation of genetically modified mice by transgenesis or gene targeting in embryonic stem cells. However, the generation of transgenic mice is a time consuming, expensive process, and requires a substantial number of animals.1,2 Although spatiotemporally controlled models using tetracycline-dependent transactivators or tamoxifen-inducible recombinases have proven effective for studying gene function postnatally, these models have important limitations inherent to the drugs used to activate/deactivate gene expression or induce LoxP-mediated recombination.3,4

The discovery that the Streptococcus pyogenese clustered regularly interspaced palindromic repeats (CRISPR)-associated (Cas9) endonuclease can be redirected to induce DNA double-strand breaks (DSBs) within specific genomic loci has revolutionized the way animal models can be generated. Cas9 target activity relies on precise RNA–DNA base pairing between (1) the engineered short guide RNA (sgRNA) with the target DNA strand and (2) through interactions with the nontarget DNA strands protospacer-adjacent motif and the protospacer-adjacent motif interaction motif in Cas9.6 The

Original received November 27, 2016; revision received August 24, 2017; accepted August 29, 2017. In July 2017, the average time from submission to first decision for all original research papers submitted to Circulation Research was 12.80 days.

From the Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (A.K.J., B.M., D.V., A.R.L., C.D., B.S., H.d.R., F.A.M., L.K., E.v.R.) and Department of Cardiology (D.V., C.D., E.v.R.), University Medical Center Utrecht, The Netherlands; and International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (L.Z., M.G.).

The online-only Data Supplement is available with this article at http://circres.ahajournals.orglookup/suppl/doi:10.1161/CIRCRESAHA.116.310370/-/DC1.

© 2017 American Heart Association, Inc.

Circulation Research is available at http://circres.ahajournals.org DOI: 10.1161/CIRCRESAHA.116.310370

1168
Nonstandard Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAV9</td>
<td>aden-associated virus serotype 9</td>
</tr>
<tr>
<td>Cas9</td>
<td>CRISPR-associated protein 9</td>
</tr>
<tr>
<td>CRISPR</td>
<td>clustered regularly interspaced palindromic repeats</td>
</tr>
<tr>
<td>DSB</td>
<td>double-strand break</td>
</tr>
<tr>
<td>eGFP</td>
<td>enhanced green fluorescent protein</td>
</tr>
<tr>
<td>Indels</td>
<td>insertion deletions</td>
</tr>
<tr>
<td>Myh6/7</td>
<td>myosin heavy chain 6/7</td>
</tr>
<tr>
<td>OT</td>
<td>off-target</td>
</tr>
<tr>
<td>Sav1</td>
<td>salvo1</td>
</tr>
<tr>
<td>sgRNA</td>
<td>short guide RNA</td>
</tr>
<tr>
<td>Tbx20</td>
<td>T-box 20</td>
</tr>
<tr>
<td>T7E1</td>
<td>T7 endonuclease 1</td>
</tr>
</tbody>
</table>

DNA DSBs introduced by Cas9 are predominantly repaired by nonhomologous end joining. This is an error-prone process that randomly inserts or deletes nucleotides (indels), often introducing a frame-shift mutation resulting in the generation of a premature stop codon and thus inactivation of gene function.7,8

Elegant studies have recently used CRISPR/Cas9 to edit genes in vivo in the mouse liver,9,10 lung,11,12 heart,13-15 skeletal muscle,16-18 and brain.19 However, a broader in-depth evaluation of the application of CRISPR/Cas9 to study the function of genes postnatally in the heart is currently lacking.

Here, we evaluated the efficiency of CRISPR/Cas9-mediated gene editing to study cardiac gene function in vivo using systemic and local delivery of sgRNAs. We present unexpected limitations of CRISPR/Cas9-based cardiac genome editing by showing inefficient gene disruption using aden-associated virus serotype 9 (AAV9)–incorporated sgRNA delivery in cardiomyocyte-specific Cas9-expressing mice. Our data suggest that viral delivery of single sgRNAs introduces a low level of gene disruption in a mosaic fashion. Although this is sufficient for the disruption of some genes, for many genes, it presents an important limitation of using CRISPR/Cas9-based gene editing to study gene function in the heart. Finally, we show that removing a critical coding exon using a dual sgRNA approach demonstrates a more efficacious methodology to edit DNA.

Methods
Please refer to the Materials and Methods Section I in the Online Data Supplement for a detailed description of experimental methods.

Animals
All experiments were performed in accordance with the guidelines of the Animal Welfare Committee of the Royal Netherlands Academy of Arts and Sciences. To generate an organ-restricted Cas9 mouse, homozygous Cre-dependent Rosa26-Cas9 mice (B6;129-Gt(Rosa)26Sortm1(CAG-cas9*,-EGFP)Feh/J; stock number 024857, obtained from Jackson Labs, Germany, which were originally generated on a C57/BL6N background) were crossed with myosin heavy chain 6 (Myh6)-Cre transgenic mice (Cre expression driven by a cardiomyocyte-specific promoter; a generous gift from Jeffery Molkentin, Cincinnati Children’s Hospital Medical Center; bred on a C57/BL6N background) to generate Myh6-Cas9 mice. For all experiments, Cre-negative littermates were used as a control.

To generate transgenic mice with Cas9 expression driven by the cardiomyocyte-specific Myh6 promoter, we polymerase chain reaction (PCR) amplified 3XFLAG-Cas9 from the plasmid pX330-U6-Chimeric_BB-CBh-hSpCas9, a gift from Feng Zhang (Addgene plasmid no. 42230), using primers with added SalI and HindIII restriction sites (see Section II in the Online Data Supplement for primer sequences). The resulting product was purified and inserted into SalI- and HindIII-digested pG/Myh6, a gift from Jeffrey Robbins. The Myh6-3XFLAG-Cas9 plasmid was linearized, purified, and injected into zygotes of F1 C57/BL6/CBA mice.

sgRNA Design
We designed sgRNAs for SpCas9 target selection using the CRISPR design tool (http://crispr.mit.edu/), which systematically screens for off-target (OT) effects.20 The 20-nucleotide sequences were designed to precede a CRISPR type II–specific protospacer-adjacent motif sequence 5’–NGG. sgRNA sequences are listed in Section II in the Online Data Supplement.
sgRNA Constructs, Transfection, and T7 Endonuclease 1 Assays

Single-stranded sgRNA sequences were annealed and cloned into pSpcas9(BB)-2A-Puro (PX549) after restriction digestion with Bbs1 (PX549 was a gift from Feng Zhang [Addgene plasmid no. 48139]).

Successful cloning was confirmed by double digestion with BbsI and AgeI. To determine functionality of sgRNA, sgRNA-PX549 vectors were transfected into NIH-3T3 cells. Genomic DNA was amplified using a T7 endonuclease 1 (T7E1) assay, according to manufacturer’s instructions (New England Biolabs, Bioké, Leiden, The Netherlands) using primers against the modified locus and the top 4 potential gene-coding OT (see Section II in the Online Data Supplement for a list of primers). The presence of indels formation was determined using primers designed to precede a CRISPR type II–specific protospacer-adjacent motif sequence 5′–NGG. Four sgRNAs (targeting exon 1 for Myh6, exon 2 for Tbx20, exon 3 for Myh6, and exon 4 for Tbx20) were designed and cloned into a Cas9-expressing vector and transfected into NIH-3T3 cells (Figure 2A).

AAV9 DNA Vectors

The sgRNAs that appeared the most efficient at inducing DNA strand breaks by in vitro T7E1 assay were cloned into an AAV vector under the Renilla luciferase and the sgRNA backbone—AAV-IGTR-U6-sgRNA (backbone)–pEFS-Rluc-2A-Cre-WPRE-hGFP-pA-TR—was a gift from Feng Zhang (Addgene plasmid no. 60226) which was modified to exclude Cre.

AAV9 Production

Recombinant AAV vectors used in this study were generated by the AAV Vector Unit at ICGEB Trieste (http://www.icgeb.org/avu-core-facility.html) as described previously.

Injection of AAV Vectors Into Neonatal and Adult Mice

Neonatal mice were genotyped at postnatal day 3 (P3) using the Phire Animal Tissue Direct PCR Kit (Fisher Scientific) according to manufacturer’s instructions. At P3 or P10, heterozygous (Myh6−/−) or homozygous (Myh6−/−) Myh6−/− mice or their littermate controls (Myh6-Cre negative) were injected with AAV9-sgRNA at either a dose of 5×1011 (low dose), 1×1012 (medium dose), or 2.5×1012 (high dose) viral genomes per animal by intraperitoneal injection. For dual sgRNA delivery, a medium dose was used (this was the maximum dose that could be achieved with the viral titer obtained).

Adult mice (8 weeks) were anesthetized with a low dose mixture of ketamine (60 mg/kg) and xylazine (7 mg/kg) by intraperitoneal injection and intubated with a tracheal tube connected to a ventilator. Mice were supplemented and maintained under anesthesia with 1.5% isoflurane. A surgical plane of anesthesia was confirmed by a lack of a pain reflex. The free wall of the left ventricle was injected with a high dose of AAV9-sgSav1 in 2 locations (total volume per injection was 6 μL). The muscle and rib cage were closed with 5-0 silk suture, and analgesia (buprenorphine, 0.05–0.1 mg/kg) were given immediately after surgery and as necessary.

Next-Generation Sequencing and Indel Analysis

For sequencing analysis of indels, we prepared cardiac genomic DNA libraries using customized barcoding methods as described by Junker et al.

Statistics

Data were plotted and analyzed using GraphPad Prism. Data were expressed as mean±SEM. Data were analyzed using a Student t test. P<0.05 was considered statistically significant.

Results

Generation and Characterization of Cardiomyocyte-Specific Cas9 Mice

The ability to express Cas9 within specific tissues together with the relative ease to deliver sgRNAs postnatally represents an attractive tool to study gene functions in vivo. To investigate the feasibility of CRISPR/Cas9 as a cardiac postnatal gene-editing tool in vivo, we generated mice that express Cas9 in a cardiac-restricted fashion using 2 different approaches. Mice expressing Cre recombinase after the Myh6 promoter were crossed with homozygous R26-loxP-STOP-loxP-3xFLAG-Cas9-eGFP mouse to generate cardiomyocyte-specific Cas9 mice (Myh6−/− mice; Figure 1A), which concurrently labels all Cas9 cardiomyocytes with eGFP (enhanced green fluorescent protein). In parallel, we generated transgenic mice expressing 3xFLAG and Streptococcus pyogenes Cas9 under the control of the Myh6 promoter. This construct was injected into zygotes to generate cardiomyocyte-specific Cas9 transgenic mice (Online Figure IA). The resulting progenies of both Cas9-expressing mouse models were born at a Mendelian frequency and appeared viable, healthy, and fertile. Relative Cas9 expression in these 2 mouse models was determined by Western blotting against FLAG (Online Figure IB and IC), which showed higher expression of Cas9 in the Myh6−/− mice compared with the transgenic Cas9 mice. We, therefore, decided to use these mice for all subsequent experiments. Whole mount imaging confirmed eGFP (Cas9) expression in the heart of Myh6−/− mice and not in control mice (Figure 1B). We did not detect eGFP expression by stereomicroscope imaging in the liver, lung, kidney, and spleen (data not shown). Confocal imaging confirmed cardiomyocyte-specific expression of Cas9 by costaining with α actinin (2 Figure 1C). Cardiac-restricted Cas9 expression was confirmed by Western blotting against FLAG and eGFP (Figure 1D). Cas9 was tagged with nuclear localization signals to promote its import into the nucleus, and we confirmed the expression of Cas9 within the nucleus by FLAG immunoblotting, which is fused to Cas9 (Figure 1E). Importantly, the expression of Cas9 in cardiomyocytes did not affect cardiac function and structure up to adulthood as evaluated by morphological and echocardiographic analysis, respectively (Figure 1F–1J). In addition, no changes in gene expression of known cardiac stress markers were detected (Figure 1K).

Design and In Vitro Testing of sgRNAs

To investigate whether our Cas9-expressing mice could be used to perform efficient gene editing in vivo, as a proof-of-concept, we selected 2 important cardiac genes that have previously been studied in knockout mice: T-box 20 (Tbx20) and salvador 1 (Sav1). Tbx20 is a cardiac transcription factor critical for both cardiogenesis and cardiac function. Disruption of Tbx20 in adult mice results in severe dilated cardiomyopathy, arrhythmias, and death as early as 5 days postgenetic ablation.24 Sav1 is an integral regulator of the Hippo pathway, which is an evolutionary conserved kinase cascade that serves as a master regulator of development, organ size, and regeneration. Several studies indicate that Sav1 acts as an endogenous repressor of cardiomyocyte proliferation by promoting the phosphorylation of yes-associated protein, thereby limiting cardiac regeneration.25,26

To edit Sav1 and Tbx20, we designed sgRNAs against the genes using the CRISPR design tool (http://crispr.mit.edu/), which systematically screens for OT effects.20 The 20-nucleotide sequences were designed to precede a CRISPR type II–specific protospacer-adjacent motif sequence 5′–NGG. Four sgRNAs (targeting exon 1 for Tbx20 and exon 3 for Sav1; based on previous strategies to generate knockout mice27,28) were designed and cloned into a Cas9-expressing vector and transfected into NIH-3T3 cells (Figure 2A). Based on the
efficiency of the sgRNA-induced DNA DSBs, as assessed by T7E1 analysis in puromycin selected (Cas9 and sgRNA transfected) cells, we selected guide 1 and guide 2 to target the Tbx20 and Sav1 locus, respectively (Figure 2B and 2C). The efficiency was determined by calculating the percentage of indels by band intensity quantification (see Section I in the Online Data Supplement). Guides were designed to minimize potential OT effects in other sites within the genome. To confirm the fidelity of our sgRNA design, we performed T7E1 assays on amplified DNA from the top 4 predicted OT protein-coding genes for each sgRNA, and no OT indels were observed (Figure 2D and 2E). The sequence of the selected sgRNAs for each target and its genomic target location are shown in Figure 2F. We next determined the effect of DNA
disruption in NIH-3T3 cells on subsequent transcription and translation of the target genes. Because we could not reliably detect \(\text{Tbx20} \) transcript or protein expression in NIH-3T3 cells, likely because it is not expressed (data not shown), we determined the effect of sgRNA-mediated disruption on \(\text{Sav1} \). This resulted in a reduction in \(\text{Sav1} \) transcription and translation as assessed by quantitative reverse transcription PCR analysis (Figure 2G) and Western blotting (Figure 2H) for \(\text{sgSav1} \) compared with \(\text{sgControl} \) samples.

In Vivo Genome Editing of the Heart Using Systemic Delivery of sgRNAs With AA V9

Having identified functional sgRNAs, we incorporated the in vitro selected sgRNAs into a U6-driven AA V backbone and selected the cardiotropic AA V9 as the delivery vector (Figure 3A). Mice were injected intraperitoneal with a single dose (5×10^{11} vg/mouse) of AA V9-sgRNA at P3 and were analyzed 2 weeks later at P17 (Figure 3A). Administration of AA V9 by intraperitoneal injection in neonatal mice has previously been shown to mediate robust cardiac gene expression. Quantitative reverse transcription PCR analysis of sgRNA expression showed that the sgRNA is indeed expressed and that its expression is stabilized specifically in the heart by Cas9 (Online Figure IIA). We confirmed that the increase in sgRNA expression in Cas9-expressing mice was not related to an increased viral dose by assessing luciferase mRNA expression (encoded by the construct; Online Figure IIB). As an indication of overall health, body weights were monitored daily, and this was not affected by the sgRNA-mediated editing (data not shown). Furthermore, we observed no effect on cardiac size as determined by the heart weight/tibia length ratio (Online Figure IIC). T7E1 analysis of DNA isolated from whole hearts demonstrated DNA disruption at the targeted loci for \(\text{Tbx20} \) and \(\text{Sav1} \) in \(\text{Myh6Cas9} \) mice while the sgRNAs had no effect in control littermates (Figure 3B and 3C, respectively). Importantly, no DNA DSBs were observed in the kidney, lung, liver, or spleen of \(\text{Myh6Cas9} \) mice confirming the cardiac-restricted Cas9 expression (Online Figure IIF and IIG). A reduction in mRNA expression was observed for both targets (Figure 3D). We confirmed this reduction using 3 additional primer pairs (Online Figure IID and IIE). Furthermore, no difference in \(\text{Tbx20} \) or \(\text{Sav1} \) mRNA expression was detected in uninjected control and \(\text{Myh6Cas9} \) mice, confirming a sgRNA mediated effect (data not shown). However, despite a reduction in mRNA transcript levels, this only translated into a small reduction in protein expression for \(\text{Tbx20} \) and no effect on \(\text{Sav1} \) (Figure 3E–3G). Furthermore, we could not detect a transcriptional effect on known downstream targets (Online Figure IIH and III). To further evaluate the gene-editing effects within cardiomyocytes, we performed immunohistochemistry analysis...
for TBX20, as its nuclear localization allows for quantification of TBX20-positive and -negative cardiomyocytes. TBX20 expression was found to be decreased in Tbx20-edited mice (Online Figure IIJ and IIK). Taken together, these results suggest that there is inefficient gene editing in these mice.

To evaluate whether the viral titer (and therefore the levels of sgRNA) or the exposure time to the sgRNA could improve the targeting efficiency of Cas9, we used the same viral backbone and injected mice with either a low (5×10¹¹ vg/mouse) or high (2.5×10¹² vg/mouse) dose of AAV9-sgTbx20 (Online Figure IIIA). Mice were analyzed 4 weeks later (Online Figure IIIA), and successful DNA DSBs were confirmed by T7E1 analysis for both viral doses (Online Figure IIIB and IIIC). Here, we observed that although the low dose of virus did not affect gene expression, the high dose of sgRNA resulted in a downregulation of mRNA transcripts. (Online Figure IIID). However, for both the low and high doses, we again could not detect an effect on protein expression (Online Figure IIIE–IIIG).

Given that a higher viral dose mediated a greater effect on gene disruption, we selected this dose for subsequent experiments. We next evaluated whether a longer exposure period would improve targeting efficiency rates. To do so, we injected mice with either AAV9-sgTbx20 or -sgSav1 and harvested tissue 8 weeks later (Online Figure IV A). T7E1 analysis of whole heart homogenates determined successful DNA cleavage in Myh6 Cas9 mice injected with AAV9-sgTbx20 and sgSav1 (Online Figure IVB and IVC). No effect on mRNA transcript levels was observed in sgTbx20-edited mice, yet an ≈50% reduction in mRNA transcripts was observed in the sgSav1-edited mice (Online Figure IVD). This suggests a loss of edited cells over time in the sgTbx20-treated mice, similar to what was observed in the mice treated with a low dose of virus for 4 weeks.

Because a longer duration and a higher viral dose failed to mediate a more robust target disruption, we next asked whether increased Cas9 expression could improve targeting efficiency. To do so, we generated homozygous cardiomyocyte-specific Cas9 mice and showed that eGFP (Cas9) expression was increased compared with heterozygous cardiomyocyte-specific Cas9 mice (Online Figure VA and VB). Homozygous Cas9 mice and their Cre- littermate controls were injected with either AAV9-sgTbx20 or -sgSav1 and analyzed 2 weeks later (Online Figure VC). T7E1 analysis of whole heart homogenates showed successful gene disruption (Online Figure VD and VE) and a subsequent reduction in mRNA expression in the homozygous Myh6 Cas9 mice (Online Figure VF). However, no effect on protein expression was detected (Online Figure VG–VI), suggesting that increased Cas9 expression did not improve the targeting efficiency.

In Vivo Genome Editing of the Heart by Local Delivery of sgRNAs Using AAV9

Because our results indicated that the systemic AAV9-sgRNA delivery failed to mediate efficient cardiac gene editing, we next questioned whether the local delivery of sgRNAs could improve targeting efficiency rates. We injected adult mice (8 weeks old) with AAV9-sgSav1 directly into the left ventricular myocardial wall and analyzed mice 2 weeks later (Online Figure VIA). We attempted to specifically isolate the AAV9-sgSav1–injected region of the myocardial wall. By T7E1 analysis, we were able to detect some DNA disruption (Online Figure VIB); however, no effect was apparent on mRNA
expression levels (Online Figure VIC), showing that local delivery of sgRNAs did not improve the editing capacity.

In-Depth Indel Analysis Using DNA Sequencing Demonstrates Target-Dependent Indels

Because our results demonstrated cardiac editing in all our studies by T7E1 analysis, the absence of effect on protein expression, downstream gene targets, and the expected cardiac phenotype likely indicates a mosaic pattern of gene disruption. To precisely determine the level of cardioediting, we performed DNA sequencing of the Tbx20 and Sav1 locus on the hearts isolated from Myh6Cas9 (see Section I in the Online Data Supplement for details of DNA sequencing setup and analysis). In control mice, the detected % of mutated DNA was 0.1% to 0.2%. In AA V9-sgTbx20–injected mice, we detected ≈10.5% of mutated reads (Figure 4A; Online Figure VIIA), of which ≈21% were in-frame (3n) mutations (Figure 4B and 4C; Online Figure VIIIB and VIIIC). However, the majority of the mutations were out-of-frame (≈79%; 3n+2 or 3n+1). In AA V9-sgSav1–injected mice, we detected ≈12.8% of mutated reads (Figure 4D; Online Figure VIIID), of which ≈28% were in-frame and again the majority (≈72%) were out-of-frame mutations (Figure 4E and 4F; Online Figure VIE and VIFF). Of interest, we observed target-specific indels, which were detected in all mice analyzed (Figure 4G; Online Figure VIG).

Cardiomyocytes contribute to ≈30% of the total cells that make up the myocardial wall, yet because of their large structure, they contribute to ≈70% of the myocardial volume.31 Thus, because Cas9 is only active in cardiomyocytes, the percentage of mutated DNA is diluted by noncardiomyocytes by approximately two thirds, and we therefore estimate that the percentage of edited cells is ≈31.5% for Tbx20 and ≈38.4% for Sav1.

Figure 4. In-depth indel analysis of in vivo T-box 20 (Tbx20) and salvador 1 (Sav1) cardioediting by DNA sequencing. Deep sequencing analysis of the Tbx20 and Sav1 locus of hearts isolated at P17 from mice injected with an short guide RNA (sgRNA) at P3 (from Figure 3A). A, Percentage of mutant reads in adeno-associated virus serotype 9 (AAV9)-sgTbx20–injected Myh6Cam mice and (B) the corresponding indel analysis and (C) the most abundant sequencing reads. D, Percentage of mutant reads in AAV9-sgSav1–injected Myh6Cas9 mice and (E) the corresponding indel analysis and (F) the most abundant sequencing reads. G, Size distribution of indels found at each sgRNA targeting site. Data are the average of 4 mice. Myh6 indicates myosin heavy chain 6; and WT, wild type.
In Vivo Genome Editing of Myh6 Using Systemic Delivery of sgRNAs With AAV9 Results in a Severe Dilated Cardiomyopathy

Although our results suggested that using a single sgRNA delivered by AAV9 is inefficient to mediate robust gene editing to study gene knockout, a recent study reported efficient postnatal genome editing in vivo in the heart using CRISPR/Cas9. In this study, the disruption of exon 3 (the first coding exon) of Myh6 using AAV9-delivered sgRNAs in Myh6 Cas9 transgenic mice resulted in a severe dilated cardiomyopathy with compromised cardiac contractility. These results recapitulated the results reported in Myh6 heterozygous and homozygous knockout mice. To determine whether our lack of a gene-editing effect was related to the gene target, mouse model, or viral dose, we performed a side-by-side comparison with the virus used in this study (courtesy of Prof Eric Olson) to disrupt Myh6. We injected our mice with sgMyh6 and sgTbx20 at 1x10^12 viral genomes at P10 and analyzed mice 5 to 6 weeks post-injection, an experimental design identical to the published study (Figure 5A). As expected, AAV9-sgMyh6-injected mice developed a severe cardiac phenotype (Figure 5B–5H) with a reduced ejection fraction (Figure 5C), left ventricular dilation (Figure 5D–5F), and an increased heart weight/tibia length ratio (Figure 5G and 5H). In the Tbx20-edited mice, a small, yet significant increase in ejection fraction (Figure 5C), as well as a reduction in the left ventricular internal diameter (Figure 5D), was measured in the absence of changes in cardiac morphology or the heart weight/tibia length ratio (Figure 5G and 5H).

Because the sgRNAs were delivered using different vector backbones, we determined sgRNA expression in the injected mice by quantitative reverse transcription PCR. We found that sgRNA expression levels were similar in all control mice injected with either virus and that its expression was increased by Cas9, which was more evident in sgTbx20-injected mice (Figure 5I). T7E1 analysis of the targeted locus-amplified genomic DNA confirmed cardiac editing for both genes (Figure 5J and 5K), which was accompanied by a reduction in mRNA expression, to a similar degree in both sgRNA-injected mice (Figure 5L). Different primers were used to detect Tbx20 here compared with previously to better reflect the primers used for detection of Myh6 (see Section I in the Online Data Supplement for details). Western blotting for Tbx20 and Myh6 (with an antibody that does not cross-react with MYH7) showed a significant reduction in protein expression, which was more apparent in Myh6-edited mice (Figure 5M–5O). Furthermore, we were further able to validate the increased expression of the cardiac stress markers Myh7, Nppa, and Nppb in the Myh6-edited mice (Figure 5P), which was also observed previously in Myh6-edited and heterozygous Myh6 knockout mice.

To determine the percentage of edited DNA in these mice, we performed in-depth indel analysis by DNA sequencing of cardiac samples from Tbx20- and Myh6-edited mice. This showed that ≈22% and ≈4% of the target locus was mutated for AAV9-sgTbx20 and -sgMyh6, respectively (Figure 6; Online Figure VIII). In our Tbx20-edited mice, from the 4 mice analyzed, 1 mouse had a much higher percentage of mutant reads (≈45%), which increased the average number of mutant reads.

In the other 3 mice, mutant reads constituted ≈11% to 15% of the total reads (Figure 6A; Online Figure VIIIIA). The frequency and type of mutations observed in the Tbx20-edited mice were similar to our previous data in mice treated at P3 and analyzed 2 weeks later (Figure 4D–4F; Online Figure VIIIID–VIIIIF), suggesting that age and incubation time does not affect the type and frequency of indels introduced. The majority of the mutations (≈86%) were out-of-frame mutations (Figure 6B and 6C; Online Figure VIIIB and VIIIC). In the Myh6-edited mice, we detected ≈3.8% mutated reads, of which the majority (≈91%) were out-of-frame mutations (Figure 6D and 6F; Online Figure VIIIE and VIIIF). Thus, for both targets, these mutations are likely to disrupt endogenous gene function in the cells that are edited. As observed in our previous data (Figure 4G; Online Figure VIIIG), each sgRNA mediates target-specific indels (Figure 6G; Online Figure VIIIG). Finally, in control mice, the detected % of mutated DNA was 0.1% to 1.1%.

Taken together, these data show that despite low mutation frequencies, in particular in Myh6-edited mice, and subsequent downregulation in transcription for Tbx20- and Myh6-edited mice, only Myh6-edited mice develop a cardiomyopathy. Strikingly, the degree of Myh6 targeting and mRNA downregulation correlated with the severity of the cardiac phenotype, fold change sgRNA, and cardiac stress marker expression (Table).

AAV9 Is an Efficient Tool to Deliver sgRNAs by Systemic Injection

Our results show that a higher viral dose resulted in increased Cas9-mediated DNA cleavage (see Online Figure III comparing low dose with high dose). To determine whether the AAV9 delivery of the sgRNA was the limiting factor, we used the sgRNA-ZsGreen construct to trace sgRNA delivery in the heart (Online Figure IXA and IXB). We determined that both a low and high viral dose targets a substantial number of cardiomyocytes (≈60%–≈70%) although with varied expression within cells (Online Figure IXA and IXB). Because of the difference in ZsGreen expression within cells between the doses, it was not possible to image them with the same settings—for the high dose, the fluorescence intensity was reduced for both stereomicroscopy and confocal imaging. Thus, cells targeted with the high viral dose expressed more ZsGreen (sgRNA). Overall, this suggests that a sufficient number of cardiomyocytes are targeted and that increasing the viral titer will increase sgRNA expression within cells.

Chromatin Accessibility of Target Genes

Heterochromatic regions within the genome are less accessible to Cas9, thus reducing its efficiency.13 mRNA transcript analysis of Sav1, Myh6, and Tbx20 suggested that they are expressed at high levels within cardiac tissue. However, to rule out the possibility that Cas9 efficiency is reduced at our targeted sites because of heterochromatic regions, we determined chromatin accessibility in our sgRNA target sites in publicly available Chip-seq databases for neonatal mouse hearts. All gene loci containing the sgRNA target sites displayed features of open chromatin, including the active
enhancer mark H3k27Ac and DNase-Seq hotspots (regions that are more susceptible to DNase activity because of less nucleosomes), confirming that the target sites should all be accessible for Cas9 in the heart (Online Figure X).

Dual sgRNA Strategy to Mediate Precise Genome Editing

Because our results highlighted inefficient targeting using a single sgRNA, we next sought to determine whether the...
simultaneous use of a dual sgRNA could facilitate enhanced efficiencies. We designed 2 sgRNAs to remove exon 3 of Sav1 containing the essential WW45 binding domain—the same approach that was used to generate Sav1 knockout mice. Based on the predicted sgRNA cutting sites, we determined that the selected sgRNAs would remove exon 3 and introduce a stop codon in the transcript read in exon 4 (Figure 7A). Using 2 separate vectors, we tested the functionality of this approach in NIH-3T3 cells (Figure 7B). PCR analysis revealed an efficient deletion of the exon by the 275 bp expected reduction in DNA size (Figure 7C), and this was confirmed by Sanger sequencing (Figure 7D). Although we could not detect any changes on mRNA expression, a robust downregulation in protein expression was detected (Figure 7E and 7F).

Having demonstrated successful gene editing in vitro, we generated a dual sgRNA AAV9 virus to deliver the sgRNAs in vivo. Mice were injected at P3 with 1×10^{12} viral genomes and analyzed 2 weeks later, as with our previous studies using a single sgRNA in heterozygous and homozygous mice (Figure 7G). PCR analysis revealed exon deletion in Myh6Cas9 mice injected with the dual sgRNA (Figure 7H). Dual sgSav1-treated mice had a modest enlargement in their hearts as assessed by the heart weight/tibia length ratio (Figure 7I), suggesting the expected increase in cardiac proliferation as observed in Sav1 knockout hearts. We validated the increase in cardiac proliferation by quantitative reverse transcription PCR for cyclin D1 and Ki67 (Figure 7J). Furthermore, we also found an increase in the hypertrophic markers, Nppa and Nppb (Figure 7J). Although we could not detect a consistent reduction in SAV1 mRNA and protein expression (Figure 7K through 7M), we observed an upregulation of downstream SAV1 targets (Figure 7N), which we had previously (Online Figure IIIH) failed to detect. In a separate experiment, we also tried injecting 2 separate AAV9-sgRNA vectors, which resulted in exon deletion, but the results were less effective with no...
effect on heart weight or Sav1 downstream targets at either 2 or 4 weeks post-injection, highlighting the importance of using a dual sgRNA vector to permit synergistic cutting by Cas9 (data not shown).

Discussion

The discovery that Cas9 can be redirected to mediate highly precise genome editing has demonstrated enormous versatility to study gene function, yet its application to study postnatal cardiomyocyte-specific knockouts remains uncharacterized. Here, we generated cardiomyocyte-specific Cas9 mice and demonstrated that Cas9 expression alone does not affect cardiac function or the expression of cardiac stress markers, which is in line with other studies expressing Cas9 constitutively in the heart.13 We targeted 3 genes critical for cardiac physiology, *Myh6*, *Tbx20* (critical for cardiac function), and *Sav1* (impedes cardiac regeneration), and despite a similar degree of gene disruption, we only observed a cardiac phenotype in *Myh6*-edited mice. Previous studies have focused on disrupting genes that are critical for cardiomyocyte function, yet our study is the first, to our knowledge, to target a nonlethal gene (*Sav1*). Our results suggest that viral delivery of sgRNAs to the heart introduces mosaic gene disruption, whereby only a subset of cells are edited, presenting important limitations for the current application of AAV9-mediated delivery of sgRNAs for cardioediting. Our data are in concert with what has been recently reported by others in the field.15 Finally, we show that a dual sgRNA approach is essential to maximize the percentage of effectively edited cells.

Although a broad evaluation of the feasibility of using Cas9 to perform postnatal gene editing of the heart was lacking to generate knockouts, recent studies have shown successful application of the technology in the heart using similar approaches to our experimental design.13-15 In a study by Xie et al.,14 they generated heterozygous *PRKAG2* mutant mice that developed cardiac hypertrophy, recapitulating the clinical symptoms observed in patients with Wolff–Parkinson–White syndrome. By AAV9-mediated delivery of Cas9 and a single sgRNA directed at disrupting the mutant allele, the authors restored a normal cardiac function in these mice. Here, using DNA sequencing, an indel frequency of 6.5% and 2.6% was measured in mice injected at P4 and P42, respectively, which is comparable with the ≈4% to 15% editing frequency observed in our study (Figures 4 and 6). These results potentially suggest that cardioediting using AAV9 is more permissible in younger mice, perhaps because of the more proliferative state of the cardiomyocytes. This is supported by the fact that we could not detect an effect on mRNA expression in adult mice injected with AAV9-sgSav1 directly into the myocardial wall (Online Figure VI). Although disruption of the *PRKAG2* mutant allele resulted in less mRNA transcripts, no measurable effect was reported on the protein expression of the target14 as was shown in our study for *Tbx20* and *Sav1*. In contrast, for *Myh6*, we observed a significant reduction in protein expression.

Here, we demonstrated that disruption of <5% of *Myh6* was sufficient to drive a severe cardiomyopathy (Figures 5 and 6), which is in line with the previous study cardioediting *Myh6*.11 We speculate that the slightly smaller percentage of edited cells in the *Myh6*-edited mice may be because of apoptosis of the mutated cells although this would have also been expected in the *Tbx20*-edited mice. The fact that a similar disruption of *Tbx20* and *Sav1* (=10%–15%) failed to reproduce the cardiac phenotype reported in knockout models using a single sgRNA may be a result of the sensitivity of the target gene to small perturbations in gene expression. Both heterozygous and homozygous *Myh6* knockout mice develop a severe cardiomyopathy,12 highlighting the sensitivity of this gene to genetic alterations. Thus, for the purpose of gene editing to disrupt mutant alleles or where mosaic targeting is sufficient (such as in muscular dystrophy), CRISPR/Cas9 may be a useful tool. However, for the generation of knockout mice or to study unknown cardiac gene functions, the CRISPR/Cas9 system in its current form is less suitable. If the effect on overall cardiac function is not essential or novel genes are being studied, we would recommend the isolation of targeted cells for downstream analysis. Mosaic gene disruption is particularly attractive when studying genes of which disruption rapidly results in the onset of cardiomyopathy because mosaic targeting would allow mechanistic analysis of gene disruption in vivo. This has been recently elegantly shown by Guo et al.15

We used AAV9 to specifically target Cas9-expressing cardiomyocytes and showed that ≈60% to 70% were successfully
infected and received the sgRNA (Online Figure IX). This is in line with the study by Carroll et al. By in-depth DNA sequencing analysis, we determined that only ≈4% to 15% were efficiently edited by a single sgRNA. If we assume that cardiomyocytes constitute a third of the DNA content in the heart, the percentage of edited cells estimated by DNA sequencing is ≈45%, given that Cas9 is only active in cardiomyocytes. This suggests that a population of cardiomyocytes may be resilient toward editing, and we speculate that this may be related to reduction in chromatin accessibility in postmitotic cells. Higher
viral doses increased the sgRNA expression within cells, which may increase the probability that the DNA is cut by Cas9. Despite successful detection of DNA DSB and a subsequent reduction in transcript expression, we were unable to detect a change in protein expression for Tbx20 and Sav1 using a single sgRNA. In contrast, for Myh6, we observed a reduction in protein expression. However, it is unclear whether the reduction in MYH6 protein expression is directly related to cardiac editing or a secondary effect to heart failure. Importantly, MYH6 is only expressed in cardiomyocytes, and thus the detected reduction in protein expression is a direct reflection of cardiomyocyte protein expression, whereas Tbx20 and Sav1 are expressed ubiquitously in the heart. There are several other potential explanations for the absence of an effect of protein expression for Tbx20 and Sav1. First, CRISPR/Cas9 may mediate monoallelic targeting versus biallelic targeting, allowing for compensatory translation mediated by the intact allele. Although AA9 is highly infectious, it does not integrate into the genome and will therefore be gradually diluted by each subsequent cell division. Neonatal cardiomyocytes do retain some proliferative capacity; however, it is generally accepted that shortly after birth, cardiomyocytes withdraw from the cell cycle. Because our results indicated a high level of sgRNA expression 2 weeks after administration together with the constitutive expression of Cas9, it seems unlikely that biallelic targeting does not occur within targeted cells. Second, the proteins half-life may maintain its abundance within cells for longer periods, although incubations (up to 8 weeks) did not reduce protein expression.

DNA repair by nonhomologous end joining ultimately determines the subsequent outcome of the DNA DSB, resulting in variances in the relative percentage of in-frame and out-of-frame mutations. Here, we observed target-dependent indels that were highly consistent across mice at different ages for the targeted loci (Figures 4 and 6). Although the indel pattern was previously thought to be random, our data support a recent study that showed that the repair profile is related to the unique protospacer sequence, making it possible to design sgRNAs that predominantly produce out-of-frame mutations. However, to maximize the percentage of edited cells, our results strongly suggest the application of a dual sgRNA strategy, and importantly the sgRNAs need to be transcribed from the same vector. The improved efficiency of our dual sgRNA approach in vivo compared with either a single sgRNA or with 2 sgRNAs delivered from 2 vectors suggests that the lack of an effect with a single sgRNA is not because of the selection of inefficient sgRNAs. Although using a dual sgRNA approach is still likely to result in a mosaic pattern of gene disruption, it will increase the percentage of cells in which the gene is successfully mutated.

Conclusions/Future Directions

With the opportunity to express Cas9 within specific tissues by using tissue-specific promoters and the availability of a plethora of delivery vectors, including AAV, lentiviruses, hydrodynamic fluids, vesicles, and nanoparticles, to deliver sgRNAs, the ability to study genes in a robust and timely fashion using CRISPR/Cas9 seems promising. However, our results highlight important limitations of using CRISPR/Cas9 to study postnatal cardiac gene function when a high level of gene disruption is required to induce a phenotypic effect. We underscore the usefulness of using dual sgRNAs because this improves precise genome editing. We would, therefore, recommend the design of sgRNAs that flank exons encoding important domains of the protein. Further optimization of cardiac CRISPR/Cas9 to perform gene editing will be required to increase the fidelity of this system to study the effects of gene knockdown on cardiac function in vivo.

Acknowledgments

We acknowledge Lennart Kester for assisting with the DNA sequencing protocol, Jeroen Kervorg for performing the zygote injections for the generation of myosin heavy chain 6 (Myh6)-CRISPR-associated protein 9 transgenic mice and histological support, Kees Jan Boogerd for identification of open chromatin sites, and Maarten Hoppenbrouwers for his technical assistance. We thank Anke de Graaff and the Hubrecht Imaging Center for supporting the imaging and the Hubrecht Institute animal facilities. We also thank Prof Eric Olson and his laboratory (University of Texas Southwestern Medical Center) for generating the Myh6 short guide RNA cloning vectors and granting us permission to use it in our studies. Finally, we thank Jose Gomez-Arroyo (University of Cincinnati) for reviewing and editing the article and for graphics.

Sources of Funding

This study was funded by the Foundation Leducq (14CVD04) and the European Research Council (ERC CoG 615708 MICARUS).

Disclosures

E. van Rooij is scientific co-founder and SAB member of miRagen Therapeutics, Inc.

References

Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption

Anne Katrine Johansen, Bas Molenaar, Danielle Versteeg, Ana Rita Leitoguinho, Charlotte Demkes, Bastiaan Spanjaard, Hester de Ruiter, Farhad Akbari Moqadam, Lieneke Kooijman, Lorena Zentilin, Mauro Giacca and Eva van Rooij

Circ Res. 2017;121:1168-1181; originally published online August 29, 2017;
doi: 10.1161/CIRCRESAHA.116.310370

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/121/10/1168

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2017/08/29/CIRCRESAHA.116.310370.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
Data Supplement I

Materials and Methods

Animals

All experiments were carried out in accordance with the guidelines of the Animal Welfare Committee of the Royal Netherlands Academy of Arts and Sciences. To generate an organ-restricted Cas9 mouse, homozygous Cre dependent Rosa26-Cas9 mice (B6;129-Gt(Rosa)26Sortm1(CAG-cas9*,-EGFP)Fezh/J; stock number 024857, obtained from Jackson Labs, Germany, which were originally generated on a C57/BL6N background) were crossed with Myh6-Cre transgenic (tg) mice (Cre expression driven by a cardiomyocyte-specific promoter; a generous gift from Jeffrey Molkentin, Cincinnati Children's Hospital Medical Center, bred on a C57/BL6N background) to generate Myh6-Cas9 mice. For all experiments, Cre negative littermates were used as a control.

To generate transgenic mice with Cas9 expression driven by the cardiomyocyte specific promoter, Myh6, we PCR amplified 3XFLAG-Cas9 from the plasmid pX330-U6-Chimeric_BB-CBh-hSpCas9, a gift from Feng Zhang (Addgene plasmid # 42230), using primers with added restriction sites Sall and HindIII (see data supplement S2 for primer sequences). The resulting product was purified and inserted into Sall and HindIII digested pJG/ALPHA MHC, a gift from Jeffrey Robbins (Addgene plasmid # 55594), containing the last exon of Myh7, an intergenic region and first 3 non-coding exons of Myh6 upstream of the inserted Cas9 and a human growth hormone polyA (hGpA) sequence downstream. Construct insertion was determined by restriction digestion and sequencing. The Myh6-3XFLAG-Cas9-hGpA plasmid was linearized by restriction digestion using NotI followed by gel extraction and purification using the Tube-O-Dialyzer kit (G biosciences, VWR International B.V, Amsterdam, The Netherlands) according to manufacturer’s instructions. The sample was diluted to 2ng/µl and injected into zygotes of F1 C57/BL6/CBA mice. Founder mice (F0) were identified by ear biopsy genotyping. From 50 animals, 1 F0 mouse was identified which was bred with C57/BL6 mice. See data supplement S3 for plasmid map.

Animal numbers used

For the specific number of animals used per experiment, refer to figure legends. For the evaluation of the effect of Cas9 expression in adult mice, a total of 7 mice were analysed per group. To evaluate the effect of sgRNA mediated Cas9 disruption by intra-peritoneal (i.p) injection, 3-10 mice were analysed per group. To evaluate the effect of sgRNA mediated Cas9 disruption by intra-cardiac injection, 5-7 mice were analysed per group.

sgRNA Design

We designed sgRNAs for SpCas9 target selection using the CRISPR design tool (http://crispr.mit.edu/), which systematically screens for off-target (OT) effects1. The 20-nucleotide sequences were designed to precede a CRISPR type II specific protospacer adjacent motif (PAM) sequence 5’–NGG. sgRNA sequences are listed in data supplement S2.

sgRNA Constructs and Transfection

Single stranded sgRNA sequences were annealed and cloned into pSpCas9(BB)-2A-Puro (PX459) following restriction digestion with BbsI (PX459 was a gift from Feng Zhang (Addgene plasmid # 48139)).2 Successful cloning was confirmed by double digestion with BbsI and AgeI. To determine functionality of sgRNA, sgRNA-PX459 vectors were transfected into 30% confluent NIH-3T3 cells (Hubrecht Institute Cell Bank) in 6 well plates using Lipofectamine 3000 (Invitrogen; Fisher Scientific, Landsmeer, The Netherlands) according to manufacturer’s instructions, with slight modifications. Briefly, 2.5µg plasmid
DNA and 2.5µl Lipofectamine 3000 was diluted in 100µl Opti-Mem (Fisher Scientific). To the DNA sample, 2.5µl of p3000 was added. Samples were combined and incubated for 10 mins and then added drop-wise to each well. For dual guide experiments, 2.5µg of plasmid DNA was added for each vector. 24 hours later, cells were sorted for puromycin resistance in medium containing 2.5µg/ml puromycin for 48 hours. Cell culture medium was replaced and cells were grown for an additional 48 hours prior to cell harvest and genomic DNA extraction using the DNeasy Blood and Tissue kit (QIAGEN Benelux B.V., Venlo, The Netherlands) according to manufacturer’s instructions, RNA isolation and protein isolations (see below).

T7 Endonuclease (T7E1) Assay and Indel Analysis

Genomic DNA was amplified with Taq Roche DNA polymerase (Sigma-Aldrich, Zwijndrecht, The Netherlands) using primers against the modified locus and the top four potential gene-coding off-targets (see data supplement S2 for a list of primers). Indel formation was determined using the T7E1 assay, according to manufacturer’s instructions (New England Biolabs (NEB), Bioké, Leiden, The Netherlands), with slight modifications. Briefly, 150ng of DNA was PCR amplified and then denatured at 95°C and re-annealed by reducing the temperature by 5°C/minute. The resulting product was incubated with T7E1 at a concentration of 0.07units/µl for 30 minutes and then separated on a 1.5% agarose gel. Band intensity quantification (indel analysis) was performed as previously described 2. Briefly, indel frequency was calculated using the formula indel (%) = 100 x (1-√(1-ƒcut)), where ƒcut=(b+c)/(a+b+c), where a is the integrated density of the undigested PCR product and b and c are the integrated densities of the cleaved PCR products.

AAV9 DNA Vectors

The sgRNA that appeared the most efficient at inducing DNA strand breaks by in vitro T7E1 assay were cloned into an AAV vector with an expression cassette for Renilla luciferase and the sgRNA backbone - AAV:ITR-U6-sgRNA(backbone)-pEFS-Rluc-2A-Cre-WPRE-hGHpA-ITR was a gift from Feng Zhang (Addgene plasmid # 60226) 3 which was modified to exclude Cre by restriction digestion with NheI and HindIII (NEB) and recombined using the forward (5' ′-CTAGCGGAAGCGGAGATATCA-3′) and reverse (5′ ′-AGCTTGATATCTCCGCTTCCG-3′) primers. Sanger sequencing confirmed successful removal of Cre using a primer located upstream of the Cre coding sequence (5′ ′-CCAATGCTATTGTTGAAGGTGCC-3′). See data supplement S3 for plasmid map. To generate a dual sgRNA vector, we PCR amplified the U6-sgRNA(backbone) from the plasmid # 60226 with the inserted sgRNA targeting the 3′ end of the gene using the forward primer with a Xba1 restriction site:

(GCTCTAGAGAGGGCCTATTTCCCATGATTCCTTCATA)

And the reverse primer with a Kpn1 restriction site:

(GCGGTACCAAAAAGCACCAGCTCGGTGCC).

We digested the destination plasmid (#60226 with the sgRNA targeting the 5′ end) and the resulting PCR product with Kpn1 and Xba1 and ligated the PCR product into the vector for transformation. We confirmed sequence insertion by restriction digestion and sequencing using primers identical to the sgRNA insert sequence.

AAV9 Production

Recombinant AAV vectors used in this study were generated by the AAV Vector Unit at ICGEB Trieste (http://www.icgeb.org/avu-core-facility.html) as described previously 4. Briefly, HEK293T cells were co-transfected with a triple-plasmid for packaging of AAV of serotype 9. Viral stocks were obtained by CsCl2 gradient centrifugation and titration of AAV viral particles was determined by qRT-PCR for quantification of viral genomes (vg), as
described previously. The AAV9 vector encoding Myh6 was a gift from Eric Olson and the ICGEB. The viral preparations had titers between 3.0×10^{12} and 1.3×10^{14} vg/ml.

Injection of AAV Vectors into Neonatal mice

Neonatal mice were genotyped at postnatal day 2 (P2) using the Phire Animal Tissue Direct PCR Kit (Fisher Scientific) according to manufacturer’s instructions. At P3 or P10 heterozygous or homozygous Myh6^{Cas9} mice or their littermate controls (Myh6-Cre negative) were injected with AAV9-sgRNA at either a dose of 5×10^{11} (low dose; LD), 1×10^{12} (medium dose; MD) or 2.5×10^{12} (high dose, HD) viral genomes (vg) per animal by intraperitoneal (i.p) injection. For dual sgRNA delivery using two viral vectors, the 3′ and 5′ guides were mixed in equal units of vg and administered at a final multiplicity of infection (MOI) of 2.5×10^{12} vg per animal by i.p. injection. For dual sgRNA delivery with the same vector, a medium dose was used (this was the maximum dose that could be achieved with the viral titer obtained). Animals were sacrificed and organs isolated 2, 4, 6 or 8 weeks post exposure. All experiments were done blindly – the genotype of the mice was not known to the researcher injecting the mice and we did not uncover the genotype of the mice until after qRT-PCR analysis. A total of 4-10 mice were used per group.

Intracardiac AAV9 Delivery

Mice were anesthetized with a low dose mixture of ketamine (60mg/kg) and xylazine (7mg/kg) by i.p. injection and intubated with a tracheal tube connected to a ventilator. Mice were supplemented and maintained under anesthesia with 1.5% isoflurane. A surgical plane of anesthesia was confirmed by a lack of a pain reflex. To expose the heart, the skin was incised at the third intercostal space, followed by retraction of the pectoral muscles and intercostal muscles. The free wall of the left ventricle was injected with a HD of AAV9-sg^{Sav1} in 2 locations (total volume per injection was 6 µl). The muscle and rib cage was closed with 5-0 silk suture and analgesia (buprenorphine, 0.05-0.1mg/kg) were given immediately after surgery and as necessary. A total of 5-7 mice were analysed per group.

Echocardiography

Cardiac function was determined by two-dimensional transthoracic echocardiography on sedated mice (2-2.5% isoflurane). This analysis was performed with a Visual Sonic Ultrasound system with a 30 MHz transducer. The heart was imaged in a parasternal short-axis view at the level of the papillary muscles, to record M-mode measurements, determine heart rate, wall thickness, and end-diastolic and end-systolic dimensions. % Ejection fraction (EF) was measured as an index of contractile function and was calculated automatically by the software.

Tissue Harvest

At sacrifice, whole hearts were excised from the chest cavity and cleared of blood with ice-cold PBS. Whole hearts (atria + ventricles) were weighed to obtain the heart weight (HW) to determine hypertrophy by expressing the HW over the body weight (BW) and tibia length (TL). The atra’s were subsequently removed and the ventricles (right and left) were cut for DNA, RNA and protein analysis. In addition, the lung, liver, spleen and kidney were isolated for off-target analysis. For intra-cardiac injections, the injected myocardium was specifically isolated, cut into small pieces and divided for DNA, RNA and protein analysis.

RNA and DNA isolation

Total RNA and DNA was purified from isolated organs with TRIzol reagent (Fisher Scientific) according to manufacturer’s instructions. One microgram of RNA was reverse transcribed to synthesize cDNA using iScript Reverse transcriptase kit (Bio-Rad, Veenendaal, The Netherlands).
qRT-PCR

Quantitative PCR was performed using iQ SYBR Green supermix (Bio-Rad) according to manufacturer’s instructions in a CFX96 PCR system. Primer sequences are listed in data supplement S2. All values were normalized to Gapdh. Note that in the main figures, the forward primers to identify target disruption were located on the sgRNA cutting site, apart from in figure 5 where primers were used to detect all isoforms. The reason for this discrepancy was to standardize the protocol with that for the Myh6 edited mice.

Western Blotting

Cardiac ventricles, lung, liver, kidney and spleen were homogenized in 400μl of ice-cold RIPA buffer supplemented with a cocktail of protease inhibitors (cOmplete, Sigma-Aldrich) followed by ice-solubilization and cell fractioning prior to protein quantification (Bradford Assay, Bio-Rad). For NIH-3T3 isolations, 120μl of RIPA buffer with supplements was used. 40μg (organ lysates) or 10μg (cell lysates) of protein was separated by SDS-PAGE in a 12% acrylamide gel and analysed by Western blotting using antibodies against TBX20 (0.1μg/ml 5% BSA-TBS-T v/v, Santa Cruz Biotechnology, Heidelberg, Germany sc134061), SAV1 (1:1000 5% BSA-TBS-T v/v, Cell Signaling, #13301), FLAG (0.78μg/ml, Sigma, F3165) or eGFP (0.5μg/ml Abnova, MAB1765, The Netherlands). GAPDH (0.2μg/ml 5% milk-TBS-T v/v Millipore) was used as the internal loading control and for quantification analysis. Blots were imaged with a ImageQuant Las4000 scanner (GE Healthcare Life Sciences).

For the specific detection of MYH6 protein, we extracted antibody from a B lymphocyte cell line, BA-G5 (ATCC®HB27™, Rockville, USA) derived from spleen cells of animals immunized with bovine fetal skeletal muscle myosin. All immunoblots were incubated with medium from 1 x 10^6 cells/mL.

To isolate nuclear and cytoplasmic fractions for determination of Cas9 localization, we used a previously published protocol, with minor modifications. Briefly, we excised the heart, rinsed in PBS, cut into small pieces and homogenized on ice using a tissue grinder in 2mL of lysis buffer 10mM Tris pH 7.5, 15mM NaCl, and 0.15% Nonidet P-40 in deionized water with protease inhibitors. The lysate was poured through a 100μm strainer and centrifuged at 4,000 rpm for 5 minutes at 4°C. The supernatant is the cytosolic fragment. The nuclear pellet was resuspended in 500μl lysis buffer and layered on top of 1ml of sucrose buffer (24% sucrose weight/volume, 10mM Tris pH 7.5, and 15mM NaCl in deionized water with protease inhibitor) and centrifuged at 5,000 rpm for 10 minutes at 4°C. The supernatant was discarded and the resultant nuclear pellet was rinsed once with PBS and then resuspended in 200μl detergent extraction buffer (20mM HEPES pH 7.6, 7.5mM MgCl2, 0.2mM EDTA, 30mM NaCl, 1M Urea, 1% NP-40 in deionized water with protease inhibitors). To determine the purity of the fractions, we used antibodies against histone H3 (nucleus; 1μg/ml 5% BSA-TBS-T v/v, Abcam, ab1719, I.T.K. Diagnostics, The Netherlands) and α-tubulin (cytoplasmic; 4.72μg/ml 5% BSA-TBS-T v/v, Sigma T5168).

Next Generation Sequencing and Indel Analysis

For sequencing analysis of indels, we prepared cardiac genomic DNA libraries using customized barcoding methods as described by Junker et al. To generate the library, a low-cycle PCR using the QS® High-Fidelity 2X Master Mix (NEB) on 60ng genomic DNA was performed to amplify and barcode the target site using forward primers with a partial 5’ Illumina adapter and reverse primers with a 3’ Illumina adaptor, with a unique barcode sequence present in either the forward or the reverse primer. For the sequencing experiments where the mutations are present in the right mate read (from the 3’ primer), the forward primer was located 238 to 217 base pairs upstream of the sgRNA cut site for Sav1, 244 to 223
base pairs for Tbx20 and 218 to 199 base pairs for Myh6. The reverse primer was located 16 to 35 base pairs downstream of the gRNA cut site for Sav1, 30 to 48 base pairs for Tbx20 and 18 to 39 base pairs for Myh6. For the sequencing experiments where the mutations are present in the left mate read (from the 5’ primer), the forward primer was located 48 to 26 base pairs upstream of the gRNA cut site for Sav1, 44 to 26 base pairs for Tbx20 and 48 to 30 basepairs for Myh6. The reverse primer was located 204 to 226 base pairs downstream of the gRNA cut site for Sav1, 198 to 223 base pairs for Tbx20 and 203 to 223 base pairs for Myh6. The targeted locus was PCR amplified using as short cycle PCR (9 cycles). Subsequently, barcoded samples were pooled and purified using QIAquick PCR Purification Kit (QIAGEN) followed by 2 bead cleanups using The Agencourt AMPure XP system (Beckman Coulter, Brea USA), all according to manufacturer’s instructions. A second round library preparation PCR was performed using a 5’ and 3’ primer containing the remaining Illumina adaptor sequences (See data supplement S2 for primer sequences). PCR amplification was performed using a short cycle PCR (12 cycles) and purified as previously described prior to sequencing.

The Illumina NextSeq 500/550 High-Output v2 Kit (150 cycles) was used for sequencing. Strand-specific paired-end base-pair reads were generated on an Illumina NextSeq 500 to obtain a left mate read (from the 5’ primer) and a right mate read (from the 3’ primer). The sequencing data was mapped to Sav1, Tbx20 and Myh6 using bwa mem 0.7.10. We first selected for reads that had lengths of 74, 75 or 76 base pairs, as this constituted at least 95% of all reads mapped to the genes. For the experiments where the mutations could be identified in the right mate read, reads were analysed if the left mate was mapped in the forward direction and contained the correct barcode and if the right mate was mapped in the reverse direction and started with the primer sequence. For the experiments where the mutations could be identified in the left mate read, reads were analysed if the left mate was mapped in the forward direction and started with the primer sequence and if the right mate was mapped in the reverse direction and contained the barcode sequence. For all experiments, the read containing the barcode was only used for sample identification and the complementary read was used for alignment. To identify indels, we first classified right mate reads using the CIGAR string, which describes the length and position of the indels in the alignment, combined with the 3’ location of the right mate. Within each CIGAR string we performed a sub-classification based on which sequences it contained. We retained CIGAR strings for which we saw at least 20 reads in a library and that made up at least 5% of all reads in its CIGAR-class. We next discarded all CIGAR strings that contained partial soft-clipped part(s) in combination with partial mapped parts that had wild-type sequences. This was done because it was not possible to determine for these CIGAR strings whether it depicted a wild-type sequence or a mutant sequence that contained a mutation in the soft-clipped part(s) of the read. We divided the remaining CIGAR strings in subgroups based on the total amount of base pair shifts in the reading frame resulting from all indels combined. For each base-pair shift, we calculated the percentage of reads belonging to all CIGAR strings with the corresponding base-pair shift relative to the total number of reads. The total number of reads that were used for the analysis was between 1.9 and 0.18 million reads. Except for a NGS experiment on one Myh6 sample, where the number of reads was 7000. However, results in this sample were comparable to the results of the NGS experiment on the other Myh6 samples.

Immunohistochemistry

Whole heart samples were fixed in 4% paraformaldehyde, embedded in paraffin and cut into 4µm sections. Sections were dewaxed and rehydrated through an ethanol to water gradient and antigen retrieval was performed in boiling 10 mmol/L Tris-EDTA with 0.05% tween for 20 minutes followed by a cool down period of 30 minutes. Non-specific binding was blocked with 1% BSA in PBS for 1 hour at room temperature. Sections were incubated overnight with antibodies against eGFP (20µg/ml, GFP-1010, Aves) or TBX20 (2µg/ml, Allele Biotechnology, ABP-PAB-11248) and sarcomeric alpha actinin (ACTN2, 1:400,
HPA008315, Sigma-Aldrich) in 1% BSA-TBS-T v/v. Excess primary antibody was washed off in 3 x PBS washes and sections were incubated with ALEXA-flour secondary antibodies (anti-chicken 488 for GFP and anti-rabbit 568 for ACTN2). Nuclei were stained with DAPI and sections were mounted for confocal imaging. Hematoxylin and eosin stains were performed using standard protocols.

To image ZsGreen expression, we preserved the fluorescence by fixation in a low percentage paraformaldehyde buffer (1% paraformaldehyde, 0.2% NaIO₄, 61mM Na₂HPO₄, 75mM L-Lysine and 14 mM NaH₂PO₄ in H₂O) overnight at 4°C. After fixation, organs were placed in a 30% sucrose solution (w/v) overnight prior to embedding in Tissue Freezing Medium (Leica Microsystems Nussloch GmbH, Germany). 10µm sections were cut using a Leica CM3050 cryotome, dried and mounted for imaging.

Imaging Equipment

All confocal imaging was acquired using a Leica SP8 Confocal Microscope (Figure 1C and Figure S9B). For tiles scans of histological sections, we used a Leica DM4000 (Figure 5H). For stereomaging of the hearts we used a Leica M165 FC fluorescence stereomicroscope (Figure S9A).

Statistics

Data was plotted and analysed using GraphPad Prism. Data were expressed as mean ± SEM. Data was analysed using a student’s t test. P<0.05 was considered statistically significant.

Reference List

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tbx20 sgRNA 1 (T1) fwd</td>
<td>GCTGGACATAAGCGCGGCGA (antisense)</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Tbx20 sgRNA 1 (T1) rv</td>
<td>TCGCCCGCTTATGTCCAGGC</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Tbx20 sgRNA 2 (T2) fwd</td>
<td>GCCGCCGCTTATGTCCAGCG (sense)</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Tbx20 sgRNA 2 (T2) rv</td>
<td>CGGCTGAGACATAAGCGGCGG</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Tbx20 sgRNA 3 (T3) fwd</td>
<td>ATCGCCGCTTATGTCCAGCG (sense)</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Tbx20 sgRNA 3 (T3) rv</td>
<td>CTGGACATAAGCGGCGGAT</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Tbx20 sgRNA 4 (T4) fwd</td>
<td>GCCGCCGCTTATGTCCAGCG (antisense)</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Tbx20 sgRNA 4 (T4) rv</td>
<td>CGGCTTATGTCCAGCGGAT</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Sav1 sgRNA 1 (S1) fwd</td>
<td>GGAAGTCCTTCTCGTTCAAG (antisense)</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Sav1 sgRNA 1 (S1) rv</td>
<td>CTGAAACGAGAAGGACTTCC</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Sav1 sgRNA 2 (S2) fwd</td>
<td>AGTCATCCCCTTGAAGAGAAGA (sense)</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Sav1 sgRNA 2 (S2) rv</td>
<td>TCTCGTTCAAGGGGAGTACT</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Sav1 sgRNA 3 (S3) fwd</td>
<td>AGAATTTGGAACCTATTACG (sense)</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Sav1 sgRNA 3 (S3) rv</td>
<td>TAGAGATGTAGCCGACTTCC</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Sav1 exon removal 5′ end fwd</td>
<td>GAGTCACGGCTACATCTCTA (sense)</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Sav1 exon removal 5′ end rv</td>
<td>TCTCCTCCAGGGGAGTACT</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Sav1 exon removal 3′ end fwd</td>
<td>ACCCCCTGTGCTCCAGGGAAGTAA (sense)</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Sav1 exon removal 3′ end rv</td>
<td>TTACCTCGAGACAGGAGGTGT</td>
<td>In vitro and in vivo sgRNA</td>
</tr>
<tr>
<td>Casp6 fwd</td>
<td>GAGAAGTTTCTGCGGCTGTG</td>
<td>Sav1 off-target 1 T7E1</td>
</tr>
<tr>
<td>Casp6 rv</td>
<td>CAAACAGGGAGGACAGGAGGTG</td>
<td>Sav1 off-target 1 T7E1</td>
</tr>
<tr>
<td>Acot11 fwd</td>
<td>AAGGTTTCTCAGGGGAGGACAG</td>
<td>Sav1 off-target 2 T7E1</td>
</tr>
<tr>
<td>Acot11 rv</td>
<td>ATCCGGCATCAACAGAAGGACAC</td>
<td>Sav1 off-target 2 T7E1</td>
</tr>
<tr>
<td>Tmem2 fwd</td>
<td>TGCACTGGTGTATGTCAGAG</td>
<td>Sav1 off-target 3 T7E1</td>
</tr>
<tr>
<td>Tmem2 rv</td>
<td>CGCAGCTTACAGAAGAAGGAGTGTG</td>
<td>Sav1 off-target 3 T7E1</td>
</tr>
<tr>
<td>Oshpl10 fwd</td>
<td>TATGCAACAGCTGCTCCTGAC</td>
<td>Sav1 off-target 4 T7E1</td>
</tr>
<tr>
<td>Oshpl10 rv</td>
<td>CAAACAGAGGGCTATATCCAGG</td>
<td>Sav1 off-target 4 T7E1</td>
</tr>
<tr>
<td>Rab3gap2 fwd</td>
<td>GACAAAACCCAGCTAGCAC</td>
<td>Tbx20 off-target 1 T7E1</td>
</tr>
<tr>
<td>Rab3gap2 rv</td>
<td>TGCCAGACTCCAGATCAGTGT</td>
<td>Tbx20 off-target 1 T7E1</td>
</tr>
<tr>
<td>Scp2 fwd</td>
<td>AGAGAAAGACTGGAGTGTGGGC</td>
<td>Tbx20 off-target 2 T7E1</td>
</tr>
<tr>
<td>Scp2 rv</td>
<td>ACATTCCTCAAGCGGGACT</td>
<td>Tbx20 off-target 2 T7E1</td>
</tr>
<tr>
<td>Ttl53 fwd</td>
<td>TGAGTAAACGGGAGGAGCAG</td>
<td>Tbx20 off-target 3 T7E1</td>
</tr>
<tr>
<td>Ttl53 rv</td>
<td>AATCCTCAGGAGGAGCTCTC</td>
<td>Tbx20 off-target 3 T7E1</td>
</tr>
<tr>
<td>Ptk7 fwd</td>
<td>GTAAGGAGCCTGGATGTTGAG</td>
<td>Tbx20 off-target 4 T7E1</td>
</tr>
<tr>
<td>Ptk7 rv</td>
<td>TGAATGACAGTCCAGGAAGC</td>
<td>Tbx20 off-target 4 T7E1</td>
</tr>
<tr>
<td>Tbx20 exon 1 fwd</td>
<td>ATCGCCGCTTATGTCCAGC</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Tbx20 exon 2 rv</td>
<td>TGTGCACAGTCCAGGAGGAGGT</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Tbx20 exon 7 fwd</td>
<td>CACCTATGGGAGGAGAGATG</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Tbx20 exon 8 rv</td>
<td>TGACGATAACCAGGAAGCAG</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Tbx20 exon 3 fwd</td>
<td>TCTCTGTCAGAGCCAGCAG</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Tbx20 exon 3/4 rv</td>
<td>CATCCTCTGCCCAGCAGGTG</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Gene</td>
<td>Exon</td>
<td>Forward Primer</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Tbx20</td>
<td>exon 6</td>
<td>CCGTTTGCCAAAGGATTCCG</td>
</tr>
<tr>
<td>Tbx20</td>
<td>exon 7</td>
<td>AAAGGCTGATCCTCGACTCTC</td>
</tr>
<tr>
<td>Tbx20</td>
<td>exon 7</td>
<td>AACCTAGAGTGGAGGAGACTG</td>
</tr>
<tr>
<td>Tbx20</td>
<td>exon 8</td>
<td>ATCGGTGCTGCTATGGATGC</td>
</tr>
<tr>
<td>Sav1</td>
<td>exon 3</td>
<td>AGTCACTCCCTTGAAGAAGAGA</td>
</tr>
<tr>
<td>Sav1</td>
<td>exon 4</td>
<td>TGTGAGCTGATCGTCGAGG</td>
</tr>
<tr>
<td>Sav1</td>
<td>exon 5</td>
<td>AGCATTCCCTGAGCTGTCGAGG</td>
</tr>
<tr>
<td>Sav1</td>
<td>exon 6</td>
<td>TCAGCATCCCTGAGCGG</td>
</tr>
<tr>
<td>Sav1</td>
<td>exon 7</td>
<td>ATGCTGTCCGAGAAGACCGAAG</td>
</tr>
<tr>
<td>Sav1</td>
<td>exon 1</td>
<td>ATGCTGTCCGAGAAGACCGAAG</td>
</tr>
<tr>
<td>Sav1</td>
<td>exon 2</td>
<td>GGTAGTAGCAGAGAGTTCCGAG</td>
</tr>
<tr>
<td>Sav1</td>
<td>exon 4</td>
<td>GCCGAGGCACCTGTGAAATATG</td>
</tr>
<tr>
<td>Sav1</td>
<td>exon 5</td>
<td>AGCATTCCCTGAGCTGTCGAGG</td>
</tr>
<tr>
<td>Myh6</td>
<td>fwd</td>
<td>GTTAAGGCAAGGATCGTGTG</td>
</tr>
<tr>
<td>Myh6</td>
<td>rv</td>
<td>GCCATGTCTGCTGATCGTCTG</td>
</tr>
<tr>
<td>Irx4</td>
<td>fwd</td>
<td>CCTGCTGCTCCTGCTGTCGAG</td>
</tr>
<tr>
<td>Irx4</td>
<td>rv</td>
<td>TAGACAGAGGCAAGTAGAGG</td>
</tr>
<tr>
<td>Irx5</td>
<td>fwd</td>
<td>AGCCCAACACTGTGCTGTCGAG</td>
</tr>
<tr>
<td>Irx5</td>
<td>rv</td>
<td>AGCGGTGGGCTACTGGAGG</td>
</tr>
<tr>
<td>Gata4</td>
<td>fwd</td>
<td>CTTGAGCCCTCATAACAGAGT</td>
</tr>
<tr>
<td>Gata4</td>
<td>rv</td>
<td>GTGGGCTAGTCTGCTGAGTT</td>
</tr>
<tr>
<td>Snai2</td>
<td>fwd</td>
<td>TGAAGATGACATCTCGAGAACC</td>
</tr>
<tr>
<td>Snai2</td>
<td>rv</td>
<td>CAGTGAAGGCAAGAGAGAAAGG</td>
</tr>
<tr>
<td>Birc5</td>
<td>fwd</td>
<td>AAGAAGGCTGCGCCTCCTGTCAGGG</td>
</tr>
<tr>
<td>Birc5</td>
<td>rv</td>
<td>TAAAGCAGAAAAAACAACCTGAGGG</td>
</tr>
<tr>
<td>Sox2</td>
<td>fwd</td>
<td>CTTGAGGCTGCTGCGTCAAGAGGG</td>
</tr>
<tr>
<td>Sox2</td>
<td>rv</td>
<td>CTGGTCTGTCCTGCGTCAAGAGGG</td>
</tr>
<tr>
<td>Tbx5</td>
<td>fwd</td>
<td>AGCAGAGGAGGAGAGAGGAGA</td>
</tr>
<tr>
<td>Tbx5</td>
<td>rv</td>
<td>ATCTCTGTGCCCCTCCCTGTCAGGG</td>
</tr>
<tr>
<td>Igf1</td>
<td>fwd</td>
<td>TTTAG TTCGTGCTGCTGCTGACC</td>
</tr>
<tr>
<td>Igf1</td>
<td>rv</td>
<td>GTCTGATAGCTGCTGCTGCTGAGGG</td>
</tr>
<tr>
<td>Ccnd1</td>
<td>fwd</td>
<td>CGAGAAGGATGTGCTATCTCAGCTG</td>
</tr>
<tr>
<td>Ccnd1</td>
<td>rv</td>
<td>GCATTTTGGAGGAGGAAGTGTTC</td>
</tr>
<tr>
<td>Ki67</td>
<td>fwd</td>
<td>CTTCTGCTGTCCTGCGAGAAGA</td>
</tr>
<tr>
<td>Ki67</td>
<td>rv</td>
<td>GGCCTTCTCAGTCTGCTGCTGTCTG</td>
</tr>
<tr>
<td>Nppc</td>
<td>fwd</td>
<td>GAGTCCCTGGCTGCTCAAGG</td>
</tr>
<tr>
<td>Nppc</td>
<td>rv</td>
<td>CAACCTACGTGCGTCAAGGG</td>
</tr>
<tr>
<td>Nppa</td>
<td>fwd</td>
<td>GGTAGGATCAGAGGGATTGGAG</td>
</tr>
<tr>
<td>Nppa</td>
<td>rv</td>
<td>GCTGGAGATCCTTGCCAGGAGTCC</td>
</tr>
<tr>
<td>Myh7</td>
<td>fwd</td>
<td>TGACGCAGAGACTCATTCGCTGTA</td>
</tr>
<tr>
<td>Myh7</td>
<td>rv</td>
<td>GAGTGCATTTAATCTCAGAGTACC</td>
</tr>
<tr>
<td>Serca2a</td>
<td>fwd</td>
<td>TGCTGATATGATGGAAGATGGCTG</td>
</tr>
<tr>
<td>Serca2a</td>
<td>rv</td>
<td>GAGTGGTAGACTGAGATGAGATGTCA</td>
</tr>
<tr>
<td>P1n</td>
<td>fwd</td>
<td>GCTCAAGGCGTGCTGACATAG</td>
</tr>
</tbody>
</table>
Pln rv
CAGCCAACACAGCAAGATGT

Ppargc1a fwd
GTCATGTGACTGGGACTGT

Ppargc1a rv
AACCGAGACAGCACACTCTAT

Luciferase fwd
ATAACTGTCGGCAGTGGT

Luciferase rv
TAAGAAGGCGCCGTACCC

sgTbx20 fwd
TGGACATAAGCCGCGCGA

sgMyh6 fwd
GTTAAGGCAAGTGCTGCTCC

sgSav1 fwd
AGTCTACCCTTTGAAACAGA

gRNA universal reverse
ACCGACTCGGTGCCACTT

Myh6 T7 fwd
AGGCACCCTTTACCCACATA

Myh6 T7 rv
CAACCCCTTTCAAGCCCG

Tbx20 T7 fwd
GTTTTGCGCAGTGGGCTTAC

Tbx20 T7 rv
CTTTGATTCCAAGCGCAGGC

Sav1 T7 fwd
GGCCATTTTACACTGACACAG

Sav1 T7 rv
TGACCCCTTGTCCTCAGTTC

Sav1 exon deletion fwd
AGCTGGAAACGTCGACTGTCTCT

Sav1 exon deletion fwd
AAGCTTCAAGATGCTTATCCCT

Tbx20 T7 rv
CAACCCCTTTCAAGCCCG

Sav1 exon deletion fwd
AGCTGGAAACGTCGACTGTCTCT

Sav1 exon deletion fwd
AAGCTTCAAGATGCTTATCCCT

Myh6 Myh6 transgenic cloning
MluI-HindIII Cas9 rv
TATTAaagcttacgcgtAGGCTGATCAGCGAGCTCTAGG

U6 primer
GAGGGCCTATTTCCCATGATTC

sgRNA insert check
GACTATCATATGCTTACCGT

Sav1 fwd left mate read
GTTCAAGGTTCGACGGCGACATCXXXX

Sav1 rv left mate read
TTCCTTGGCACCAGAAATTTCAACTCAGCGAC

Tbx20 fwd left mate read
GTTCAAGGTTCGACGGCGACATCXXXX

Tbx20 rv left mate read
TTCCTTGGCACCAGAAATTTCAACTCAGCGAC

Myh6 Myh6 transgenic cloning
Myh6 left mate read
GTTCAAGGTTCGACGGCGACATCXXXX

Myh6 RV left mate read
GTTCAAGGTTCGACGGCGACATCXXXX

Myh6 Myh6 transgenic cloning
Myh6 left mate read
GTTCAAGGTTCGACGGCGACATCXXXX

Myh6 RV left mate read
GTTCAAGGTTCGACGGCGACATCXXXX

Sav1 fwd right mate read
GTTCAAGGTTCGACGGCGACATCXXXX

Sav1 rv right mate read
GTTCAAGGTTCGACGGCGACATCXXXX

Tbx20 fwd right mate read
GTTCAAGGTTCGACGGCGACATCXXXX

Tbx20 rv right mate read
GTTCAAGGTTCGACGGCGACATCXXXX

Myh6 Myh6 transgenic cloning
Myh6 right mate read
GTTCAAGGTTCGACGGCGACATCXXXX

Myh6 RV right mate read
GTTCAAGGTTCGACGGCGACATCXXXX

Universal second PCR primer
fw
AATGATAACGGCACTTATCAGTCTACACGTTCAGATGCTGAC

Universal second PCR primer
CAAGCAGAAACGGCAGATAACGATNNNNN
rv
NGTGACTGGAGTTCTGGCACCCGAGAAT
TCCA*

*XXXXXXXX = Barcode sequences as described in Junker et al.¹
*NNNNNN = index from Illumina TruSeq Small RNA Sample Prep Kit

Reference List

Data Supplement III

Plasmids

1. α-MHC-Cas9 targeting vector
2. AAV:ITR-U6-sgRNA(backbone)-pEFs-Rluc-WPRE-hGHpA-ITR

Plasmid 1. α-MHC-Cas9 targeting vector

Elements

α–MHC promoter
3xFLAG-tag
NLS
Cas9
NLS

GAAATTCTCTTACTATACGAAAGGGAAACTGAGTCTGGACAACGAGTTGGTCTGCTGCTAGACATCATGACCTGTGCTGCTTGGGAGAAGCTACTGAGTCTGCTCTGGACATCGGGCTGAGATCACCGACGAGTACAAGGTGCCCAGCAAGAAATTCAAGGTGCTGGGCAACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTCCGACAGCGGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATA
Plasmid 2: AAV:ITR-U6-sgRNA(backbone)-pEFs-Rluc-WPRE-hGHpA-ITR

Elements:

ITR

U6

*sgRNA insert site

SapI restriction site

sgRNA + TracrRNA

EFs

Rluc

WPRE

hGHpA

ITR

Ampicillin promoter

Ampicillin

pBR322 origin

Restriction sites; separated by *, for cloning dual sgRNA
Online Figure I. Generation of cardiomyocyte-specific Cas9 expressing mice. (A) Strategy for the generation of Myh6-Cas9 transgenic (tg) (cardiomyocyte restricted) mice. (B) Western blot for FLAG (Cas9) expression in wild-type, Myh6-Cas9 tg (f1 generation), control (R26-lsl-3xFLAG-P2A-eGFP) and Myh6^{Cas9} mice. (C) Quantification of immunoblot in B. Data is represented as the mean ± SEM. N.D.; not detected. **P<0.01. n=2 mice per group.
Online Figure II. *In vivo* genome editing in the heart of a cardiomyocyte-specific Cas9 mouse. Mice were injected with either AAV9-sgTbx20 or -sgSav1 at P3 by i.p. injection at a dose of 5×10¹¹ viral genomes and analyzed 2 weeks later. (A) sgRNA and (B) Luciferase expression was measured by qRT-PCR analysis in the liver, lung and heart of sgRNA injected mice. (C) Heart weight/tibia length (HW/TL) of sgRNA injected mice. (D-E) qRT-PCR analysis of Tbx20 (D) and Sav1 (E) mRNA expression using different primer pairs. (F-G) T7E1 analysis on target site of PCR-amplified genomic DNA from isolated heart, lung, spleen and kidney from Myh6Cas9 mice for (E) Tbx20 and (F) Sav1 to assess cardiac-restricted Cas9 expression. Red arrowheads indicate cut bands by T7E1 (H-I) The effect of cardiac gene disruption on known downstream targets of (H) Tbx20 and (I) Sav1. T-box 5 (Tbx5); gata-binding factor 4 (Gata4); Iroquois homeobox 4/5 (Irx4/5); snail family zinc finger 2 (Snai2); sex determining region Y-box 2 (Sox2); insulin-like growth factor (Igf1). Data was normalized to Gapdh. n=4-10 mice per group. (J-K) Immunofluorescence detection (J) and quantification (K) of TBX20 expression in Tbx20-edited mice. Scale bar is 50 μm. Data is represented as the mean ± SEM.
Online Figure III. Effect of viral dose on cardiac-genome editing in vivo using CRISPR/Cas9. (A) Schematic of study outline and sgRNA vector incorporated into AAV9. (B-C) T7E1 analysis on target site of PCR-amplified genomic DNA from isolated hearts from sgTbx20 low dose (LD) (B) and high dose (HD) (C). Red arrowheads indicate cut bands by T7E1 (D) Cardiac Tbx20 mRNA analysis by qRT-PCR and (E-G) representative Western blot and quantification for cardiac TBX20 expression. GAPDH was used as the loading control. Data is represented as the mean ± SEM. **P<0.01. n=2-5 mice per group.
Online Figure IV. Long-term effect of cardiac-genome editing in vivo using CRISPR/Cas9. (A) Schematic of study outline and sgRNA vector incorporated into AAV9. (B-C) T7E1 analysis on target site of PCR-amplified genomic DNA from isolated hearts for Tbx20 (B) and Sav1 (C). Red arrowheads indicate cut bands by T7E1 (D) qRT-PCR analysis of cardiac Tbx20 and Sav1 mRNA. Data was normalized to Gapdh. Data is represented as the mean ± SEM. n=4-6 mice per group.
Online Figure V. Effect of Cas9 expression on cardiac-genome editing in vivo using CRISPR/Cas9. (A) Western blot analysis and (B) quantification of eGFP (Cas9) expression in control, heterozygous (het) and homozygous (homo) Myh6Cas9 mice. (C) Schematic of study outline and sgRNA vector incorporated into AAV9. (D-E) T7E1 analysis on target site of PCR-amplified genomic DNA from isolated hearts for Tbx20 (D) and Sav1 (E). Red arrowheads indicate cut bands by T7E1. (F) qRT-PCR analysis of cardiac Tbx20 and Sav1 mRNA. Data was normalized to Gapdh. (G-I) Representative Western blot and quantification for cardiac TBX20 and SAV1 expression. GAPDH was used as the loading control. Data is represented as the mean ± SEM. *P<0.05, **P<0.01, ***P<0.001. n=3-5 mice per group.
Online Figure VI. In Vivo genome editing of the heart by local delivery of sgRNAs using AAV9. (A) Schematic of study outline and sgRNA vector incorporated into AAV9. (B) T7E1 analysis on target site of PCR-amplified genomic DNA from isolated hearts for Sav1. Red arrowheads indicate cut bands by T7E1. (C) Sav1 mRNA analysis by qRT-PCR on left ventricular samples isolated from the injected site. Data was normalized to Gapdh. n=5-7 mice per group. vg; viral genomes.
Online Figure VII. In-depth indel analysis of in vivo Tbx20 and Sav1 cardio-editing by DNA sequencing using a second primer set. Deep sequencing analysis of the Tbx20 and Sav1 locus of hearts isolated at P17 from mice injected with an sgRNA at P3 (from Figure 3A) using a second primer set, with the barcode primer located in the forward primer (A) Percentage of mutant reads in AAV9-sgTbx20 injected Myh6Cas9 mice and (B) the corresponding indel analysis and (C) the most abundant sequencing reads. (D) Percentage of mutant reads in AAV9-sgSav1 injected Myh6Cas9 mice and (E) the corresponding indel analysis and (F) the most abundant sequencing reads. (G) Size distribution of indels found at each sgRNA targeting site. Data is the average of 4 mice.
Online Figure VIII. In-depth indel analysis of in vivo Tbx20 and Myh6 cardio-editing by DNA sequencing using a second primer set. Deep sequencing analysis of the Tbx20 and Myh6 locus of hearts isolated at 5-6 weeks of age from mice injected with an sgRNA at P10 (from Figure 5A) using a second primer set, with the barcode primer located in the forward primer. (A) Percentage of mutant reads in AAV9-sgTbx20 injected Myh6^{Cas9} mice and (B) the corresponding indel analysis and (C) the most abundant sequencing reads. (D) Percentage of mutant reads in AAV9-sgMyh6 injected Myh6^{Cas9} mice and (E) the corresponding indel analysis and (F) the most abundant sequencing reads. (G) Size distribution of indels found at each sgRNA targeting site. Data is the average of 3-4 mice.
Online Figure IX. Cardiac tracing of sgRNA delivery by AAV9 low and high dose. Wild type mice were injected at P3 with either a low (5 x 10^{11} vg per mouse) or a high (2.5 x 10^{12} vg per mouse) dose of AAV9-sgRNA-ZsGreen by i.p. injection and analyzed two weeks later. (A) Representative stereomicroscope imaging of whole hearts from uninjected and injected hearts. (B) Confocal imaging of fixed and frozen heart sections. Image is taken in the left ventricle. Scale bar is 100µm. A total of 4 mice were analyzed per group, which all showed very similar results within groups.
Online Figure V.

Chromatin accessibility of targeted genomic loci. The active enhancer mark, H3k27Ac and DNase-Seq hotspots at the sgRNA targeted locus for each gene in neonatal mouse hearts from publicly available Chip-seq databases.33