C

Clinical and preclinical studies of cardiovascular calcification often require interpretation of images from histopathology, computed tomography, intravascular ultrasound, and positron emission tomography. To avoid potential pitfalls in biological inferences, investigators should know what happens to data in image processing algorithms, the limitations of cross-sectional images in studying mechanostability, and how smoothing algorithms can mask partial-volume artifacts in positron emission tomography.

Years ago, a head-on collision sent a motorcyclist to intensive care with multiple limb fractures. A cardiologist was paged to evaluate the unconscious patient for a dangerously low value of cardiac index, suggesting severe cardiac injury. On evaluation, pulse, blood pressure, and cardiac output were normal despite the extremely low cardiac index. How could that be? It turned out that this low value was the result of a common error: failure to scrutinize adjustments in processed data. Cardiac index is a type of processed data, which is derived from cardiac output divided by body surface area, which is, in turn, derived from height and weight. On assessing this adjustment, the cardiologist found that the patient’s weight included the casts on his arms and leg. Although it is obvious that casts do not require perfusion, this is an example of blindness following protocol, in this case resulting in a gross underestimate of weight, overestimate of body surface area, and underestimate of cardiac index. The moral of the story is that blind adherence to adjustment protocols may cause clinical errors. Does this happen in research?

Corrections, adjustments, and technical limitations are common in imaging of preclinical and clinical vascular calcification, such as x-ray computed tomography (CT), intravascular ultrasound (IVUS), and fused positron emission tomography (PET)-CT using the bone-seeking 18F-fluoride PET tracer. There is growing interest in using such imaging methods to infer molecular and cellular mechanisms of vascular calcification. However, colleagues in the engineering and imaging have cautioned about inherent technical limitations and effects of postacquisition processing, such as resolution, truncation, thresholding, partial-volume effects, and smoothing algorithms. This commentary provides examples of pitfalls in image interpretation that may affect rigor, reproducibility, and validity of studies.

Truncation and Thresholding Algorithms in CT Imaging of Coronary Calcification

Calcium deposits in most vascular structures are noninvasively detectable by plain x-ray, fluoroscopy, ultrasound, or CT scanning. For coronary calcification, ultrafast or electron-beam CT and multidetector CT are used clinically to compensate for phasic cardiac and respiratory motion. Known to patients as calcium scans, their results are expressed as a single number, the calcium score. The algorithm for this score, developed by Agatston et al in 1990, has been the standard for decades.

As with the cardiac index scenario above, it is important to examine how these scores are derived. Raw data from CT scans consist of values of radiographic density in Hounsfield units (H.U.) for each pixel in each slice of the scan. As an aside, “pixel,” a unit of area, is the more familiar term, but “voxel,” the corresponding unit of volume, is more appropriate for scan slices. For calcified tissue, radiographic density ranges from 130 to ≈ 3000 H.U. Thus, only voxels with a density value of ≥ 130 H.U. are counted as positive for calcium mineral. In addition, to exclude random noise, only contiguous voxels occupying more than 1 mm3 are counted as positive. Such contiguous groups are termed lesions. These aspects of the Agatston protocol are reasonable.

Where the protocol deviates is in determination of mass of calcium. Ordinarily, mass would be the sum of radiographic density values for all positive voxels across all slices, corresponding with integrating density over volume. A simple formula for calcium mass would be ΣD, where D is density, and the summation is over values of j from 1 to the number of voxels over all slices, with voxel size then converted to cubic millimeters. Interestingly, the Agatston approach instead uses a different—and very unusual—approach, where the data are processed through 3 unusual steps before summation. This approach is illustrated using a hypothetical lesion in the Figure. First, 2 digits are truncated from each value of radiographic density (Figure A). Second, an upper threshold of 4 is applied for all voxels having density values of 500 to 3000 H.U. (Figure B). Third, values of all voxels in a given lesion are replaced with the peak density number in that lesion (in Figure B, it is 4). This number is then multiplied by the lesion area to generate the lesion score. A total coronary calcium score is derived by adding up all lesion scores in all slices.
Unfortunately, this process sacrifices rigor and reproducibility for no clear reason. The truncation step introduces high amplitude, random noise, specifically, random subtraction of values ranging from 0 to 99 H.U. from the original radiographic density values. For example, for a voxel value of 256 H.U., truncation subtracts 56 H.U., reducing it by over 20% of its value. Moreover, applying the upper threshold of 4 introduces nonlinearity. Moreover, the use of a peak density number introduces false homogeneity, resembling pixelation; it also introduces high sensitivity to noise, as noted by Shinbane and Budoff. For instance, if a patient had a single coronary calcified lesion in a single slice, with an area of 500 mm² and a highest density of 199 H.U., the peak density number would be 1 (after truncating 99), and the patient’s calcium score would be 500 (peak density number × area). If the scan were repeated a week later, and imaging noise were to cause a 0.5% increase the one most dense voxel from 199 to 200, the new maximal CT number would be 2 (dropping the last 2 digits of 200), and the new calcium score would be 1000. Such a doubling of the calcium score in 1 week would alarm both patient and doctor, making clinical use of the Agatston method problematic.

In similar ways, use of the method in clinical research is likely to reduce rigor and reproducibility. For instance, artifactual nonlinearity would falsely diminish correlation coefficients and raise P values, thus masking potentially important relationships. One may ask why this algorithm is used, because it seems to have no purpose. It may have simplified calculations, but, in this computerized age, simplifying calculations has no value. Nevertheless, the algorithm has remained the standard in most clinical studies of coronary calcification. Future studies may benefit from quantifying calcium mineral density and volume without Agatston’s data-reduction steps and comparing them with the Agatston calcium score.

Calcification and Rupture Risk by IVUS

Another valuable tool for imaging coronary calcification is IVUS. Studies using IVUS suggest that culprit lesions, which are presumably rupture prone, are associated with spotty calcification, multiple calcium deposits measuring $\leq 90^\circ$ or ≈ 2 mm in arc length, whereas clinically stable lesions are associated with deposits of greater arc length. This finding is consistent with the concept of compliance mismatch. The amplitude of von Mises (rupture promoting) stress increases at sites of interface between materials of differing compliance. Biomechanical analyses using finite element analysis have shown that von Mises stress is increased in a region of tissue at the edge of a rigid deposit facing the direction of tensile stress. In an artery or plaque exposed to longitudinal stress from blood pressure pulsations, this would correspond to the tissue adjacent to each longitudinal end of a calcium deposit. Simultaneously, rupture stress is decreased below normal levels at the ends of the deposit perpendicular to the direction of tensile stress. Thus, calcium deposits both destabilize and stabilize the artery wall.

An important corollary is that the magnitude of von Mises stress (and risk of plaque rupture) would be expected to increase with the surface area of calcium deposits. But surface area does not increase linearly with progression of calcification; surface area and rupture risk increase up to a limit where deposits are forced, by the size of the artery, to coalesce, thus reducing surface area and decreasing risk. Based on the study of Ehara et al, that critical size may be an arc length of 90° or ≈ 2.5 mm. This concept may create a nonlinear relationship between coronary calcification and cardiovascular mortality.
These concepts, the compliance mismatch phenomenon, dependence on direction of stress, and the nonlinear relationship of surface area with calcification progression, together with the dependence of rupture risk on underlying tissue strength, may explain why prior reports have shown only stabilization or destabilization with coronary calcification. Furthermore, studies based on cross-sectional imaging (histopathology or IVUS) may not recognize longitudinal proximity to a calcium deposit. A cross-section through the center of a large calcium deposit would find low stress associated with calcification; whereas a cross-section just beyond the longitudinal end of the calcium deposit would miss the association of high stress with calcification (Figure C). Similarly, given the bell-shaped relationship of surface area with degree of calcification, the relationship of risk to calcification may depend on the stage of disease.

Partial-Volume Effects and Spillover in Fused 18F-Fluoride PET-CT Images

Because fluoride, taken up by calcium mineral, binds to growing crystals of hydroxyapatite, its positron-emitting isotope, 18F-fluoride, is used for PET imaging of skeletal disease, sometimes in combination with CT scans. In exciting recent study, Dweck et al demonstrated that uptake of 18F-fluoride in human coronaries colocalizes with culprit lesions. On close examination, some regions of positive PET signal extend beyond the corresponding regions on fused PET-CT. It has been proposed that such regions of PET-only positivity represent a molecular-level metabolic process generating microsized calcium deposits. However, this same extension of PET-only positivity beyond CT positivity is also seen in PET-CT of skeletal bone (Figure D) and tumors. In these cases, the part of the PET signal beyond the actual object is known to be a technical artifact known as spillover or the partial-volume effect. As described by Soret et al, for any region of 18F-fluoride tracer uptake that is almost as large as a voxel and that is embedded in a colder background, the partial-volume effect spreads out and dilutes the signal. It causes dispersion of the signal, not loss of it. A small calcium deposit will look larger, but less active on PET than it actually is. It generally occurs for objects whose size is less than 3 times the full-width-half-maximum of the image resolution, and the effect may be reduced by use of newer, time-of-flight acquisition. In some fused PET-CT images, a small CT signal is accompanied by a minimal or absent PET signal. This may seem to indicate metabolic inactivity. However, in tumor PET imaging, such an effect is attributed to a tissue-fraction effect—if a voxel contains an interface between 2 tissues, then the signal is averaged for the 2 components in that voxel. Thus, both partial-volume and tissue-fraction effects may be masked by smoothing algorithms, which make the image appear more precise than it really is.

Other technical considerations include motion blurring of PET-CT coregistration and differences in reconstruction algorithms, which have varying signal to noise ratios. Iterative reconstruction in PET may improve accuracy of detection of calcified boundaries confounded by partial-volume effects, and, in CT, reconstruction may reduce noise and improve spatial resolution. In both modalities, iterative methods may enhance the lower limit of detection. Therefore, before drawing biological inferences from fused PET-CT images, it is necessary to consider technical causes, such as resolution differences, partial-volume effects, tissue-fraction effects, and spillover, masked by smoothing algorithms.

Concluding Remarks

For rigor and reproducibility, it is essential to recognize technical limitations of imaging modalities and the pitfalls of data adjustments and processing algorithms. Like processed food, processed data warrant close inspection of the ingredients.

Sources of Funding

Funding is from the National Institutes of Health (DK081346-S1, HL114709, HL121019 to Dr Demer and Y. Tintut; P30 CA016042 to J.T. Lee; and HL083015, HL118650 to T. Hsiai).

Disclosures

None.

References

Key Words: algorithms ▪ artifact ▪ mask ▪ positron emission tomography ▪ vascular calcification
Rigor and Reproducibility in Analysis of Vascular Calcification
Linda L. Demer, Yin Tintut, Kim-Lien Nguyen, Tzung Hsiai and Jason T. Lee

Circ Res. 2017;120:1240-1242
doi: 10.1161/CIRCRESAHA.116.310326

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/120/8/1240

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at: http://circres.ahajournals.org//subscriptions/