Influence of Ouabain on Contractile Force, Resting Tension, Ca45 Entry and Tissue Ca Content in Rat Atria

By Gudrun Gersmeyer, M.D., and William C. Holland, M.D.

In 1958, Thomas and co-workers observed that ouabain caused an increased uptake of Ca45 in frog heart. Holland and Sekul later reported the same effect in rabbit atria and were able to establish a reasonably good correlation between Ca45 uptake and changes in resting tension induced by ouabain. Recently, Lüllmann and Holland found a small but significant increment in an exchangeable Ca fraction in guinea pig atria during the positive inotropic effect of the drug.

It is known that the rat heart is very resistant to cardiac glycosides. However, Reiter in 1956 was able to show that if the concentrations of the glycoside were raised sufficiently both the positive inotropic effect and contracture (increase in resting tension) could be observed. In the light of these investigations we decided to study the effects of ouabain on Ca45 uptake and tissue Ca content in rat atria.

Methods

Measurements were made on spontaneously beating rat atria ranging in weight from 28 to 117 mg. The preparations equilibrated for at least 60 minutes in a modified Tyrode's solution of the following composition: NaCl 133 mM; KCl 5.4 mM; CaCl$_2$ 2.2 mM; NaHCO$_3$ 24 mM; sucrose 12.5 mM; dextrose 10.9 mM; and NaH$_2$PO$_4$ 0.11 mM. The solutions were gassed with 95% O$_2$-5% CO$_2$ at 30°C. In experiments in which Ca45 uptake was determined, atria with 1 g weight attached were suspended in 200 ml of modified Tyrode's solution. Not more than four atria were placed in each bath. Following a 60-minute equilibration period the atria were transferred to a second bath containing the same volume of modified Tyrode's solution labeled with Ca45 with and without varying concentrations of ouabain. After a one-hour incubation period they were transferred to a third beaker containing inactive solution of the same composition for 15 minutes. Tissue Ca was determined on a separate group of atria in order to avoid atmospheric contamination with isotope. The time schedule in the experiments in which tissue Ca was estimated was identical to that of Ca45 uptake studies with the exception that non-radioactive medium was used.

From the University of Mississippi School of Medicine, Jackson, Mississippi.

Supported in part by funds from the U. S. Public Health Service Grant 4265 and the Mississippi Heart Association.

Received for publication January 7, 1963.

In table 1 we have summarized our data on the effects of varying concentrations of ouabain on Ca45 uptake (column 3) and tissue Ca content (column 5). From these two values it was possible to calculate the specific activity of the tissue as cpm/Bq at the end of one hour's incubation (column 7). From the knowledge of the specific activity of the medium we then estimated the per cent of total tissue Ca that had exchanged with that in medium at the end of this interval (column 8). After one hour incubation, tissue Ca was
Effects of Varying Concentrations of Ouabain on Ca45 Uptake and Tissue Ca Content

<table>
<thead>
<tr>
<th>Ouabain M</th>
<th>Effect</th>
<th>cpm/kg × 10^-7</th>
<th>Ca45</th>
<th>mEq/kg × 10^-7</th>
<th>P</th>
<th>PA, cpm/kg × 10^-7</th>
<th>% exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 × 10^-7</td>
<td>positive inotropic</td>
<td>1.71 ± 0.09</td>
<td></td>
<td>11.61 ± 0.38</td>
<td></td>
<td>1.47</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(46)</td>
<td></td>
<td>(51)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 × 10^-8</td>
<td>positive inotropic</td>
<td>1.53 ± 0.09</td>
<td><0.01</td>
<td>10.65 ± 0.53</td>
<td><0.05</td>
<td>1.50</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(22)</td>
<td></td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 × 10^-5</td>
<td>positive inotropic</td>
<td>1.50 ± 0.13</td>
<td>>0.05</td>
<td>31.68 ± 0.50</td>
<td>>0.05</td>
<td>1.28</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13)</td>
<td></td>
<td>(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 × 10^-5</td>
<td>positive inotropic</td>
<td>2.23 ± 0.25</td>
<td><0.05</td>
<td>8.37 ± 0.45</td>
<td><0.001</td>
<td>2.76</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14)</td>
<td></td>
<td>(12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 × 10^-5</td>
<td>positive inotropic</td>
<td>2.42 ± 0.16</td>
<td>>0.001</td>
<td>13.11 ± 1.66</td>
<td>>0.05</td>
<td>1.38</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14)</td>
<td></td>
<td>(16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 × 10^-4</td>
<td>contractions</td>
<td>3.12 ± 0.23</td>
<td><0.001</td>
<td>12.60 ± 1.27</td>
<td>>0.05</td>
<td>2.95</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8)</td>
<td></td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 × 10^-4</td>
<td>contractions</td>
<td>4.73 ± 0.44</td>
<td><0.001</td>
<td>13.11 ± 0.97</td>
<td>>0.05</td>
<td>3.61</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8)</td>
<td></td>
<td>(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numbers in brackets: number of atria. Specific activity of medium: 20.8 × 10^6 cpm/Eq. Duration: one hour. Standard errors of specific activities are not presented since tissue counts and Ca content were determined on separate groups of atria.

Estimated to be 11.61 ± 0.38 mEq/kg wet tissue corrected for extracellular space. The percent of total tissue Ca that had exchanged with the Ca of the medium in this time interval was calculated to be 7%. Ouabain in concentrations of 10^-7M and 6 × 10^-8M, which had no effect on mechanical activity, caused a slight drop in Ca45 uptake and no significant effect on tissue Ca or on the percent Ca that exchanged during one hour. Ouabain at a concentration of 10^-5M, which produced only a positive inotropic effect with no change in resting tension, caused a significant increase (36% to 42%) in Ca45 uptake and a drop in tissue Ca content. Similar changes in Ca45 uptake, but not tissue Ca, were noted with 3 × 10^-5M ouabain. With this concentration both a positive inotropic effect and a slight increase (8% to 10%) in resting tension were observed. With doses (6 × 10^-5M and 3 × 10^-4M) producing severe contractions (30% to 50% increase in resting tension), a sharp rise in Ca45 uptake occurred (87% to 170% increase). There appeared to be a progressive rise in tissue Ca content to levels above the controls. However, these changes were not significant by statistical analysis.

In the present study, we noted no significant change in wet weights of atria during the positive inotropic effect or contraction. Furthermore, the concentrations of ouabain causing a positive inotropic effect had no effect on the spontaneous rate of beat. With the higher doses producing severe contraction, arrhythmias were noted.

Discussion

In an earlier study, Luijten and Holland observed a small but significant increase in the rate of Ca45 uptake in guinea pig atria during the positive inotropic effect of ouabain. With the onset of contraction, there was a sharp increase in Ca45 uptake and a small but significant rise in tissue Ca content. From the data it was estimated that approximately 18% of tissue Ca had exchanged with that in the medium at the end of one hour incubation in control atria under the conditions employed (see Methods). Values of 23% and 40% were obtained during the positive inotropic effect and contraction, respectively.

Guinea pig atria are relatively sensitive to cardiac glycosides and can be grouped in the same class with dog, cat and rabbit. With these species, the positive inotropic effect is seen with doses of ouabain ranging from 10^-7 to 5 × 10^-4M.

The rat, on the other hand, is considerably more resistant to the glycosides. However, we
have observed, as did Reiter,4 that in concentrations ranging between 10^-6 and 3 x 10^-8 M a positive inotropic effect was noted. Thus, rat atria appear to be 100- to 200-fold more resistant to this agent than guinea pig atria. The difference in the LD50 of ouabain for the two species is of the same order of magnitude.7

As was the case with guinea pig,2 a small increase of Ca45 uptake was noted in rat atria during the positive inotropic effect of ouabain. In addition, we noted a drop in tissue Ca of the order of 20%. With contracture, uptake rates rose sharply and tissue Ca increased slightly, but the latter was not a significant change. At the end of the one-hour incubation period approximately 7% of tissue Ca had exchanged in control atria, and 13% and 17% during the positive inotropic effect and contracture, respectively.

The drop in tissue Ca content during the positive inotropic effect requires comment. A similar effect was noted by Klaus, Kuschinsky and Liillmann.8 A smaller decrease was reported by Liillmann and Holland3 in guinea pig atria. On comparing the data of Klaus et al. with those reported here, it can be seen that the Ca concentration in the tissue of both preparations is 2- to 3-fold greater than that in the medium. The lower gradient reported by Liillmann and Holland might explain the smaller change in tissue Ca noted by these authors.

The drop in tissue Ca content could be interpreted to mean that ouabain is diminishing the binding of an extremely labile fraction of tissue Ca. Niedergerke9 proposed that this component was a part of the sarcoplasmic reticulum. It is possible that ouabain is affecting Ca exchange in these cellular fractions. However, no specific information is available on this point at the present time.

There has been considerable speculation on mechanisms responsible for species variation in sensitivity to cardiac glycosides. The only information we have on this problem is the observation that tissue Ca content of rat atria is almost double that of guinea pig atria, and that the exchange rate of Ca in rat atria is one-third that in guinea pig atria.

Summary
As was the case with guinea pig atria, ouabain induced a small but significant increment in Ca45 uptake and a drop of tissue Ca content in rat atria during the positive inotropic effect. In ouabain contractures, the uptake rate increased 87% to 190% and there was little increase in tissue Ca. Concentrations of the glycosides required to produce a positive inotropic effect and contracture in rat atria were 100- to 200-fold greater than those required in guinea pig atria.

Reference

Circulation Research, Volume XII, June 1961
Influence of Ouabain on Contractile Force, Resting Tension, Ca45 Entry and Tissue Ca Content in Rat Atria

GUDRUN GERSMEYER and WILLIAM C. HOLLAND

Circ Res. 1963;12:620-622
doi: 10.1161/01.RES.12.6.620

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/12/6/620

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/