Editorial

Introduction to the Stroke Compendium
Marc Fisher, Costantino Iadecola, Ralph Sacco

Stroke Compendium

Global Burden of Stroke
Valery L. Feigin, Bo Norrving, George A. Mensah

Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke
Xiaoming Hu, T. Michael De Silva, Jun Chen, Frank M. Faraci

Stroke Risk Factors, Genetics, and Prevention
Amelia K. Boehme, Charles Esenwa, Mitchell S.V. Elkind

Stroke Caused by Extracranial Disease
Kevin M. Barrett, Thomas G. Brott

Stroke Caused by Atherosclerosis of the Major Intracranial Arteries
Chirantan Banerjee, Marc I. Chimowitz

Cardioembolic Stroke
Hooman Kamel, Jeff S. Healey

Cryptogenic Stroke: Research and Practice
Shadi Yaghi, Richard A. Bernstein, Rod Passman, Peter M. Okin, Karen L. Furie

Acute Ischemic Stroke Therapy Overview
Luciana Cataneo, Joseph Tarsia, Marc Fisher

Global Burden of Stroke
Feigin et al. page 439

Cerebral Vascular Disease and Stroke-Induced Injury
Hu et al. page 449

Stroke Caused by Intracranial Disease
Banerjee and Chimowitz page 502
Heart–Brain Axis: Effects of Neurologic Injury on Cardiovascular Function
Pouya Tahsili-Fahadan, Romergryko G. Geocadin 559

Vascular Cognitive Impairment
Martin Dichgans, Didier Leys 573

Cryptogenic Stroke
Yaghi et al. page 527

Heart–Brain Axis
Tahsili-Fahadan and Geocadin page 559

Vascular Cognitive Impairment
Dichgans and Leys page 573

In December 2016, the average time from submission to first decision for all original research papers submitted to Circulation Research was 13.4 days.

On the Cover: Cellular interactions that influence cerebral and capillary blood flow, along with blood–brain barrier (BBB) integrity and function. Changes within these cell types and their interactions can promote hypoperfusion and ischemia, with subsequent BBB damage or repair. Cell types involved in such alterations include endothelium and vascular muscle, pericytes, astrocytes, and immune cells along with matrix metalloproteinases. Identification of cell types and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events. Illustration credit: Ben Smith. See related article, page 449.