Transdifferentiation Requires iNOS Activation
Role of RING1A S-Nitrosylation

Shu Meng, Gang Zhou, Qilin Gu, Palas K. Chanda, Frank Ospino, John P. Cooke

Rationale: We have previously shown that innate immunity is necessary for transdifferentiation of fibroblasts to endothelial cells. A major signaling molecule involved in innate immunity is inducible nitric oxide synthase (iNOS). Accordingly, we hypothesized that iNOS-generated nitric oxide (NO) might enhance transdifferentiation.

Objective: To elucidate the role of NO in epigenetic plasticity during transdifferentiation.

Methods and Results: We exposed the BJ fibroblasts to transdifferentiation formulation that included endothelial growth factors and innate immune activator polyinosinic:polycytidylic acid to induce endothelial cells. Generation of transdifferentiated endothelial cells was associated with iNOS expression and NO elaboration. In the absence of polyinosinic:polycytidylic acid, or in the presence of antagonists of NFκB (nuclear factor kappa B) or iNOS activity, NO synthesis and induce endothelial cell generation was reduced. Furthermore, genetic knockout (in murine embryonic fibroblasts) or siRNA knockdown (in BJ fibroblasts) of iNOS nearly abolished transdifferentiation, an effect that could be reversed by iNOS overexpression. Notably, polyinosinic:polycytidylic acid induced nuclear localization of iNOS, and its binding to, and nitrosylation of, the epigenetic modifier ring finger protein 1A (RING1A) as assessed by immunostaining, Co-IP, and mass spectrometry. Nitrosylation of RING1A reduced its binding to chromatin and reduced global levels of repressive histone marker H3K27 trimethylation. Overexpression of a mutant form of RING1A (C398A) lacking the nitrosylation site almost abrogated transdifferentiation.

Conclusions: Overall, our data indicate that during transdifferentiation, innate immune activation increases iNOS generation of NO to S-nitrosylate RING1A, a key member of the polycomb repressive complex. Nitrosylation of RING1A reduces its binding to chromatin and decreases H3K27 trimethylation level. The release of epigenetic repression by nitrosylation of RING1A is critical for effective transdifferentiation. (Circ Res. 2016;119:e129-e138. DOI: 10.1161/CIRCRESAHA.116.308263.)

Key Words: chromatin ■ endothelial cell ■ epigenetic repression ■ mass spectrometry ■ innate immunity

Transdifferentiation is the process by which a somatic cell undergoes a metamorphosis into a different type of somatic cell. This process of cellular transformation plays a role in malignancy, but it may also play a role in the physiological response to injury. For the purpose of regenerative medicine applications, several groups have converted somatic cells, such as fibroblasts into neurons,1 cardiomyocytes,2 or endothelial cells (ECs)3 by overexpressing specific lineage transcription factors. Transdifferentiation from fibroblasts to endothelial cells may be useful in cardiovascular regeneration. For example, an effective transdifferentiation strategy might modify the healing process by preventing the formation of scar tissue and facilitating the generation of vascularized tissues, in response to an injury.

Most investigators who are transdifferentiating cells for regenerative medicine applications have achieved their goal using viral vectors encoding transcriptional factors–mediating cell lineage.4,5,7 By contrast, we have developed a nonviral strategy using small molecules and growth factors. This strategy was made possible by leveraging our observation that cellular transformations (either nuclear reprogramming to pluripotency or transdifferentiation to another cell type) require innate immune activation.6,7 Indeed, the viral vectors used in nuclear reprogramming studies are more than passive vehicles; by activating innate immunity, they facilitate reprogramming.7 We have shown that innate immune activation increases the expression of histone acetyltransferase family members and suppresses the expression of histone deactylase (HDAC) family members and DOT1L (DOT1-like histone lysine methyltransferase).7 These changes in the balance of epigenetic modifiers would be expected to increase epigenetic plasticity.

In This Issue, see p 965

Original received August 16, 2016; revision received August 26, 2016; accepted September 13, 2016. In August 2016, the average time from submission to first decision for all original research papers submitted to Circulation Research was 13.98 days.
From the Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, TX.
The online-only Data Supplement is available with this article at http://circres.ahajournals.org/lookup/suppl/doi:10.1161/CIRCRESAHA.116.308263.-/DC1.
Correspondence to John P. Cooke, MD, PhD, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Avenue, Mail Stop: R10-S, Houston, TX 77030. E-mail: jpcooke@tmhs.org
© 2016 American Heart Association, Inc.
Circulation Research is available at http://circres.ahajournals.org
DOI: 10.1161/CIRCRESAHA.116.308263
It is well known that inducible nitric oxide synthase (iNOS) is a major effector of innate immune signaling. Activation of innate immunity leads to NFkB (nuclear factor kappa B)-mediated expression of iNOS, which S-nitrosylates proteins to affect their activity and cellular location. Accordingly, we hypothesized that innate immune activation of iNOS and S-nitrosylation of epigenetic modifiers might contribute to epigenetic plasticity required for transdifferentiation. Driven by this hypothesis, we now describe the discovery of a novel iNOS-dependent post-translational modification of the repressive epigenetic machinery to facilitate transdifferentiation.

Methods

Chemicals and Reagents
All chemicals were purchased from Sigma-Aldrich (St Louis, MO) unless otherwise stated. Other reagents included fetal bovine serum, Taqman real-time polymerase chain reaction (RT-PCR) primers, Taqman master mix, 4-amino-5-methylamino-2′, 7′-difluorofluorescein diacetate, RNAiMax, and 4′,6-diamidino-2-phenylindole (DAPI) (Life Technologies, Carlsbad, CA); polyinosinic:polycytidylic acid (PIC) and NFkB inhibitors Bay117082, celastrol, and dexamethasone (Invivogen, San Diego, CA); antibody against the S-nitroso (SNO) moiety (Sigma-Aldrich); antibody against 3-nitrotyrosine (NT); Cayman Chemical, Ann Arbor, MI); PE antibody against human CD31 and APC antibody against mouse CD144 (BD Biosciences, San Jose, CA); antibody against iNOS, HRP-conjugated goat anti-mouse or rabbit antibodies (Santa Cruz Biotechnology, Santa Cruz, CA); antibody against β-tubulin, ring finger protein 1A (RING1A); H3K27 dimethylation (H3K27me3) and H3K9 dimethylation (H3K9me2; Abcam, Cambridge, United Kingdom); bone morphogenetic protein-4, vascular endothelial growth factor, and basic fibroblast growth factor (Peprotech, Rocky Hill, NJ); and Scramble and iNOS siRNA (Integrated DNA Technologies, Coralville, IA).

Cell Culture and Induce Endothelial Cell Generation
BJ human neonatal foreskin fibroblast cells (BJ fibroblasts; Stengert), wild-type (WT) and iNOS−/− murine embryonic fibroblasts (MEFs; Cell Biologies Inc, Chicago, IL) were cultured and maintained in Dulbecco modified Eagle’s medium (Invitrogen) with 10% fetal bovine serum and 1% penicillin/streptomycin (5% CO₂, 37°C). We transdifferentiated human and mouse fibroblasts to induce endothelial cells (iECs) using our previously established protocol. Briefly, cells were treated with PIC (30 ng/mL) daily for 7 days, and the medium was gradually transitioned to a 10% knockout serum replacement. Cells were treated with endothelial cell growth medium 2 (-2; Lonza) containing 20 ng/mL bone morphogenetic protein-4, 50 ng/mL vascular endothelial growth factor, and 20 ng/mL basic fibroblast growth factor for another 7 days. For maintenance of transdifferentiation, the cells were cultured for another 2 weeks in the presence of basic fibroblast growth factor, vascular endothelial growth factor, and 0.1 mmol/L 8-bromoadenosine-3′,5′-cyclic monophosphate sodium salt (8-Br-cAMP), with the medium changed every 2 days. In some experiments, inhibitors of iNOS or NFkB were present throughout the transdifferentiation protocol; they were readded when the transdifferentiation medium was refreshed.

RNA Extraction and Real-Time PCR
mRNAs were extracted from cultured cells and reverse transcribed into cDNA, and then specific primers for targeted genes were used for PCR amplification. For real-time PCR, a SYBR-green PCR system or Taqman system was used and ran on QuantStudio real-time PCR system from Life Technologies. Gene expression data using the ΔΔCt method was normalized to the expression of the 18S gene and plotted as relative fold changes.

Western Blot and Immunoprecipitation
Western blot analysis was performed as previously described. Immunoprecipitation was performed using the Pierce Classic Magnetic IP/Co-IP Kit (Thermo Scientific, Waltham, MA) following manufacturer’s manual.

Chromatin Immunoprecipitation–qPCR
Chromatin immunoprecipitation was performed using a previously established method. Recovery of genomic DNA was calculated as the ratio of copy numbers in the immunoprecipitate to the input control. Primers of the CD144 promoter were custom designed and synthesized from IDT as follows: primer sequence (5′–3′), (F): CAGGCCTTGGTTCTTCTGG; (R): GGAGTCAAGTGACCCAGCTC.

Fluorescent Assay for Nitric Oxide
BJ fibroblasts were stained with DAF-FM DA to access intracellular nitric oxide (NO). Cultured cells exposed to different experimental conditions were incubated with DAF-FM DA 10 μmol/L at 37°C for 30 minutes. Fluorescence was quantified by measuring fluorescence intensity at 495 nm excitation and 515 nm emission by a fluorescence plate reader (Tecan M1000 PRO).

Immunofluorescent Staining
After BJ fibroblasts were cultured in 8-well chamber slides and exposed to experimental conditions, cells were fixed, permeabilized, blocked with 5% normal donkey serum, and stained for RING1A and iNOS. The nuclei were stained with DAPI for 10 minutes.

Analysis of S-Nitrosylation by Mass Spectrometry
Protein from both control and PIC-treated BJ fibroblasts was immunoprecipitated using RING1A antibody, resolved on 4% to 12% gradient SDS/PAGE gel and stained with Coomassie Blue. After destaining, the RING1A band was cut and sent to the mass spectrometry-proteomics system was used and ran on QuantStudio real-time PCR system from Life Technologies. The gel band was further destained and double digested with trypsin and GluC in situ. Peptides in the gel were extracted, quantified by MS/MS and 200 ng of each sample was analyzed in the Eksigent nanoLC system and then the AB SCIEX TripleTOF 5600 mass spectrometer. The Eksigent nanoLC and the AB SCIEX TripleTOF 5600 mass spectrometer were controlled by Analyst software version 1.6 (AB SCIEX Inc). The MS spectra (m/z 100–2000) were acquired with internal mass calibration. Raw data were converted to MGF format and then imported into Peaks software v6.0 for further peak generation and database search with the SPIDER function. The search sequence was E3 ubiquitin-protein ligase RING1A of human (NP_002922.2 GI:51479192).

Construction of RING1A Overexpression Plasmid and Site-Directed Mutagenesis
The human RING1A cDNA fragment was amplified with forward primer (5′-CAGGAAATTCGATGGACGCGCGCGGAATG-3′) and reverse primer (5′-GAGGTCGACGTCACATTTGGATCGTCTGAAT-3′) from pCMV6-XL4-RING1A (OriGene, SC118280)

Nonstandard Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFC-FM DA</td>
<td>4-amino-5-methylamino-2′, 7′-difluorofluorescein diacetate</td>
</tr>
<tr>
<td>HDAC</td>
<td>histone deacetylase</td>
</tr>
<tr>
<td>iECs</td>
<td>induce endothelial cells</td>
</tr>
<tr>
<td>INOS</td>
<td>inducible nitric oxide synthase</td>
</tr>
<tr>
<td>MEF</td>
<td>murine embryonic fibroblast</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>PIC</td>
<td>polynosinic:polycytidylic acid</td>
</tr>
<tr>
<td>PRC</td>
<td>polycomb repressive complex</td>
</tr>
<tr>
<td>RING1A</td>
<td>ring finger protein 1A</td>
</tr>
<tr>
<td>SNO</td>
<td>S-nitrosylates</td>
</tr>
</tbody>
</table>

E130 Circulation Research October 14, 2016

[Downloaded from http://circres.ahajournals.org/ by guest on November 18, 2017]
and ligated into EcoRI/SalI digested pCMV-Tag2C to generate pCMV-Tag2C-RING1A. We further created pCMV-Tag2C-RING1A-C398A using a PCR-based method. Briefly, PCR reaction was performed using primer pair: C398A Mutation-Forward (5′-CGGCCACTGGAGCTGGCCTATGCTCCCACCAAGGATCCAAAG-3′) and C398A Mutation-Reverse (5′-TTGGTGGGAGCATAGGCCAGCTCCAGCGGGACAC-3′). The PCR products were treated with DpnI and transformed into Escherichia coli Top10 competent cells by heat shock. Single clones were sequenced to examine the C398A mutation.

Flow Cytometry

Cells were trypsinized and filtered through a 40-µm nylon mesh to generate single-cell suspensions. Cells were stained with antibody for cell surface marker detection. Data were analyzed by flowjo software.

Data Analysis

Results are expressed as the mean±SEM. Statistical comparisons between 2 groups were performed via Student t test. One-way ANOVA was used to compare the means of multiple groups. *P<0.05 was considered statistically significant.

Results

iNOS Is Induced During Transdifferentiation

Our laboratory has previously established a nonviral methodology to transdifferentiate fibroblasts to iECs.7 We activate innate immunity with a toll-like receptor 3 agonist PIC to induce epigenetic plasticity. In this state of epigenetic plasticity, fibroblasts are exposed to a media containing endothelial cytokines and small molecules that favor endothelial phenotype. The iECs that we obtain using this protocol are highly similar to human dermal microvascular endothelial cells as assessed by immunohistochemical markers, acetylated low-density lipoprotein uptake, the generation of capillary-like networks in matrigel, the generation of NO, and angiogenic cytokines and by RNAseq analysis.7

We examined NOS gene expression at days 0, 6, 14, 21, and 28; by day 28 of the transdifferentiation protocol, CD31+ iECs can be detected, as quantified by FACS analysis (Figure 1A and 1B). We observed that the expression of iNOS increased throughout transdifferentiation, peaking at day 21 (Figure 1C). By contrast, the expression of eNOS (endothelial NOS) was not detectable until day 28 when there was evidence of transdifferentiation to a mature endothelial cell phenotype (Figure 1D). Throughout the whole process, nNOS (neuronal NOS) was not detectable (data not shown).

NO Is Generated During Transdifferentiation

To determine whether the upregulation of iNOS expression increased the generation of NO, we used DAF-FM DA staining. DAF-FM DA is essentially nonfluorescent until it reacts with NO to form a fluorescent benzotriazole.13 On day 3 of the transdifferentiation protocol, we observed a significant increase in DAF-FM DA fluorescence in both image analysis (Figure 2A) and fluorescence readings (Figure 2B) in the group treated with PIC compared with the vehicle-treated control. An inhibitor of all NOS isoforms l-NAME (l-NG-nitroarginine methyl ester) and the more specific iNOS inhibitors (S)-methylisothiourea sulfate and BYK 191/023 dihydrochloride (BYK) each reduced NO generation. In addition, the NFκB inhibitors Bay117082, celestat, or dexamethasone each blocked iNOS upregulation and NO synthesis induced by PIC (Figures 2A, 2B, and 3D).

Transdifferentiation Requires iNOS Induction and NO Generation

To determine whether generation of NO is required for transdifferentiation, we performed the transdifferentiation studies in the presence of the NOS inhibitor l-NAME or in the presence of NO scavengers uric acid or ebselen. Each of these agents substantially reduced transdifferentiation, as assessed at day 28 by FACS for CD31+ iECs (Figure 3A and 3C). This indicates that NO generation is required for efficient transdifferentiation.

![Figure 1](http://circres.ahajournals.org/)
transdifferentiation.

Two other known antagonists of NFκB, Bay117082 (Bay; 3 μmol/L), celastrol (Cel; 2.5 μmol/L), or dexamethasone (Dexa; 100 nmol/L). A, Representative images of 4-amino-5-methylamino-2′7′-difluorofluorescein diacetate (DAF-FM DA) staining after day 3. B, Fluorescence intensity reading at 515 nm of DAF-FM DA of different groups by fluorescent plate reader. *P<0.05, vs vehicle-treated CT. #P<0.05, vs PIC treatment group. Data are shown as the means±SEM and are representative of 3 independent experiments.

Figure 2. Nitric oxide generation during transdifferentiation is blocked by inhibitors of inducible nitric oxide synthase and NFκB (nuclear factor kappa B). Fibroblasts were treated with the transdifferentiation protocol with or without polyinosinic:polycytidylic acid (PIC) for 3 d. In addition, fibroblasts were treated with vehicle (control treatment, ie, CT); with NOS inhibitors L-NAME (L-arginine methyl ester) 100 μmol/L, (S)-methylisothiourea sulfate (SMT, 5 μmol/L), or BYK (100 nmol/L); or the NFκB inhibitors Bay117082 (Bay; 3 μmol/L), celastrol (Cel; 2.5 μmol/L), or dexamethasone (Dexa; 100 nmol/L). A, Representative images of 4-amino-5-methylamino-2′7′-difluorofluorescein diacetate (DAF-FM DA) staining after day 3. B, Fluorescence intensity reading at 515 nm of DAF-FM DA of different groups by fluorescent plate reader. *P<0.05, vs vehicle-treated CT. #P<0.05, vs PIC treatment group. Data are shown as the means±SEM and are representative of 3 independent experiments.

Our data indicated that the NFκB–NO pathway is upstream of RING1A S-nitrosylation. Consequently, NFκB inhibitors Bay117082 could block this S-nitrosylation (Figure 5C), suggesting that NFκB–iNOS pathway is upstream of RING1A S-nitrosylation.

To identify the specific cysteine that is S-nitrosylated, we performed MS analysis of the RING1A immunoprecipitated from cell lysate of fibroblasts treated with vehicle or PIC. The MS studies revealed cysteine at 398 position is heavily S-nitrosylated (Figure 6A) by PIC stimulation. In addition, nitroso-cysteine modifications could also be detected in 279 and 332 position cysteines, although the modification level is low (Online Figure III).

To further examine whether S-nitrosylation of RING1A at 398 cysteine is critical for transdifferentiation, we performed site-directed mutagenesis. We first constructed plasmids containing wild-type (pCMV-Tag2C-RING1A) or mutant RING1A (C398A mutation, pCMV-Tag2C-RING1A-C398A plasmid). The GCC codon encoding the 398 position cysteine was mutated into a TGC codon-encoding alanine, which was confirmed by sequencing (Figure 6B). Then both plasmids were transfected into BJ fibroblasts, which were then subjected to the transdifferentiation protocol with or without PIC. As shown in Figure 6C, C398A-RING1A is minimally S-nitrosylated after PIC, suggesting that the 398 position cysteine is the major site of S-nitrosylation. Subsequently, we assessed the effect of overexpression of the mutant RING1A on transdifferentiation. Fibroblasts-overexpressing
C398A-RING1A were resistant to transdifferentiation (Figure 6D), by comparison to fibroblasts overexpressing the wild-type form of RING1A. Altogether, these data suggest that S-nitrosylation of RING1A at 398 cysteine is critical for transdifferentiation. The ability of fibroblasts to differentiate into endothelial cells is achieved at least, in part, by iNOS binding to and nitrosylating RING1A, and (5) the S-nitrosylation of RING1A is decreased in the CD144 promoter (Figure 8D). These studies are consistent with a functional effect of S-nitrosylation to reduce RING1A association with the chromatin and thereby to decrease the suppressing histone marks at promoters of endothelial genes during transdifferentiation.

Discussion

A Novel Mechanism Underpinning Transdifferentiation

The new and salient findings of this article are that (1) during transdifferentiation of fibroblasts to endothelial cells, the expression of iNOS is induced, and NO is generated; (2) the generation of NO is required for efficient transdifferentiation; (3) NO facilitates transdifferentiation, in part, by blocking repressive epigenetic markings; (4) this effect is achieved at least, in part, by iNOS binding to and nitrosylating RING1A, and (5) the S-nitrosylation of RING1A causes it to dissociate from the chromatin, impairing the ability of the PRC to maintain H3K27 trimethylation. Most importantly, we have identified a critical role for NO in transdifferentiation. Our results indicate that iNOS serves as an S-nitrosylase that directly binds to an epigenetic modifier to regulate chromatin remodeling during transdifferentiation. The temporal and spatial characteristics of the S-nitrosylation may provide the specificity of the epigenetic effect. We have previously shown that innate immunity is required for efficient nuclear reprogramming.8 This is the first demonstration that NO generated during innate immune signaling regulates epigenetic plasticity.

These observations significantly extend our previous work, which revealed that innate immune activation and nuclear region. Colocalization of iNOS and RING1A in the nucleus (Figure 7) can also be detected. A physical association of iNOS with the epigenetic modifier RING1A could provide for specificity of the RING1A-SNO modification.

RING1A Nitrosylation Reduces Its Chromatin Binding and Suppressive Chromatin Marks in Endothelial Promoters

RING1A is a critical component of polycomb repressive complex (PRC) 1 and is required for stabilizing repressive epigenetic marks, such as H3K27 trimethylation (H3K27me3).19,20 To examine whether the SNO modification of RING1A has any impact on cellular H3K27me3 level, we performed Western blot and found that cellular H3K27me3 levels were decreased in PIC-treated cells. This effect of PIC was abrogated by using an NFκB inhibitor Bay117082 to block iNOS induction (Figure 8A). This result suggested that the RING1A-SNO modification may destabilize the PRC complex to reduce H3K27 trimethylation.

To confirm that SNO modification of RING1A impairs its binding to chromatin, and thereby reduces H3K27me3, we used chromatin immunoprecipitation assay. Specifically, we examined the promoter region of CD144, an endothelial-specific gene that is fully repressed in fibroblasts. After PIC treatment for 3 days, RING1A binding to CD144 promoter is decreased (Figure 8B) together with decreased levels of H3K27me3 (Figure 8C). In addition, H3K9me2 is also decreased in the CD144 promoter (Figure 8D). These studies are consistent with a functional effect of S-nitrosylation to reduce RING1A association with the chromatin and thereby to decrease the suppressing histone marks at promoters of endothelial genes during transdifferentiation.
is required for cellular metamorphoses. Specifically, we showed previously that toll-like receptor 3 stimulation facilitates nuclear reprogramming of human fibroblasts to iPSCs or their transdifferentiation into endothelial cells. We found that toll-like receptor 3 stimulation by PIC increased the expression of histone acetyltransferase family members and reduced the expression of HDAC family members and Dot1L. These changes would be expected to increase epigenetic plasticity, an expectation that was confirmed by chromatin immunoprecipitation–qPCR studies of the relevant promoter regions.

iNOS Is an Effector of Innate Immunity and Epigenetic Plasticity

Innate immune activation of NFκB induces iNOS expression. Subsequently, iNOS generates NO, which can activate guanylate cyclase to produce the second messenger cGMP. In addition, NO may S-nitrosylate cysteine residues of proteins to modify their function. Others have shown that S-nitrosylation of the epigenetic modifier HDAC2 in embryonic cortical neurons regulates dendritic growth and branching. In addition, iNOS has been reported to translocate into the nucleus both in malignant and normal cells, but the biological implications of this translocation are obscure. Some epigenetic modifiers have been shown to be capable of S-nitrosylation in screening assays, including RING1A and CBX1. However, it is not known whether these proteins are post-translationally modified in cells and whether the modifications modulate their function.

Thus, we hypothesized that iNOS-derived NO is a major effector of innate immunity in transdifferentiation. We found that iNOS is indeed upregulated during transdifferentiation (Figure 1) in association with increases in intracellular NO (Figure 2) and with increased generation of SNO-NT (Figure 5A) and 3-NT modifications of cellular proteins (Online Figure I). Notably, pharmacological antagonists that reduced intracellular NO levels consistently diminished transdifferentiation efficiency (Figure 3A). Furthermore, inhibitors of NFκB blocked the upregulation of iNOS, reduced NO levels, and also impaired transdifferentiation efficiency (Figure 3B and 3D). Together these studies indicated that iNOS-generated NO is critical for transdifferentiation.

To further confirm iNOS is required for effective transdifferentiation, we derived MEFs from iNOS−/− mice. These mice have a knockout of the iNOS calmodulin-binding domain. When iNOS−/− MEFs were cultured with PIC and NFκB inhibitor Bay 117082, the SNO-NT and 3-NT modifications were diminished compared to wild-type MEFs (Figure 5). Therefore, iNOS-derived NO is required for effective transdifferentiation.
domain encoded by exon 12 to 13 and are not capable of generating NO after lipopolysaccharide challenge. Accordingly, we observed that iNOS−/− MEFs are resistant to transdifferentiation (Figure 4A). We then observed similar results in human fibroblasts by transient knockdown of iNOS. Overexpression of iNOS in the knockdown cells restores the transdifferentiation capacity (Figure 4E). Taken together, the genetic and pharmacological studies suggest that iNOS-generated NO is required for transdifferentiation.

Nitrosylation of RING1A Is Required for Transdifferentiation

Next, we screened several epigenetic modifiers that have been reported to be S-nitrosylated. Of these, only RING1A is heavily

Figure 6. Mass spectrometry (MS) analysis reveals Cys398 S-nitrosylation of ring finger protein 1A (RING1A). Overexpression of C398A-RING1A mutant blocks transdifferentiation. A, Representative MS/MS fragmentation spectrum for the Cys398-containing peptide. MS spectra of the cysteine-containing peptides identified after MS analysis. Peptide sequence is shown at the top left of each spectrum, with the annotation of the identified matched amino terminus-containing ions (b ions) in black and the carboxyl terminus-containing ions (y ions) in red. The spectrum confirms the identity of the peptides LCYAPT and the labeled C as S-nitrosylated cysteine. B, Sequence confirmation of pCMV-Tag2C-RING1A and pCMV-Tag2C-RING1A-C398A plasmid. C, BJ fibroblasts were transfected with either pCMV-Tag2C-RING1A-C398A (WT-RING1A) or pCMV-Tag2C-RING1A-C398A (C398A-RING1A) plasmid and then subject to transdifferentiation protocol with or without polyinosinic:polycytidylic acid (PIC). At day 28, CD31+ inducible endothelial cells (iECs) were quantified by FACS analysis. *P<0.05. Data are shown as the means±SEM and are representative of 3 independent experiments.

Figure 7. Inducible nitric oxide synthase (iNOS) colocalizes with ring finger protein 1A (RING1A) during transdifferentiation. BJ fibroblasts treated with or without polyinosinic:polycytidylic acid (PIC) for 3 d were fixed and stained with anti-RING1A antibody (green), anti-iNOS antibody (red), and DAPI (4′,6-diamidino-2-phenylindole). Images were taken under the confocal microscope to analyze the colocalization of RING1A and iNOS.
Maintenance of H3K27 trimethylation requires PRC1-induced
recruitment of PRC2–PRC1 has been described, 35,36 in that PRC1 recog-
nizes an interaction of iNOS with RING1A for transdifferentiation. These experimental results indicate a critical role of the physi-
ological and pathobiological relevance of the observed iNOS induction.

Physiological and Pathobiological Relevance of Our Findings

iNOS is a potent cellular defense mechanism, generating reactive nitrogen species that also have cytotoxic effects. We now reveal another role for iNOS in innate immunity, as a facilita-
tor of epigenetic plasticity and phenotypic fluidity. This too may be an important mechanism for cellular defense because phenotypic fluidity in the face of pathogens or damage may provide a survival advantage.

In some instances, the epigenetic plasticity associated with innate immune activation may have a physiological role. For example, in the setting of experimental myocardial infarction, a substantial number of cardiac fibroblasts may transdifferentiate to endothelial cells to enhance the angiogenic response to isch-
emic injury. 41 Epigenetic plasticity induced by innate immunity might also participate in pathological transdifferentiation. For example, the chronic inflammation associated with gastroesop-
ophageal reflux disease is accompanied by a premalignant transdif-
ferentiating of the stratified squamous esophageal epithelium to a columnar epithelium reminiscent of the small intestine. 42

Indeed, it has been long recognized by clinicians that cancers may arise in the setting of chronic inflammation or infection. 43, 44 Furthermore, iNOS is often expressed in prema-
lignant states and in cancer. 45–48 An understanding of the role by which chronic inflammation leads to epigenetic plasticity may provide a therapeutic avenue in the prevention of cancer. Strategies for direct reprogramming of somatic cells may be enhanced by insights into the mechanisms by which innate immune signaling drives epigenetic plasticity.

Conclusions

We have identified a novel mechanism by which innate immune signaling facilitates transdifferentiation. The activation of iNOS and the generation of NO are associated with iNOS binding to, and S-nitrosylating RING1A. This modification causes a dissociation of RING1A from the chromatin. This ef-
flect is associated with a reduction in H3K27 trimethylation, a repressive chromatin marking. These effects would be predict-
ed to increase the probability of an open configuration of the chromatin and thereby facilitate transdifferentiation. These insights have relevance to cancer biology in that pathological transformation frequently occurs in the setting of chronic inflammation. Our work also has relevance to cardiovascular regeneration, given the importance of physiological transdif-
ferentiating in the response to injury.

Acknowledgments

We thank Dr Paul L. Fox for kindly providing us the pCDNA3.1-his-iNOS plasmid. We thank Dr Hon-Chiu Eastwood Leung for his expertise in helping with the mass spectrometry analysis.

Sources of Funding

This work supported, in part, by grants to Dr Cooke from the National Institutes of Health (U01 HL100397) and the Cancer Prevention and
Disclosures
Dr Cooke is an inventor on patents owned by Stanford University related to the manipulation of innate immune signaling for nuclear reprogramming so as to induce pluripotency, transdifferentiation, or other therapeutic cellular modifications. The other authors report no conflicts.

References
31. Meng et al. Role of RING1 S-Nitrosylation. e137

Novelty and Significance

Transdifferentiation of one cell type to another plays a role in disease, as well as in development and regeneration. The process of transdifferentiation from one cell lineage to another requires epigenetic changes that unlock those genes that are needed for expression of the new phenotype (and which suppress those genes that were responsible for the previous phenotype). An understanding of the epigenetic changes that govern these changes in gene expression (and thus cell phenotype) will lead to new therapeutic avenues. We have shown that activation of innate immunity causes global changes in the expression of epigenetic modifiers that can enhance epigenetic plasticity. In the this article, we show that inducible nitric oxide synthase–generated nitric oxide, which is one of the major effectors of innate immunity, also plays a critical role in mediating the epigenetic plasticity that is required for the transdifferentiation of human fibroblasts to endothelial cells. The nitrosylation of ring finger protein 1A, a component of the polycomb repressive complex, causes the dissociation of this complex from the chromatin, thereby reducing repressive epigenetic markings, such as H3K27 trimethylation. These insights may lead to new approaches to enhance therapeutic transdifferentiation, for example, mesenchymal-to-endothelial transition to enhance vascularity in ischemic syndromes.
Transdifferentiation Requires iNOS Activation: Role of RING1A S-Nitrosylation
Shu Meng, Gang Zhou, Qilin Gu, Palas K. Chanda, Frank Ospino and John P. Cooke

Circ Res. 2016;119:e129-e138; originally published online September 13, 2016;
doi: 10.1161/CIRCRESAHA.116.308263
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/119/9/e129

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2016/09/13/CIRCRESAHA.116.308263.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation Research* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation Research* is online at:
http://circres.ahajournals.org//subscriptions/
Transdifferentiation requires iNOS activation:
Role of RING1A S-Nitrosylation

Shu Meng, MD PhD; Gang Zhou, MD PhD; Qilin Gu, PhD; Palas K. Chanda, PhD; Frank Ospino, BS; John P. Cooke*, MD PhD
Center for Cardiovascular Regeneration
Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030

*Correspondence to:
John P. Cooke, M.D., Ph.D.
Department of Cardiovascular Sciences
Houston Methodist Research Institute
6670 Bertner Ave., Mail Stop: R10-South
Houston, Texas, 77030
Phone: 713-441-8322
Fax: 713-441-7196
Email: jpcooke@houstonmethodist.org

Key words: Innate immunity, epigenetics, endothelial cell, nitric oxide
Material and Methods

Chemicals and Reagents
All chemicals were purchased from Sigma-Aldrich (St Louis, MO) unless otherwise stated. Other reagents included FBS, Taqman RT-PCR primers, Taqman master mix, DAF-FM diacetate, RNAimax and DAPI (Life Technologies, Carlsbad, CA); the TLR3 agonist polyinosinic:polycytidilic acid (PIC) and NFκB inhibitors Bay117082, celastrol and dexamethasone (Invivogen, San Diego, CA); antibody against the S-nitroso (SNO) moiety (Sigma-Aldrich); antibody against 3-nitrotyrosine (NT) (Cayman Chemical, Ann Arbor, Michigan); PE- antibody against human CD31 and APC- antibody against mouse CD144 (BD Biosciences, San Jose, CA); antibody against inducible nitric oxide synthase (iNOS), HRP conjugated goat anti mouse or rabbit antibodies (Santa Cruz Biotechnology, Santa Cruz, CA); antibody against β-tubulin, Ring1A, H3K27 trimethylation (H3K27me3) and H3K9 dimethylation (H3K9me2; Abcam, Cambridge, UK); bone morphogenetic protein-4 (BMP-4), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF; Peprotech, Rocky Hill, NJ); Scramble and iNOS siRNA (Integrated DNA Technologies, Coralville, IA).

Cell culture and iEC generation
BJ human neonatal foreskin fibroblast cells (BJ fibroblasts) (Stemgent), WT and iNOS-/- murine embryonic fibroblasts (MEF; Cell Biologics Inc, Chicago IL) were cultured and maintained in Dulbecco's modified Eagle's medium (DMEM; Invitrogen) with 10% fetal bovine serum and 1% penicillin/streptomycin (5% CO2, 37°C). We transdifferentiated human and mouse fibroblasts to endothelial cells (iEC) using our previously established protocol. Briefly, cells were treated with PIC (30 ng/mL) daily for 7 days, and the medium was gradually transitioned to a 10% knockout serum replacement. Cells were treated with endothelial cell growth medium 2 (EGM-2; Lonza) containing 20 ng/mL BMP4, 50 ng/mL VEGF, and 20 ng/mL bFGF for another 7 days. For maintenance of transdifferentiation, the cells were cultured for another 2 weeks in the presence of bFGF, VEGF, and 0.1 mmol/L 8-bromoadenosine-3':5'-cyclic monophosphate sodium salt (8-Br-cAMP), with the medium changed every 2 days. In some experiments, inhibitors of iNOS or NFκB were present during the first three days of the transdifferentiation protocol; they were re-added when the transdifferentiation medium was refreshed.

RNA extraction and Real-Time PCR
mRNAs were extracted from cultured cells using RNeasy Mini Kit (Qiagen). The mRNA was reverse transcribed into cDNA and then specific primers for targeted genes were used for PCR amplification. For real-time PCR, a SYBR-green PCR system or Taqman system was used and ran on QuantStudio real-time PCR system (Life Technologies). Gene expression data using the ΔΔCt method was normalized to the expression of the 18S gene and plotted as relative fold changes.

Western blot and Immunoprecipitation

Western blot analysis was performed as previously described\(^2\). Cultured cells were homogenized in RIPA buffer containing 1× protease and phosphatase inhibitor cocktail. Protein concentration was quantified using BCA assay (Pierce) and resolved on 4-12% gradient SDS-polyacrylamide gels. The gel was transferred into nitrocellulose membrane using an iBlot System (Life Technology). Blots were stained with 1% Ponceau S for loading controls. Then blots were blocked with 5% nonfat milk in PBST (PBS with 0.1% Tween 20) for 1 hr at room temperature and probed with primary antibody overnight or longer at 4°C. Blots were then washed 4 times with PBST for 10 min. Horse radish peroxidase (HRP) -conjugated goat anti-mouse or rabbit antibodies were incubated for 1 hr at room temperature. Blots were washed for 4 times with PBST for 10 mins. Then antigen-antibody complexes were detected by exposure in a Fluorchem M system (Proteinsimple, San Jose, CA).

Immunoprecipitation was performed using the Pierce Classic Magnetic IP/Co-IP Kit (Thermo Scientific, Waltham, MA) following manufacturer’s manual. After exposure to a variety of experimental conditions, BJ fibroblasts were washed and collected in lysis buffer (pH 7.4, 0.025M Tris, 0.15M NaCl, 0.001M EDTA, 1% NP40, 5% glycerol). After 30 min incubation on ice, the lysate was centrifuged at 13,000×g for 10min to collect the supernatant. The cytosolic extract (500μg) was pretreated with protein A/G magnetic beads and incubated with control IgG, anti-SNO or anti-RING1A antibody overnight at 4°C. Protein A/G magnetic beads were incubated with samples for 2 h at 4°C, pelleted and washed three times with lysis buffer. Proteins were eluted in pH2.0 elution buffer and neutralized with pH8.5 buffer for western blot analysis.

Chromatin Immunoprecipitation (ChIP) -qPCR

ChIP was performed using a previously established method\(^1,2\). Recovery of genomic DNA was calculated as the ratio of copy numbers in the immunoprecipitate to the input control. Primers of the CD144
promoter were custom designed and synthesized from IDT, as follows: primer sequence (5’ to 3’), (F): CAGCCTCTTGGTTCTTCTGG; (R): GGAGTCAAGTGACCAGCTC.

Fluorescent assay for nitric oxide (NO)
To assess intracellular NO, we stained BJ fibroblasts using 4-Amino-5-methylamino-2’, 7’-difluorofluorescein Diacetate (DAF-FM DA). After the fibroblasts had been exposed to experimental conditions, they were incubated with DAF-FM DA 10 µM at 37 °C for 30 min. Fluorescence was quantified by measuring fluorescence intensity at 495 nm excitation and 515 nm emission by a fluorescence plate reader (Tecan M1000 PRO).

Immunofluorescent staining for iNOS and RING1A
After BJ fibroblasts were cultured in 8 well chamber slides and exposed to experimental conditions, cells were then fixed with 4% paraformaldehyde, permeabilized with phosphate-buffered saline (PBS) with 0.1% Triton X-100, blocked with 5% normal donkey serum, and stained for anti-human RING1A or iNOS antibody overnight at 4°C. After washes with PBS, the cells were further incubated with Alexa Fluor 488 or 555 conjugated secondary antibodies at RT for 1 hr. The nuclei were stained with DAPI for 10 min.

Analysis of S-nitrosylation by mass spectrometry (MS)
Protein from both control and PIC treated BJ fibroblasts was immunoprecipitated using RING1A antibody, resolved on 4-12% gradient SDS/PAGE gel and stained with Coomassie Blue. After destaining, the RING1A band was cut and sent to the mass spectrometry-proteomics core facility (Baylor College of Medicine). The gel band was further destained and double digested with trypsin and GluC (NEB) in situ. Peptides in the gel were extracted, quantified and 200 ng of each sample was analyzed using the Eksigent nanoLC system and then the ABCIEX TripleTOF 5600 mass spectrometer. The Eksigent nanoLC and the ABCIEX TripleTOF 5600 mass spectrometer were controlled by Analyst software version 1.6 (ABCIEX Inc.). The MS spectra (m/z 100-2000) were acquired with internal mass calibration. Raw data were converted to MGF format and then imported into Peaks software v6.0 for further peak generation and database search with the SPIDER function. The search sequence was E3 ubiquitin-protein ligase RING1A of human (NP_002922.2 GI:51479192).

Construction of RING1A overexpression plasmid and site directed mutagenesis
Human RING1A cDNA fragment was amplified with forward primer (5'-CAGGAATTCAATGACGACGCGGCGAATG-3') and reverse primer (5'-GAGGTGACGTCACCTTTGGATCTGTGGGGAGC-3') from pCMV6-XL4-RING1A (OriGene, # SC118280) and ligated into EcoRI/SalI digested pCMV-Tag2C to generate pCMV-Tag2C-RING1A. We further created pCMV-Tag2C-RING1A-C398A using a PCR-based method

Briefly, PCR reaction was set by 10 ng of template (pCMV-Tag2C-RING1A), 1 μM primer pair: C398A Mutation-Forward (5'-CGGACTGAGCTGGCTCTATGCTCCACGAAAGATCCAAGGAC-3') and C398A MutationReverse (5'-TTGGTGGGAGCATAGGCCTACCTCAGTGGCGGCACACGAC-3'), 200 μM dNTPs and 1 unit of Phusion High-Fidelity DNA Polymerase (NEB, # M0530S). The PCR cycles were initiated at 94°C for 5 minutes, followed by 18 amplification cycles. Each amplification cycle consisted of 94°C for 30 seconds, 68°C for 3 minutes. The PCR products were treated with 5 units of DpnI at 37°C for 2 hours and then 5 μl of each PCR reactions was transformed respectively into E. coli Top10 competent cells by heat shock. Single clones were sequenced to examine the C398A mutation.

Flow cytometry

Cells were trypsinized and filtered through a 40 μm nylon mesh to generate single cell suspensions. Cells were stained with antibody for cell surface marker detection. Data were analyzed by flowjo software.

Data analysis

Results are expressed as the mean±SEM. Statistical comparisons between 2 groups were performed via Student t test. One-way ANOVA was used to compare the means of multiple groups. P<0.05 was considered statistically significant.
References

Supplemental Figures

Online Figure I

Online Figure I. 3-NT protein increased during transdifferentiation. BJ fibroblasts were treated with PIC for 0, 3 and 7 days and collected for western blot. Lysates from treated cells were subjected to immunoblotting with 3-NT antibody and β-tubulin antibodies.
Online Figure II. CBX1 and HDAC2 are not S-nitrosylated during transdifferentiation. BJ fibroblasts were treated with PIC or vehicle control for 3 days. Cell lysates were subject to immunoprecipitation with SNO antibody and then immunoblotted for (A) CBX1 antibody or (B) HDAC2 antibody.
Online Figure III

Online Figure III. iNOS binds and S-nitrosylates Ring1A. BJ fibroblasts were treated with vehicle; PIC; or with PIC and the NFκB inhibitor Bay117082 for 3 days and proteins were collected for western blot or immunoprecipitation application. (A) Original blots of Figure 5A. (B) Original blots of Figure 5B. (C) Original blots of Figure 5C. (D) Proteins from cell lysate were immunoprecipitated with SNO or control IgG antibody and subject to western blot detection of Ring1A. Left panel showed the western blot. Middle and right panels are the original blots.
Online Figure IV. MS analysis of S-nitrosylation site of Ring1A. MS/MS fragmentation spectra for (A) the Cys332-containing peptide and (B) the Cys279-containing peptide. MS spectra of the cysteine-containing peptides identified after MS analysis. Peptide sequence is shown at the top left of each spectrum, with the annotation of the identified matched amino terminus-containing ions (b ions) in black and the carboxyl terminus-containing ions (y ions) in red. For clarity, only major identified peaks are labeled.
Online Figure V. RING1A-C398A mutation ablished S-nitrosylation. BJ fibroblasts were transfected with either pCMV-Tag2C-RING1A-C398A (WT-RING1A) or pCMV-Tag2C-RING1A-C398A (C398A-RING1A) plasmid and then subject to transdifferentiation protocol. At day 3, proteins were collected and immunoprecipitated with Flag or control IgG antibody. Products were examined by western blot detection of SNO protein. (A) Western blot. (B) Original blots of A.
Online Figure VI. Transdifferentiation protocol. Direct reprogramming of human fibroblasts to functional endothelial cells via activation of innate immunity and microenvironmental cues. The figure outlines the time course and sequential treatments.
Online Figure VII

PIC
↓
TLR3 activation
↓
NFκB
↓
iNOS

Direct binding
↓
NO generation
↓
Ring1A S-nitrosylation

↓
Ring1A binding to chromatin
↓
PRC1 stability and ↓ H3K27me3 level

Epigenetic plasticity
↓
Environmental cues

Transdifferentiation

Online Figure VII. Mechanism of epigenetic plasticity induced by innate immune activation.